mirror of
https://github.com/bevyengine/bevy
synced 2024-11-25 06:00:20 +00:00
Improve MeshletMesh::from_mesh performance (#13904)
This change reworks `find_connected_meshlets` to scale more linearly with the mesh size, which significantly reduces the cost of building meshlet representations. As a small extra complexity reduction, it moves `simplify_scale` call out of the loop so that it's called once (it only depends on the vertex data => is safe to cache). The new implementation of connectivity analysis builds edge=>meshlet list data structure, which allows us to only iterate through `tuple_combinations` of a (usually) small list. There is still some redundancy as if two meshlets share two edges, they will be represented in the meshlet lists twice, but it's overall much faster. Since the hash traversal is non-deterministic, to keep this part of the algorithm deterministic for reproducible results we sort the output adjacency lists. Overall this reduces the time to process bunny mesh from ~4.2s to ~1.7s when using release; in unoptimized builds the delta is even more significant. This was tested by using https://github.com/bevyengine/bevy/pull/13431 and: a) comparing the result of `find_connected_meshlets` using old and new code; they are equal in all steps of the clustering process b) comparing the rendered result of the old code vs new code *after* making the rest of the algorithm deterministic: right now the loop that iterates through the result of `group_meshlets()` call executes in different order between program runs. This is orthogonal to this change and can be fixed separately. Note: a future change can shrink the processing time further from ~1.7s to ~0.4s with a small diff but that requires an update to meshopt crate which is pending in https://github.com/gwihlidal/meshopt-rs/pull/42. This change is independent.
This commit is contained in:
parent
91cd84fea7
commit
001cc147c6
1 changed files with 71 additions and 51 deletions
|
@ -3,7 +3,7 @@ use bevy_render::{
|
|||
mesh::{Indices, Mesh},
|
||||
render_resource::PrimitiveTopology,
|
||||
};
|
||||
use bevy_utils::{HashMap, HashSet};
|
||||
use bevy_utils::HashMap;
|
||||
use itertools::Itertools;
|
||||
use meshopt::{
|
||||
build_meshlets, compute_cluster_bounds, compute_meshlet_bounds,
|
||||
|
@ -11,6 +11,7 @@ use meshopt::{
|
|||
simplify, simplify_scale, Meshlets, SimplifyOptions, VertexDataAdapter,
|
||||
};
|
||||
use metis::Graph;
|
||||
use smallvec::SmallVec;
|
||||
use std::{borrow::Cow, ops::Range};
|
||||
|
||||
impl MeshletMesh {
|
||||
|
@ -54,18 +55,15 @@ impl MeshletMesh {
|
|||
.iter()
|
||||
.map(|m| m.triangle_count as u64)
|
||||
.sum();
|
||||
let mesh_scale = simplify_scale(&vertices);
|
||||
|
||||
// Build further LODs
|
||||
let mut simplification_queue = 0..meshlets.len();
|
||||
let mut lod_level = 1;
|
||||
while simplification_queue.len() > 1 {
|
||||
// For each meshlet build a set of triangle edges
|
||||
let triangle_edges_per_meshlet =
|
||||
collect_triangle_edges_per_meshlet(simplification_queue.clone(), &meshlets);
|
||||
|
||||
// For each meshlet build a list of connected meshlets (meshlets that share a triangle edge)
|
||||
let connected_meshlets_per_meshlet =
|
||||
find_connected_meshlets(simplification_queue.clone(), &triangle_edges_per_meshlet);
|
||||
find_connected_meshlets(simplification_queue.clone(), &meshlets);
|
||||
|
||||
// Group meshlets into roughly groups of 4, grouping meshlets with a high number of shared edges
|
||||
// http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
|
||||
|
@ -78,9 +76,13 @@ impl MeshletMesh {
|
|||
|
||||
for group_meshlets in groups.values().filter(|group| group.len() > 1) {
|
||||
// Simplify the group to ~50% triangle count
|
||||
let Some((simplified_group_indices, mut group_error)) =
|
||||
simplify_meshlet_groups(group_meshlets, &meshlets, &vertices, lod_level)
|
||||
else {
|
||||
let Some((simplified_group_indices, mut group_error)) = simplify_meshlet_groups(
|
||||
group_meshlets,
|
||||
&meshlets,
|
||||
&vertices,
|
||||
lod_level,
|
||||
mesh_scale,
|
||||
) else {
|
||||
continue;
|
||||
};
|
||||
|
||||
|
@ -194,53 +196,70 @@ fn compute_meshlets(indices: &[u32], vertices: &VertexDataAdapter) -> Meshlets {
|
|||
meshlets
|
||||
}
|
||||
|
||||
fn collect_triangle_edges_per_meshlet(
|
||||
simplification_queue: Range<usize>,
|
||||
meshlets: &Meshlets,
|
||||
) -> HashMap<usize, HashSet<(u32, u32)>> {
|
||||
let mut triangle_edges_per_meshlet = HashMap::new();
|
||||
for meshlet_id in simplification_queue {
|
||||
let meshlet = meshlets.get(meshlet_id);
|
||||
let meshlet_triangle_edges = triangle_edges_per_meshlet
|
||||
.entry(meshlet_id)
|
||||
.or_insert(HashSet::new());
|
||||
for i in meshlet.triangles.chunks(3) {
|
||||
let v0 = meshlet.vertices[i[0] as usize];
|
||||
let v1 = meshlet.vertices[i[1] as usize];
|
||||
let v2 = meshlet.vertices[i[2] as usize];
|
||||
meshlet_triangle_edges.insert((v0.min(v1), v0.max(v1)));
|
||||
meshlet_triangle_edges.insert((v0.min(v2), v0.max(v2)));
|
||||
meshlet_triangle_edges.insert((v1.min(v2), v1.max(v2)));
|
||||
}
|
||||
}
|
||||
triangle_edges_per_meshlet
|
||||
}
|
||||
|
||||
fn find_connected_meshlets(
|
||||
simplification_queue: Range<usize>,
|
||||
triangle_edges_per_meshlet: &HashMap<usize, HashSet<(u32, u32)>>,
|
||||
meshlets: &Meshlets,
|
||||
) -> HashMap<usize, Vec<(usize, usize)>> {
|
||||
let mut connected_meshlets_per_meshlet = HashMap::new();
|
||||
for meshlet_id in simplification_queue.clone() {
|
||||
connected_meshlets_per_meshlet.insert(meshlet_id, Vec::new());
|
||||
}
|
||||
// For each edge, gather all meshlets that use it
|
||||
let mut edges_to_meshlets = HashMap::new();
|
||||
|
||||
for (meshlet_id1, meshlet_id2) in simplification_queue.tuple_combinations() {
|
||||
let shared_edge_count = triangle_edges_per_meshlet[&meshlet_id1]
|
||||
.intersection(&triangle_edges_per_meshlet[&meshlet_id2])
|
||||
.count();
|
||||
if shared_edge_count != 0 {
|
||||
connected_meshlets_per_meshlet
|
||||
.get_mut(&meshlet_id1)
|
||||
.unwrap()
|
||||
.push((meshlet_id2, shared_edge_count));
|
||||
connected_meshlets_per_meshlet
|
||||
.get_mut(&meshlet_id2)
|
||||
.unwrap()
|
||||
.push((meshlet_id1, shared_edge_count));
|
||||
for meshlet_id in simplification_queue.clone() {
|
||||
let meshlet = meshlets.get(meshlet_id);
|
||||
for i in meshlet.triangles.chunks(3) {
|
||||
for k in 0..3 {
|
||||
let v0 = meshlet.vertices[i[k] as usize];
|
||||
let v1 = meshlet.vertices[i[(k + 1) % 3] as usize];
|
||||
let edge = (v0.min(v1), v0.max(v1));
|
||||
|
||||
let vec = edges_to_meshlets
|
||||
.entry(edge)
|
||||
.or_insert_with(SmallVec::<[usize; 2]>::new);
|
||||
// Meshlets are added in order, so we can just check the last element to deduplicate,
|
||||
// in the case of two triangles sharing the same edge within a single meshlet
|
||||
if vec.last() != Some(&meshlet_id) {
|
||||
vec.push(meshlet_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
connected_meshlets_per_meshlet
|
||||
|
||||
// For each meshlet pair, count how many edges they share
|
||||
let mut shared_edge_count = HashMap::new();
|
||||
|
||||
for (_, meshlet_ids) in edges_to_meshlets {
|
||||
for (meshlet_id1, meshlet_id2) in meshlet_ids.into_iter().tuple_combinations() {
|
||||
let count = shared_edge_count
|
||||
.entry((meshlet_id1.min(meshlet_id2), meshlet_id1.max(meshlet_id2)))
|
||||
.or_insert(0);
|
||||
*count += 1;
|
||||
}
|
||||
}
|
||||
|
||||
// For each meshlet, gather all meshlets that share at least one edge along with shared edge count
|
||||
let mut connected_meshlets = HashMap::new();
|
||||
|
||||
for meshlet_id in simplification_queue.clone() {
|
||||
connected_meshlets.insert(meshlet_id, Vec::new());
|
||||
}
|
||||
|
||||
for ((meshlet_id1, meshlet_id2), shared_count) in shared_edge_count {
|
||||
// We record id1->id2 and id2->id1 as adjacency is symmetrical
|
||||
connected_meshlets
|
||||
.get_mut(&meshlet_id1)
|
||||
.unwrap()
|
||||
.push((meshlet_id2, shared_count));
|
||||
connected_meshlets
|
||||
.get_mut(&meshlet_id2)
|
||||
.unwrap()
|
||||
.push((meshlet_id1, shared_count));
|
||||
}
|
||||
|
||||
// The order of meshlets depends on hash traversal order; to produce deterministic results, sort them
|
||||
for (_, connected_meshlets) in connected_meshlets.iter_mut() {
|
||||
connected_meshlets.sort_unstable();
|
||||
}
|
||||
|
||||
connected_meshlets
|
||||
}
|
||||
|
||||
fn group_meshlets(
|
||||
|
@ -284,6 +303,7 @@ fn simplify_meshlet_groups(
|
|||
meshlets: &Meshlets,
|
||||
vertices: &VertexDataAdapter<'_>,
|
||||
lod_level: u32,
|
||||
mesh_scale: f32,
|
||||
) -> Option<(Vec<u32>, f32)> {
|
||||
// Build a new index buffer into the mesh vertex data by combining all meshlet data in the group
|
||||
let mut group_indices = Vec::new();
|
||||
|
@ -316,7 +336,7 @@ fn simplify_meshlet_groups(
|
|||
}
|
||||
|
||||
// Convert error to object-space and convert from diameter to radius
|
||||
error *= simplify_scale(vertices) * 0.5;
|
||||
error *= mesh_scale * 0.5;
|
||||
|
||||
Some((simplified_group_indices, error))
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue