bevy/crates/bevy_math/src/rects/irect.rs

459 lines
14 KiB
Rust
Raw Normal View History

use crate::{IVec2, Rect, URect};
/// A rectangle defined by two opposite corners.
///
/// The rectangle is axis aligned, and defined by its minimum and maximum coordinates,
/// stored in `IRect::min` and `IRect::max`, respectively. The minimum/maximum invariant
/// must be upheld by the user when directly assigning the fields, otherwise some methods
/// produce invalid results. It is generally recommended to use one of the constructor
/// methods instead, which will ensure this invariant is met, unless you already have
/// the minimum and maximum corners.
#[repr(C)]
#[derive(Default, Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct IRect {
/// The minimum corner point of the rect.
pub min: IVec2,
/// The maximum corner point of the rect.
pub max: IVec2,
}
impl IRect {
/// Create a new rectangle from two corner points.
///
/// The two points do not need to be the minimum and/or maximum corners.
/// They only need to be two opposite corners.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::IRect;
/// let r = IRect::new(0, 4, 10, 6); // w=10 h=2
/// let r = IRect::new(2, 3, 5, -1); // w=3 h=4
/// ```
#[inline]
pub fn new(x0: i32, y0: i32, x1: i32, y1: i32) -> Self {
Self::from_corners(IVec2::new(x0, y0), IVec2::new(x1, y1))
}
/// Create a new rectangle from two corner points.
///
/// The two points do not need to be the minimum and/or maximum corners.
/// They only need to be two opposite corners.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// // Unit rect from [0,0] to [1,1]
/// let r = IRect::from_corners(IVec2::ZERO, IVec2::ONE); // w=1 h=1
/// // Same; the points do not need to be ordered
/// let r = IRect::from_corners(IVec2::ONE, IVec2::ZERO); // w=1 h=1
/// ```
#[inline]
pub fn from_corners(p0: IVec2, p1: IVec2) -> Self {
Self {
min: p0.min(p1),
max: p0.max(p1),
}
}
/// Create a new rectangle from its center and size.
///
/// # Rounding Behaviour
///
/// If the size contains odd numbers they will be rounded down to the nearest whole number.
///
/// # Panics
///
/// This method panics if any of the components of the size is negative.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r = IRect::from_center_size(IVec2::ZERO, IVec2::new(3, 2)); // w=2 h=2
/// assert_eq!(r.min, IVec2::splat(-1));
/// assert_eq!(r.max, IVec2::splat(1));
/// ```
#[inline]
pub fn from_center_size(origin: IVec2, size: IVec2) -> Self {
debug_assert!(size.cmpge(IVec2::ZERO).all(), "IRect size must be positive");
let half_size = size / 2;
Self::from_center_half_size(origin, half_size)
}
/// Create a new rectangle from its center and half-size.
///
/// # Panics
///
/// This method panics if any of the components of the half-size is negative.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r = IRect::from_center_half_size(IVec2::ZERO, IVec2::ONE); // w=2 h=2
/// assert_eq!(r.min, IVec2::splat(-1));
/// assert_eq!(r.max, IVec2::splat(1));
/// ```
#[inline]
pub fn from_center_half_size(origin: IVec2, half_size: IVec2) -> Self {
assert!(
half_size.cmpge(IVec2::ZERO).all(),
"IRect half_size must be positive"
);
Self {
min: origin - half_size,
max: origin + half_size,
}
}
/// Check if the rectangle is empty.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r = IRect::from_corners(IVec2::ZERO, IVec2::new(0, 1)); // w=0 h=1
/// assert!(r.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.min.cmpge(self.max).any()
}
/// Rectangle width (max.x - min.x).
///
/// # Examples
///
/// ```rust
/// # use bevy_math::IRect;
/// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
/// assert_eq!(r.width(), 5);
/// ```
#[inline]
pub fn width(&self) -> i32 {
self.max.x - self.min.x
}
/// Rectangle height (max.y - min.y).
///
/// # Examples
///
/// ```rust
/// # use bevy_math::IRect;
/// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
/// assert_eq!(r.height(), 1);
/// ```
#[inline]
pub fn height(&self) -> i32 {
self.max.y - self.min.y
}
/// Rectangle size.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
/// assert_eq!(r.size(), IVec2::new(5, 1));
/// ```
#[inline]
pub fn size(&self) -> IVec2 {
self.max - self.min
}
/// Rectangle half-size.
///
/// # Rounding Behaviour
///
/// If the full size contains odd numbers they will be rounded down to the nearest whole number when calculating the half size.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r = IRect::new(0, 0, 4, 3); // w=4 h=3
/// assert_eq!(r.half_size(), IVec2::new(2, 1));
/// ```
#[inline]
pub fn half_size(&self) -> IVec2 {
self.size() / 2
}
/// The center point of the rectangle.
///
/// # Rounding Behaviour
///
/// If the (min + max) contains odd numbers they will be rounded down to the nearest whole number when calculating the center.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r = IRect::new(0, 0, 5, 2); // w=5 h=2
/// assert_eq!(r.center(), IVec2::new(2, 1));
/// ```
#[inline]
pub fn center(&self) -> IVec2 {
(self.min + self.max) / 2
}
/// Check if a point lies within this rectangle, inclusive of its edges.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::IRect;
/// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
/// assert!(r.contains(r.center()));
/// assert!(r.contains(r.min));
/// assert!(r.contains(r.max));
/// ```
#[inline]
pub fn contains(&self, point: IVec2) -> bool {
(point.cmpge(self.min) & point.cmple(self.max)).all()
}
/// Build a new rectangle formed of the union of this rectangle and another rectangle.
///
/// The union is the smallest rectangle enclosing both rectangles.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r1 = IRect::new(0, 0, 5, 1); // w=5 h=1
/// let r2 = IRect::new(1, -1, 3, 3); // w=2 h=4
/// let r = r1.union(r2);
/// assert_eq!(r.min, IVec2::new(0, -1));
/// assert_eq!(r.max, IVec2::new(5, 3));
/// ```
#[inline]
pub fn union(&self, other: Self) -> Self {
Self {
min: self.min.min(other.min),
max: self.max.max(other.max),
}
}
/// Build a new rectangle formed of the union of this rectangle and a point.
///
/// The union is the smallest rectangle enclosing both the rectangle and the point. If the
/// point is already inside the rectangle, this method returns a copy of the rectangle.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
/// let u = r.union_point(IVec2::new(3, 6));
/// assert_eq!(u.min, IVec2::ZERO);
/// assert_eq!(u.max, IVec2::new(5, 6));
/// ```
#[inline]
pub fn union_point(&self, other: IVec2) -> Self {
Self {
min: self.min.min(other),
max: self.max.max(other),
}
}
/// Build a new rectangle formed of the intersection of this rectangle and another rectangle.
///
/// The intersection is the largest rectangle enclosed in both rectangles. If the intersection
/// is empty, this method returns an empty rectangle ([`IRect::is_empty()`] returns `true`), but
/// the actual values of [`IRect::min`] and [`IRect::max`] are implementation-dependent.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r1 = IRect::new(0, 0, 5, 1); // w=5 h=1
/// let r2 = IRect::new(1, -1, 3, 3); // w=2 h=4
/// let r = r1.intersect(r2);
/// assert_eq!(r.min, IVec2::new(1, 0));
/// assert_eq!(r.max, IVec2::new(3, 1));
/// ```
#[inline]
pub fn intersect(&self, other: Self) -> Self {
let mut r = Self {
min: self.min.max(other.min),
max: self.max.min(other.max),
};
// Collapse min over max to enforce invariants and ensure e.g. width() or
// height() never return a negative value.
r.min = r.min.min(r.max);
r
}
/// Create a new rectangle with a constant inset.
///
/// The inset is the extra border on all sides. A positive inset produces a larger rectangle,
/// while a negative inset is allowed and produces a smaller rectangle. If the inset is negative
/// and its absolute value is larger than the rectangle half-size, the created rectangle is empty.
///
/// # Examples
///
/// ```rust
/// # use bevy_math::{IRect, IVec2};
/// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
/// let r2 = r.inset(3); // w=11 h=7
/// assert_eq!(r2.min, IVec2::splat(-3));
/// assert_eq!(r2.max, IVec2::new(8, 4));
///
/// let r = IRect::new(0, -1, 4, 3); // w=4 h=4
/// let r2 = r.inset(-1); // w=2 h=2
/// assert_eq!(r2.min, IVec2::new(1, 0));
/// assert_eq!(r2.max, IVec2::new(3, 2));
/// ```
#[inline]
pub fn inset(&self, inset: i32) -> Self {
let mut r = Self {
min: self.min - inset,
max: self.max + inset,
};
// Collapse min over max to enforce invariants and ensure e.g. width() or
// height() never return a negative value.
r.min = r.min.min(r.max);
r
}
/// Returns self as [`Rect`] (f32)
#[inline]
pub fn as_rect(&self) -> Rect {
Rect::from_corners(self.min.as_vec2(), self.max.as_vec2())
}
/// Returns self as [`URect`] (u32)
#[inline]
pub fn as_urect(&self) -> URect {
URect::from_corners(self.min.as_uvec2(), self.max.as_uvec2())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn well_formed() {
let r = IRect::from_center_size(IVec2::new(3, -5), IVec2::new(8, 12));
assert_eq!(r.min, IVec2::new(-1, -11));
assert_eq!(r.max, IVec2::new(7, 1));
assert_eq!(r.center(), IVec2::new(3, -5));
assert_eq!(r.width().abs(), 8);
assert_eq!(r.height().abs(), 12);
assert_eq!(r.size(), IVec2::new(8, 12));
assert_eq!(r.half_size(), IVec2::new(4, 6));
assert!(r.contains(IVec2::new(3, -5)));
assert!(r.contains(IVec2::new(-1, -10)));
assert!(r.contains(IVec2::new(-1, 0)));
assert!(r.contains(IVec2::new(7, -10)));
assert!(r.contains(IVec2::new(7, 0)));
assert!(!r.contains(IVec2::new(50, -5)));
}
#[test]
fn rect_union() {
let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(4)); // [-2, -2] - [2, 2]
// overlapping
let r2 = IRect {
min: IVec2::new(1, 1),
max: IVec2::new(3, 3),
};
let u = r.union(r2);
assert_eq!(u.min, IVec2::new(-2, -2));
assert_eq!(u.max, IVec2::new(3, 3));
// disjoint
let r2 = IRect {
min: IVec2::new(1, 4),
max: IVec2::new(4, 6),
};
let u = r.union(r2);
assert_eq!(u.min, IVec2::new(-2, -2));
assert_eq!(u.max, IVec2::new(4, 6));
// included
let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(2));
let u = r.union(r2);
assert_eq!(u.min, r.min);
assert_eq!(u.max, r.max);
// including
let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(6));
let u = r.union(r2);
assert_eq!(u.min, r2.min);
assert_eq!(u.min, r2.min);
}
#[test]
fn rect_union_pt() {
let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(4)); // [-2,-2] - [2,2]
// inside
let v = IVec2::new(1, -1);
let u = r.union_point(v);
assert_eq!(u.min, r.min);
assert_eq!(u.max, r.max);
// outside
let v = IVec2::new(10, -3);
let u = r.union_point(v);
assert_eq!(u.min, IVec2::new(-2, -3));
assert_eq!(u.max, IVec2::new(10, 2));
}
#[test]
fn rect_intersect() {
let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(8)); // [-4,-4] - [4,4]
// overlapping
let r2 = IRect {
min: IVec2::new(2, 2),
max: IVec2::new(6, 6),
};
let u = r.intersect(r2);
assert_eq!(u.min, IVec2::new(2, 2));
assert_eq!(u.max, IVec2::new(4, 4));
// disjoint
let r2 = IRect {
min: IVec2::new(-8, -2),
max: IVec2::new(-6, 2),
};
let u = r.intersect(r2);
assert!(u.is_empty());
assert_eq!(u.width(), 0);
// included
let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(2));
let u = r.intersect(r2);
assert_eq!(u.min, r2.min);
assert_eq!(u.max, r2.max);
// including
let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(10));
let u = r.intersect(r2);
assert_eq!(u.min, r.min);
assert_eq!(u.max, r.max);
}
#[test]
fn rect_inset() {
let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(4)); // [-2,-2] - [2,2]
let r2 = r.inset(2);
assert_eq!(r2.min, IVec2::new(-4, -4));
assert_eq!(r2.max, IVec2::new(4, 4));
}
}