bevy/crates/bevy_pbr/src/alpha.rs

52 lines
2.2 KiB
Rust
Raw Normal View History

add `#[reflect(Default)]` to create default value for reflected types (#3733) ### Problem It currently isn't possible to construct the default value of a reflected type. Because of that, it isn't possible to use `add_component` of `ReflectComponent` to add a new component to an entity because you can't know what the initial value should be. ### Solution 1. add `ReflectDefault` type ```rust #[derive(Clone)] pub struct ReflectDefault { default: fn() -> Box<dyn Reflect>, } impl ReflectDefault { pub fn default(&self) -> Box<dyn Reflect> { (self.default)() } } impl<T: Reflect + Default> FromType<T> for ReflectDefault { fn from_type() -> Self { ReflectDefault { default: || Box::new(T::default()), } } } ``` 2. add `#[reflect(Default)]` to all component types that implement `Default` and are user facing (so not `ComputedSize`, `CubemapVisibleEntities` etc.) This makes it possible to add the default value of a component to an entity without any compile-time information: ```rust fn main() { let mut app = App::new(); app.register_type::<Camera>(); let type_registry = app.world.get_resource::<TypeRegistry>().unwrap(); let type_registry = type_registry.read(); let camera_registration = type_registry.get(std::any::TypeId::of::<Camera>()).unwrap(); let reflect_default = camera_registration.data::<ReflectDefault>().unwrap(); let reflect_component = camera_registration .data::<ReflectComponent>() .unwrap() .clone(); let default = reflect_default.default(); drop(type_registry); let entity = app.world.spawn().id(); reflect_component.add_component(&mut app.world, entity, &*default); let camera = app.world.entity(entity).get::<Camera>().unwrap(); dbg!(&camera); } ``` ### Open questions - should we have `ReflectDefault` or `ReflectFromWorld` or both?
2022-05-03 19:20:13 +00:00
use bevy_reflect::std_traits::ReflectDefault;
bevy_reflect: `FromReflect` Ergonomics Implementation (#6056) # Objective **This implementation is based on https://github.com/bevyengine/rfcs/pull/59.** --- Resolves #4597 Full details and motivation can be found in the RFC, but here's a brief summary. `FromReflect` is a very powerful and important trait within the reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to be formed into Real ones (e.g., `Vec<i32>`, etc.). This mainly comes into play concerning deserialization, where the reflection deserializers both return a `Box<dyn Reflect>` that almost always contain one of these Dynamic representations of a Real type. To convert this to our Real type, we need to use `FromReflect`. It also sneaks up in other ways. For example, it's a required bound for `T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`. It's also required by all fields of an enum as it's used as part of the `Reflect::apply` implementation. So in other words, much like `GetTypeRegistration` and `Typed`, it is very much a core reflection trait. The problem is that it is not currently treated like a core trait and is not automatically derived alongside `Reflect`. This makes using it a bit cumbersome and easy to forget. ## Solution Automatically derive `FromReflect` when deriving `Reflect`. Users can then choose to opt-out if needed using the `#[reflect(from_reflect = false)]` attribute. ```rust #[derive(Reflect)] struct Foo; #[derive(Reflect)] #[reflect(from_reflect = false)] struct Bar; fn test<T: FromReflect>(value: T) {} test(Foo); // <-- OK test(Bar); // <-- Panic! Bar does not implement trait `FromReflect` ``` #### `ReflectFromReflect` This PR also automatically adds the `ReflectFromReflect` (introduced in #6245) registration to the derived `GetTypeRegistration` impl— if the type hasn't opted out of `FromReflect` of course. <details> <summary><h4>Improved Deserialization</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. And since we can do all the above, we might as well improve deserialization. We can now choose to deserialize into a Dynamic type or automatically convert it using `FromReflect` under the hood. `[Un]TypedReflectDeserializer::new` will now perform the conversion and return the `Box`'d Real type. `[Un]TypedReflectDeserializer::new_dynamic` will work like what we have now and simply return the `Box`'d Dynamic type. ```rust // Returns the Real type let reflect_deserializer = UntypedReflectDeserializer::new(&registry); let mut deserializer = ron::de::Deserializer::from_str(input)?; let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // Returns the Dynamic type let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry); let mut deserializer = ron::de::Deserializer::from_str(input)?; let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` </details> --- ## Changelog * `FromReflect` is now automatically derived within the `Reflect` derive macro * This includes auto-registering `ReflectFromReflect` in the derived `GetTypeRegistration` impl * ~~Renamed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped** * ~~Changed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to automatically convert the deserialized output using `FromReflect`~~ **Descoped** ## Migration Guide * `FromReflect` is now automatically derived within the `Reflect` derive macro. Items with both derives will need to remove the `FromReflect` one. ```rust // OLD #[derive(Reflect, FromReflect)] struct Foo; // NEW #[derive(Reflect)] struct Foo; ``` If using a manual implementation of `FromReflect` and the `Reflect` derive, users will need to opt-out of the automatic implementation. ```rust // OLD #[derive(Reflect)] struct Foo; impl FromReflect for Foo {/* ... */} // NEW #[derive(Reflect)] #[reflect(from_reflect = false)] struct Foo; impl FromReflect for Foo {/* ... */} ``` <details> <summary><h4>Removed Migrations</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. * The reflect deserializers now perform a `FromReflect` conversion internally. The expected output of `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` is no longer a Dynamic (e.g., `DynamicList`), but its Real counterpart (e.g., `Vec<i32>`). ```rust let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry); let mut deserializer = ron::de::Deserializer::from_str(input)?; // OLD let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // NEW let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` Alternatively, if this behavior isn't desired, use the `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic` methods instead: ```rust // OLD let reflect_deserializer = UntypedReflectDeserializer::new(&registry); // NEW let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry); ``` </details> --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-29 01:31:34 +00:00
use bevy_reflect::Reflect;
Add support for opaque, alpha mask, and alpha blend modes (#3072) # Objective Add depth prepass and support for opaque, alpha mask, and alpha blend modes for the 3D PBR target. ## Solution NOTE: This is based on top of #2861 frustum culling. Just lining it up to keep @cart loaded with the review train. 🚂 There are a lot of important details here. Big thanks to @cwfitzgerald of wgpu, naga, and rend3 fame for explaining how to do it properly! * An `AlphaMode` component is added that defines whether a material should be considered opaque, an alpha mask (with a cutoff value that defaults to 0.5, the same as glTF), or transparent and should be alpha blended * Two depth prepasses are added: * Opaque does a plain vertex stage * Alpha mask does the vertex stage but also a fragment stage that samples the colour for the fragment and discards if its alpha value is below the cutoff value * Both are sorted front to back, not that it matters for these passes. (Maybe there should be a way to skip sorting?) * Three main passes are added: * Opaque and alpha mask passes use a depth comparison function of Equal such that only the geometry that was closest is processed further, due to early-z testing * The transparent pass uses the Greater depth comparison function so that only transparent objects that are closer than anything opaque are rendered * The opaque fragment shading is as before except that alpha is explicitly set to 1.0 * Alpha mask fragment shading sets the alpha value to 1.0 if it is equal to or above the cutoff, as defined by glTF * Opaque and alpha mask are sorted front to back (again not that it matters as we will skip anything that is not equal... maybe sorting is no longer needed here?) * Transparent is sorted back to front. Transparent fragment shading uses the alpha blending over operator Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-11-16 03:03:27 +00:00
// TODO: add discussion about performance.
/// Sets how a material's base color alpha channel is used for transparency.
bevy_reflect: `FromReflect` Ergonomics Implementation (#6056) # Objective **This implementation is based on https://github.com/bevyengine/rfcs/pull/59.** --- Resolves #4597 Full details and motivation can be found in the RFC, but here's a brief summary. `FromReflect` is a very powerful and important trait within the reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to be formed into Real ones (e.g., `Vec<i32>`, etc.). This mainly comes into play concerning deserialization, where the reflection deserializers both return a `Box<dyn Reflect>` that almost always contain one of these Dynamic representations of a Real type. To convert this to our Real type, we need to use `FromReflect`. It also sneaks up in other ways. For example, it's a required bound for `T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`. It's also required by all fields of an enum as it's used as part of the `Reflect::apply` implementation. So in other words, much like `GetTypeRegistration` and `Typed`, it is very much a core reflection trait. The problem is that it is not currently treated like a core trait and is not automatically derived alongside `Reflect`. This makes using it a bit cumbersome and easy to forget. ## Solution Automatically derive `FromReflect` when deriving `Reflect`. Users can then choose to opt-out if needed using the `#[reflect(from_reflect = false)]` attribute. ```rust #[derive(Reflect)] struct Foo; #[derive(Reflect)] #[reflect(from_reflect = false)] struct Bar; fn test<T: FromReflect>(value: T) {} test(Foo); // <-- OK test(Bar); // <-- Panic! Bar does not implement trait `FromReflect` ``` #### `ReflectFromReflect` This PR also automatically adds the `ReflectFromReflect` (introduced in #6245) registration to the derived `GetTypeRegistration` impl— if the type hasn't opted out of `FromReflect` of course. <details> <summary><h4>Improved Deserialization</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. And since we can do all the above, we might as well improve deserialization. We can now choose to deserialize into a Dynamic type or automatically convert it using `FromReflect` under the hood. `[Un]TypedReflectDeserializer::new` will now perform the conversion and return the `Box`'d Real type. `[Un]TypedReflectDeserializer::new_dynamic` will work like what we have now and simply return the `Box`'d Dynamic type. ```rust // Returns the Real type let reflect_deserializer = UntypedReflectDeserializer::new(&registry); let mut deserializer = ron::de::Deserializer::from_str(input)?; let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // Returns the Dynamic type let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry); let mut deserializer = ron::de::Deserializer::from_str(input)?; let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` </details> --- ## Changelog * `FromReflect` is now automatically derived within the `Reflect` derive macro * This includes auto-registering `ReflectFromReflect` in the derived `GetTypeRegistration` impl * ~~Renamed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped** * ~~Changed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to automatically convert the deserialized output using `FromReflect`~~ **Descoped** ## Migration Guide * `FromReflect` is now automatically derived within the `Reflect` derive macro. Items with both derives will need to remove the `FromReflect` one. ```rust // OLD #[derive(Reflect, FromReflect)] struct Foo; // NEW #[derive(Reflect)] struct Foo; ``` If using a manual implementation of `FromReflect` and the `Reflect` derive, users will need to opt-out of the automatic implementation. ```rust // OLD #[derive(Reflect)] struct Foo; impl FromReflect for Foo {/* ... */} // NEW #[derive(Reflect)] #[reflect(from_reflect = false)] struct Foo; impl FromReflect for Foo {/* ... */} ``` <details> <summary><h4>Removed Migrations</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. * The reflect deserializers now perform a `FromReflect` conversion internally. The expected output of `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` is no longer a Dynamic (e.g., `DynamicList`), but its Real counterpart (e.g., `Vec<i32>`). ```rust let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry); let mut deserializer = ron::de::Deserializer::from_str(input)?; // OLD let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // NEW let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` Alternatively, if this behavior isn't desired, use the `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic` methods instead: ```rust // OLD let reflect_deserializer = UntypedReflectDeserializer::new(&registry); // NEW let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry); ``` </details> --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-29 01:31:34 +00:00
#[derive(Debug, Default, Reflect, Copy, Clone, PartialEq)]
#[reflect(Default, Debug)]
Add support for opaque, alpha mask, and alpha blend modes (#3072) # Objective Add depth prepass and support for opaque, alpha mask, and alpha blend modes for the 3D PBR target. ## Solution NOTE: This is based on top of #2861 frustum culling. Just lining it up to keep @cart loaded with the review train. 🚂 There are a lot of important details here. Big thanks to @cwfitzgerald of wgpu, naga, and rend3 fame for explaining how to do it properly! * An `AlphaMode` component is added that defines whether a material should be considered opaque, an alpha mask (with a cutoff value that defaults to 0.5, the same as glTF), or transparent and should be alpha blended * Two depth prepasses are added: * Opaque does a plain vertex stage * Alpha mask does the vertex stage but also a fragment stage that samples the colour for the fragment and discards if its alpha value is below the cutoff value * Both are sorted front to back, not that it matters for these passes. (Maybe there should be a way to skip sorting?) * Three main passes are added: * Opaque and alpha mask passes use a depth comparison function of Equal such that only the geometry that was closest is processed further, due to early-z testing * The transparent pass uses the Greater depth comparison function so that only transparent objects that are closer than anything opaque are rendered * The opaque fragment shading is as before except that alpha is explicitly set to 1.0 * Alpha mask fragment shading sets the alpha value to 1.0 if it is equal to or above the cutoff, as defined by glTF * Opaque and alpha mask are sorted front to back (again not that it matters as we will skip anything that is not equal... maybe sorting is no longer needed here?) * Transparent is sorted back to front. Transparent fragment shading uses the alpha blending over operator Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-11-16 03:03:27 +00:00
pub enum AlphaMode {
/// Base color alpha values are overridden to be fully opaque (1.0).
#[default]
Add support for opaque, alpha mask, and alpha blend modes (#3072) # Objective Add depth prepass and support for opaque, alpha mask, and alpha blend modes for the 3D PBR target. ## Solution NOTE: This is based on top of #2861 frustum culling. Just lining it up to keep @cart loaded with the review train. 🚂 There are a lot of important details here. Big thanks to @cwfitzgerald of wgpu, naga, and rend3 fame for explaining how to do it properly! * An `AlphaMode` component is added that defines whether a material should be considered opaque, an alpha mask (with a cutoff value that defaults to 0.5, the same as glTF), or transparent and should be alpha blended * Two depth prepasses are added: * Opaque does a plain vertex stage * Alpha mask does the vertex stage but also a fragment stage that samples the colour for the fragment and discards if its alpha value is below the cutoff value * Both are sorted front to back, not that it matters for these passes. (Maybe there should be a way to skip sorting?) * Three main passes are added: * Opaque and alpha mask passes use a depth comparison function of Equal such that only the geometry that was closest is processed further, due to early-z testing * The transparent pass uses the Greater depth comparison function so that only transparent objects that are closer than anything opaque are rendered * The opaque fragment shading is as before except that alpha is explicitly set to 1.0 * Alpha mask fragment shading sets the alpha value to 1.0 if it is equal to or above the cutoff, as defined by glTF * Opaque and alpha mask are sorted front to back (again not that it matters as we will skip anything that is not equal... maybe sorting is no longer needed here?) * Transparent is sorted back to front. Transparent fragment shading uses the alpha blending over operator Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-11-16 03:03:27 +00:00
Opaque,
/// Reduce transparency to fully opaque or fully transparent
/// based on a threshold.
///
/// Compares the base color alpha value to the specified threshold.
/// If the value is below the threshold,
/// considers the color to be fully transparent (alpha is set to 0.0).
/// If it is equal to or above the threshold,
/// considers the color to be fully opaque (alpha is set to 1.0).
Add support for opaque, alpha mask, and alpha blend modes (#3072) # Objective Add depth prepass and support for opaque, alpha mask, and alpha blend modes for the 3D PBR target. ## Solution NOTE: This is based on top of #2861 frustum culling. Just lining it up to keep @cart loaded with the review train. 🚂 There are a lot of important details here. Big thanks to @cwfitzgerald of wgpu, naga, and rend3 fame for explaining how to do it properly! * An `AlphaMode` component is added that defines whether a material should be considered opaque, an alpha mask (with a cutoff value that defaults to 0.5, the same as glTF), or transparent and should be alpha blended * Two depth prepasses are added: * Opaque does a plain vertex stage * Alpha mask does the vertex stage but also a fragment stage that samples the colour for the fragment and discards if its alpha value is below the cutoff value * Both are sorted front to back, not that it matters for these passes. (Maybe there should be a way to skip sorting?) * Three main passes are added: * Opaque and alpha mask passes use a depth comparison function of Equal such that only the geometry that was closest is processed further, due to early-z testing * The transparent pass uses the Greater depth comparison function so that only transparent objects that are closer than anything opaque are rendered * The opaque fragment shading is as before except that alpha is explicitly set to 1.0 * Alpha mask fragment shading sets the alpha value to 1.0 if it is equal to or above the cutoff, as defined by glTF * Opaque and alpha mask are sorted front to back (again not that it matters as we will skip anything that is not equal... maybe sorting is no longer needed here?) * Transparent is sorted back to front. Transparent fragment shading uses the alpha blending over operator Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-11-16 03:03:27 +00:00
Mask(f32),
/// The base color alpha value defines the opacity of the color.
/// Standard alpha-blending is used to blend the fragment's color
/// with the color behind it.
Add support for opaque, alpha mask, and alpha blend modes (#3072) # Objective Add depth prepass and support for opaque, alpha mask, and alpha blend modes for the 3D PBR target. ## Solution NOTE: This is based on top of #2861 frustum culling. Just lining it up to keep @cart loaded with the review train. 🚂 There are a lot of important details here. Big thanks to @cwfitzgerald of wgpu, naga, and rend3 fame for explaining how to do it properly! * An `AlphaMode` component is added that defines whether a material should be considered opaque, an alpha mask (with a cutoff value that defaults to 0.5, the same as glTF), or transparent and should be alpha blended * Two depth prepasses are added: * Opaque does a plain vertex stage * Alpha mask does the vertex stage but also a fragment stage that samples the colour for the fragment and discards if its alpha value is below the cutoff value * Both are sorted front to back, not that it matters for these passes. (Maybe there should be a way to skip sorting?) * Three main passes are added: * Opaque and alpha mask passes use a depth comparison function of Equal such that only the geometry that was closest is processed further, due to early-z testing * The transparent pass uses the Greater depth comparison function so that only transparent objects that are closer than anything opaque are rendered * The opaque fragment shading is as before except that alpha is explicitly set to 1.0 * Alpha mask fragment shading sets the alpha value to 1.0 if it is equal to or above the cutoff, as defined by glTF * Opaque and alpha mask are sorted front to back (again not that it matters as we will skip anything that is not equal... maybe sorting is no longer needed here?) * Transparent is sorted back to front. Transparent fragment shading uses the alpha blending over operator Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-11-16 03:03:27 +00:00
Blend,
Standard Material Blend Modes (#6644) # Objective - This PR adds support for blend modes to the PBR `StandardMaterial`. <img width="1392" alt="Screenshot 2022-11-18 at 20 00 56" src="https://user-images.githubusercontent.com/418473/202820627-0636219a-a1e5-437a-b08b-b08c6856bf9c.png"> <img width="1392" alt="Screenshot 2022-11-18 at 20 01 01" src="https://user-images.githubusercontent.com/418473/202820615-c8d43301-9a57-49c4-bd21-4ae343c3e9ec.png"> ## Solution - The existing `AlphaMode` enum is extended, adding three more modes: `AlphaMode::Premultiplied`, `AlphaMode::Add` and `AlphaMode::Multiply`; - All new modes are rendered in the existing `Transparent3d` phase; - The existing mesh flags for alpha mode are reorganized for a more compact/efficient representation, and new values are added; - `MeshPipelineKey::TRANSPARENT_MAIN_PASS` is refactored into `MeshPipelineKey::BLEND_BITS`. - `AlphaMode::Opaque` and `AlphaMode::Mask(f32)` share a single opaque pipeline key: `MeshPipelineKey::BLEND_OPAQUE`; - `Blend`, `Premultiplied` and `Add` share a single premultiplied alpha pipeline key, `MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA`. In the shader, color values are premultiplied accordingly (or not) depending on the blend mode to produce the three different results after PBR/tone mapping/dithering; - `Multiply` uses its own independent pipeline key, `MeshPipelineKey::BLEND_MULTIPLY`; - Example and documentation are provided. --- ## Changelog ### Added - Added support for additive and multiplicative blend modes in the PBR `StandardMaterial`, via `AlphaMode::Add` and `AlphaMode::Multiply`; - Added support for premultiplied alpha in the PBR `StandardMaterial`, via `AlphaMode::Premultiplied`;
2023-01-21 21:46:53 +00:00
/// Similar to [`AlphaMode::Blend`], however assumes RGB channel values are
/// [premultiplied](https://en.wikipedia.org/wiki/Alpha_compositing#Straight_versus_premultiplied).
///
/// For otherwise constant RGB values, behaves more like [`AlphaMode::Blend`] for
/// alpha values closer to 1.0, and more like [`AlphaMode::Add`] for
/// alpha values closer to 0.0.
///
/// Can be used to avoid “border” or “outline” artifacts that can occur
/// when using plain alpha-blended textures.
Premultiplied,
/// Combines the color of the fragments with the colors behind them in an
/// additive process, (i.e. like light) producing lighter results.
///
/// Black produces no effect. Alpha values can be used to modulate the result.
///
/// Useful for effects like holograms, ghosts, lasers and other energy beams.
Add,
/// Combines the color of the fragments with the colors behind them in a
/// multiplicative process, (i.e. like pigments) producing darker results.
///
/// White produces no effect. Alpha values can be used to modulate the result.
///
/// Useful for effects like stained glass, window tint film and some colored liquids.
Multiply,
Add support for opaque, alpha mask, and alpha blend modes (#3072) # Objective Add depth prepass and support for opaque, alpha mask, and alpha blend modes for the 3D PBR target. ## Solution NOTE: This is based on top of #2861 frustum culling. Just lining it up to keep @cart loaded with the review train. 🚂 There are a lot of important details here. Big thanks to @cwfitzgerald of wgpu, naga, and rend3 fame for explaining how to do it properly! * An `AlphaMode` component is added that defines whether a material should be considered opaque, an alpha mask (with a cutoff value that defaults to 0.5, the same as glTF), or transparent and should be alpha blended * Two depth prepasses are added: * Opaque does a plain vertex stage * Alpha mask does the vertex stage but also a fragment stage that samples the colour for the fragment and discards if its alpha value is below the cutoff value * Both are sorted front to back, not that it matters for these passes. (Maybe there should be a way to skip sorting?) * Three main passes are added: * Opaque and alpha mask passes use a depth comparison function of Equal such that only the geometry that was closest is processed further, due to early-z testing * The transparent pass uses the Greater depth comparison function so that only transparent objects that are closer than anything opaque are rendered * The opaque fragment shading is as before except that alpha is explicitly set to 1.0 * Alpha mask fragment shading sets the alpha value to 1.0 if it is equal to or above the cutoff, as defined by glTF * Opaque and alpha mask are sorted front to back (again not that it matters as we will skip anything that is not equal... maybe sorting is no longer needed here?) * Transparent is sorted back to front. Transparent fragment shading uses the alpha blending over operator Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-11-16 03:03:27 +00:00
}
impl Eq for AlphaMode {}