2020-08-29 19:35:41 +00:00
|
|
|
[package]
|
|
|
|
name = "bevy_tasks"
|
2022-11-12 20:01:29 +00:00
|
|
|
version = "0.9.0"
|
2021-10-27 00:12:14 +00:00
|
|
|
edition = "2021"
|
2020-11-03 21:34:00 +00:00
|
|
|
description = "A task executor for Bevy Engine"
|
|
|
|
homepage = "https://bevyengine.org"
|
|
|
|
repository = "https://github.com/bevyengine/bevy"
|
2021-07-23 21:11:51 +00:00
|
|
|
license = "MIT OR Apache-2.0"
|
2020-11-03 21:34:00 +00:00
|
|
|
keywords = ["bevy"]
|
2020-08-29 19:35:41 +00:00
|
|
|
|
|
|
|
[dependencies]
|
2020-09-10 19:54:24 +00:00
|
|
|
futures-lite = "1.4.0"
|
2020-09-20 18:27:24 +00:00
|
|
|
async-executor = "1.3.0"
|
2020-09-09 20:12:50 +00:00
|
|
|
async-channel = "1.4.2"
|
2022-11-07 21:43:07 +00:00
|
|
|
async-task = "4.2.0"
|
Add global init and get accessors for all newtyped TaskPools (#2250)
Right now, a direct reference to the target TaskPool is required to launch tasks on the pools, despite the three newtyped pools (AsyncComputeTaskPool, ComputeTaskPool, and IoTaskPool) effectively acting as global instances. The need to pass a TaskPool reference adds notable friction to spawning subtasks within existing tasks. Possible use cases for this may include chaining tasks within the same pool like spawning separate send/receive I/O tasks after waiting on a network connection to be established, or allowing cross-pool dependent tasks like starting dependent multi-frame computations following a long I/O load.
Other task execution runtimes provide static access to spawning tasks (i.e. `tokio::spawn`), which is notably easier to use than the reference passing required by `bevy_tasks` right now.
This PR makes does the following:
* Adds `*TaskPool::init` which initializes a `OnceCell`'ed with a provided TaskPool. Failing if the pool has already been initialized.
* Adds `*TaskPool::get` which fetches the initialized global pool of the respective type or panics. This generally should not be an issue in normal Bevy use, as the pools are initialized before they are accessed.
* Updated default task pool initialization to either pull the global handles and save them as resources, or if they are already initialized, pull the a cloned global handle as the resource.
This should make it notably easier to build more complex task hierarchies for dependent tasks. It should also make writing bevy-adjacent, but not strictly bevy-only plugin crates easier, as the global pools ensure it's all running on the same threads.
One alternative considered is keeping a thread-local reference to the pool for all threads in each pool to enable the same `tokio::spawn` interface. This would spawn tasks on the same pool that a task is currently running in. However this potentially leads to potential footgun situations where long running blocking tasks run on `ComputeTaskPool`.
2022-06-09 02:43:24 +00:00
|
|
|
once_cell = "1.7"
|
Nested spawns on scope (#4466)
# Objective
- Add ability to create nested spawns. This is needed for stageless. The current executor spawns tasks for each system early and runs the system by communicating through a channel. In stageless we want to spawn the task late, so that archetypes can be updated right before the task is run. The executor is run on a separate task, so this enables the scope to be passed to the spawned executor.
- Fixes #4301
## Solution
- Instantiate a single threaded executor on the scope and use that instead of the LocalExecutor. This allows the scope to be Send, but still able to spawn tasks onto the main thread the scope is run on. This works because while systems can access nonsend data. The systems themselves are Send. Because of this change we lose the ability to spawn nonsend tasks on the scope, but I don't think this is being used anywhere. Users would still be able to use spawn_local on TaskPools.
- Steals the lifetime tricks the `std::thread::scope` uses to allow nested spawns, but disallow scope to be passed to tasks or threads not associated with the scope.
- Change the storage for the tasks to a `ConcurrentQueue`. This is to allow a &Scope to be passed for spawning instead of a &mut Scope. `ConcurrentQueue` was chosen because it was already in our dependency tree because `async_executor` depends on it.
- removed the optimizations for 0 and 1 spawned tasks. It did improve those cases, but made the cases of more than 1 task slower.
---
## Changelog
Add ability to nest spawns
```rust
fn main() {
let pool = TaskPool::new();
pool.scope(|scope| {
scope.spawn(async move {
// calling scope.spawn from an spawn task was not possible before
scope.spawn(async move {
// do something
});
});
})
}
```
## Migration Guide
If you were using explicit lifetimes and Passing Scope you'll need to specify two lifetimes now.
```rust
fn scoped_function<'scope>(scope: &mut Scope<'scope, ()>) {}
// should become
fn scoped_function<'scope>(scope: &Scope<'_, 'scope, ()>) {}
```
`scope.spawn_local` changed to `scope.spawn_on_scope` this should cover cases where you needed to run tasks on the local thread, but does not cover spawning Nonsend Futures.
## TODO
* [x] think real hard about all the lifetimes
* [x] add doc about what 'env and 'scope mean.
* [x] manually check that the single threaded task pool still works
* [x] Get updated perf numbers
* [x] check and make sure all the transmutes are necessary
* [x] move commented out test into a compile fail test
* [x] look through the tests for scope on std and see if I should add any more tests
Co-authored-by: Michael Hsu <myhsu@benjaminelectric.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-09-28 01:59:10 +00:00
|
|
|
concurrent-queue = "1.2.2"
|
2021-07-14 20:52:50 +00:00
|
|
|
|
2020-09-25 22:26:23 +00:00
|
|
|
[target.'cfg(target_arch = "wasm32")'.dependencies]
|
|
|
|
wasm-bindgen-futures = "0.4"
|
2021-07-14 20:52:50 +00:00
|
|
|
|
|
|
|
[dev-dependencies]
|
|
|
|
instant = { version = "0.1", features = ["wasm-bindgen"] }
|