bevy/crates/bevy_ecs/src/schedule/set.rs

212 lines
5 KiB
Rust
Raw Normal View History

use std::any::TypeId;
use std::fmt::Debug;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
`run_if` for `SystemConfigs` via anonymous system sets (#7676) # Objective - Fixes #7659 ## Solution The idea of anonymous system sets or "implicit hidden organizational sets" was briefly mentioned by @cart here: https://github.com/bevyengine/bevy/pull/7634#issuecomment-1428619449. - `Schedule::add_systems` creates an implicit, anonymous system set of all systems in `SystemConfigs`. - All dependencies and conditions from the `SystemConfigs` are now applied to the implicit system set, instead of being applied to each individual system. This should not change the behavior, AFAIU, because `before`, `after`, `run_if` and `ambiguous_with` are transitive properties from a set to its members. - The newly added `AnonymousSystemSet` stores the names of its members to provide better error messages. - The names are stored in a reference counted slice, allowing fast clones of the `AnonymousSystemSet`. - However, only the pointer of the slice is used for hash and equality operations - This ensures that two `AnonymousSystemSet` are not equal, even if they have the same members / member names. - So two identical `add_systems` calls will produce two different `AnonymousSystemSet`s. - Clones of the same `AnonymousSystemSet` will be equal. ## Drawbacks If my assumptions are correct, the observed behavior should stay the same. But the number of system sets in the `Schedule` will increase with each `add_systems` call. If this has negative performance implications, `add_systems` could be changed to only create the implicit system set if necessary / when a run condition was added. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-03-30 21:39:10 +00:00
use std::sync::atomic::{AtomicUsize, Ordering};
pub use bevy_ecs_macros::{ScheduleLabel, SystemSet};
use bevy_utils::define_boxed_label;
use bevy_utils::label::DynHash;
use crate::system::{
ExclusiveSystemParamFunction, IsExclusiveFunctionSystem, IsFunctionSystem, SystemParamFunction,
};
define_boxed_label!(ScheduleLabel);
pub type BoxedSystemSet = Box<dyn SystemSet>;
pub type BoxedScheduleLabel = Box<dyn ScheduleLabel>;
/// Types that identify logical groups of systems.
pub trait SystemSet: DynHash + Debug + Send + Sync + 'static {
/// Returns `Some` if this system set is a [`SystemTypeSet`].
fn system_type(&self) -> Option<TypeId> {
None
}
`run_if` for `SystemConfigs` via anonymous system sets (#7676) # Objective - Fixes #7659 ## Solution The idea of anonymous system sets or "implicit hidden organizational sets" was briefly mentioned by @cart here: https://github.com/bevyengine/bevy/pull/7634#issuecomment-1428619449. - `Schedule::add_systems` creates an implicit, anonymous system set of all systems in `SystemConfigs`. - All dependencies and conditions from the `SystemConfigs` are now applied to the implicit system set, instead of being applied to each individual system. This should not change the behavior, AFAIU, because `before`, `after`, `run_if` and `ambiguous_with` are transitive properties from a set to its members. - The newly added `AnonymousSystemSet` stores the names of its members to provide better error messages. - The names are stored in a reference counted slice, allowing fast clones of the `AnonymousSystemSet`. - However, only the pointer of the slice is used for hash and equality operations - This ensures that two `AnonymousSystemSet` are not equal, even if they have the same members / member names. - So two identical `add_systems` calls will produce two different `AnonymousSystemSet`s. - Clones of the same `AnonymousSystemSet` will be equal. ## Drawbacks If my assumptions are correct, the observed behavior should stay the same. But the number of system sets in the `Schedule` will increase with each `add_systems` call. If this has negative performance implications, `add_systems` could be changed to only create the implicit system set if necessary / when a run condition was added. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-03-30 21:39:10 +00:00
/// Returns `true` if this system set is an [`AnonymousSet`].
fn is_anonymous(&self) -> bool {
false
}
Migrate engine to Schedule v3 (#7267) Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
/// Creates a boxed clone of the label corresponding to this system set.
fn dyn_clone(&self) -> Box<dyn SystemSet>;
}
impl PartialEq for dyn SystemSet {
fn eq(&self, other: &Self) -> bool {
self.dyn_eq(other.as_dyn_eq())
}
}
impl Eq for dyn SystemSet {}
impl Hash for dyn SystemSet {
fn hash<H: Hasher>(&self, state: &mut H) {
self.dyn_hash(state);
}
}
impl Clone for Box<dyn SystemSet> {
fn clone(&self) -> Self {
self.dyn_clone()
}
}
/// A [`SystemSet`] grouping instances of the same function.
///
/// This kind of set is automatically populated and thus has some special rules:
/// - You cannot manually add members.
/// - You cannot configure them.
/// - You cannot order something relative to one if it has more than one member.
pub struct SystemTypeSet<T: 'static>(PhantomData<fn() -> T>);
impl<T: 'static> SystemTypeSet<T> {
pub(crate) fn new() -> Self {
Self(PhantomData)
}
}
impl<T> Debug for SystemTypeSet<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("SystemTypeSet")
.field(&std::any::type_name::<T>())
.finish()
}
}
impl<T> Hash for SystemTypeSet<T> {
fn hash<H: Hasher>(&self, _state: &mut H) {
// all systems of a given type are the same
}
}
impl<T> Clone for SystemTypeSet<T> {
fn clone(&self) -> Self {
Self(PhantomData)
}
}
impl<T> Copy for SystemTypeSet<T> {}
impl<T> PartialEq for SystemTypeSet<T> {
#[inline]
fn eq(&self, _other: &Self) -> bool {
// all systems of a given type are the same
true
}
}
impl<T> Eq for SystemTypeSet<T> {}
impl<T> SystemSet for SystemTypeSet<T> {
fn system_type(&self) -> Option<TypeId> {
Some(TypeId::of::<T>())
}
fn dyn_clone(&self) -> Box<dyn SystemSet> {
Box::new(*self)
}
}
`run_if` for `SystemConfigs` via anonymous system sets (#7676) # Objective - Fixes #7659 ## Solution The idea of anonymous system sets or "implicit hidden organizational sets" was briefly mentioned by @cart here: https://github.com/bevyengine/bevy/pull/7634#issuecomment-1428619449. - `Schedule::add_systems` creates an implicit, anonymous system set of all systems in `SystemConfigs`. - All dependencies and conditions from the `SystemConfigs` are now applied to the implicit system set, instead of being applied to each individual system. This should not change the behavior, AFAIU, because `before`, `after`, `run_if` and `ambiguous_with` are transitive properties from a set to its members. - The newly added `AnonymousSystemSet` stores the names of its members to provide better error messages. - The names are stored in a reference counted slice, allowing fast clones of the `AnonymousSystemSet`. - However, only the pointer of the slice is used for hash and equality operations - This ensures that two `AnonymousSystemSet` are not equal, even if they have the same members / member names. - So two identical `add_systems` calls will produce two different `AnonymousSystemSet`s. - Clones of the same `AnonymousSystemSet` will be equal. ## Drawbacks If my assumptions are correct, the observed behavior should stay the same. But the number of system sets in the `Schedule` will increase with each `add_systems` call. If this has negative performance implications, `add_systems` could be changed to only create the implicit system set if necessary / when a run condition was added. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-03-30 21:39:10 +00:00
/// A [`SystemSet`] implicitly created when using
/// [`Schedule::add_systems`](super::Schedule::add_systems).
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub struct AnonymousSet(usize);
static NEXT_ANONYMOUS_SET_ID: AtomicUsize = AtomicUsize::new(0);
impl AnonymousSet {
pub(crate) fn new() -> Self {
Self(NEXT_ANONYMOUS_SET_ID.fetch_add(1, Ordering::Relaxed))
}
}
impl SystemSet for AnonymousSet {
fn is_anonymous(&self) -> bool {
true
}
fn dyn_clone(&self) -> Box<dyn SystemSet> {
Box::new(*self)
}
}
/// Types that can be converted into a [`SystemSet`].
pub trait IntoSystemSet<Marker>: Sized {
type Set: SystemSet;
fn into_system_set(self) -> Self::Set;
}
// systems sets
impl<S: SystemSet> IntoSystemSet<()> for S {
type Set = Self;
#[inline]
fn into_system_set(self) -> Self::Set {
self
}
}
// systems
impl<Marker, F> IntoSystemSet<(IsFunctionSystem, Marker)> for F
where
F: SystemParamFunction<Marker>,
{
type Set = SystemTypeSet<Self>;
#[inline]
fn into_system_set(self) -> Self::Set {
SystemTypeSet::new()
}
}
// exclusive systems
impl<Marker, F> IntoSystemSet<(IsExclusiveFunctionSystem, Marker)> for F
where
F: ExclusiveSystemParamFunction<Marker>,
{
type Set = SystemTypeSet<Self>;
#[inline]
fn into_system_set(self) -> Self::Set {
SystemTypeSet::new()
}
}
2023-04-19 02:36:44 +00:00
#[cfg(test)]
mod tests {
use crate::{
schedule::{tests::ResMut, Schedule},
system::Resource,
};
use super::*;
#[test]
fn test_boxed_label() {
use crate::{self as bevy_ecs, world::World};
#[derive(Resource)]
struct Flag(bool);
#[derive(ScheduleLabel, Debug, Default, Clone, Copy, PartialEq, Eq, Hash)]
struct A;
let mut world = World::new();
let mut schedule = Schedule::new();
schedule.add_systems(|mut flag: ResMut<Flag>| flag.0 = true);
world.add_schedule(schedule, A);
let boxed: Box<dyn ScheduleLabel> = Box::new(A);
world.insert_resource(Flag(false));
world.run_schedule_ref(&boxed);
assert!(world.resource::<Flag>().0);
world.insert_resource(Flag(false));
world.run_schedule(boxed);
assert!(world.resource::<Flag>().0);
}
}