bevy/pipelined/bevy_pbr2/src/render/pbr.wgsl

477 lines
18 KiB
WebGPU Shading Language
Raw Normal View History

// TODO: try merging this block with the binding?
[[block]]
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var view: View;
[[block]]
struct Mesh {
transform: mat4x4<f32>;
};
[[group(1), binding(0)]]
var mesh: Mesh;
struct Vertex {
[[location(0)]] position: vec3<f32>;
[[location(1)]] normal: vec3<f32>;
[[location(2)]] uv: vec2<f32>;
};
struct VertexOutput {
[[builtin(position)]] clip_position: vec4<f32>;
[[location(0)]] world_position: vec4<f32>;
[[location(1)]] world_normal: vec3<f32>;
[[location(2)]] uv: vec2<f32>;
};
[[stage(vertex)]]
fn vertex(vertex: Vertex) -> VertexOutput {
let world_position = mesh.transform * vec4<f32>(vertex.position, 1.0);
var out: VertexOutput;
out.uv = vertex.uv;
out.world_position = world_position;
out.clip_position = view.view_proj * world_position;
// FIXME: The inverse transpose of the model matrix should be used to correctly handle scaling
// of normals
out.world_normal = mat3x3<f32>(mesh.transform.x.xyz, mesh.transform.y.xyz, mesh.transform.z.xyz) * vertex.normal;
return out;
}
// From the Filament design doc
// https://google.github.io/filament/Filament.html#table_symbols
// Symbol Definition
// v View unit vector
// l Incident light unit vector
// n Surface normal unit vector
// h Half unit vector between l and v
// f BRDF
// f_d Diffuse component of a BRDF
// f_r Specular component of a BRDF
// α Roughness, remapped from using input perceptualRoughness
// σ Diffuse reflectance
// Ω Spherical domain
// f0 Reflectance at normal incidence
// f90 Reflectance at grazing angle
// χ+(a) Heaviside function (1 if a>0 and 0 otherwise)
// nior Index of refraction (IOR) of an interface
// ⟨n⋅l⟩ Dot product clamped to [0..1]
// ⟨a⟩ Saturated value (clamped to [0..1])
// The Bidirectional Reflectance Distribution Function (BRDF) describes the surface response of a standard material
// and consists of two components, the diffuse component (f_d) and the specular component (f_r):
// f(v,l) = f_d(v,l) + f_r(v,l)
//
// The form of the microfacet model is the same for diffuse and specular
// f_r(v,l) = f_d(v,l) = 1 / { |n⋅v||n⋅l| } ∫_Ω D(m,α) G(v,l,m) f_m(v,l,m) (v⋅m) (l⋅m) dm
//
// In which:
// D, also called the Normal Distribution Function (NDF) models the distribution of the microfacets
// G models the visibility (or occlusion or shadow-masking) of the microfacets
// f_m is the microfacet BRDF and differs between specular and diffuse components
//
// The above integration needs to be approximated.
[[block]]
struct StandardMaterial {
base_color: vec4<f32>;
emissive: vec4<f32>;
perceptual_roughness: f32;
metallic: f32;
reflectance: f32;
// 'flags' is a bit field indicating various option. uint is 32 bits so we have up to 32 options.
flags: u32;
};
struct OmniLight {
color: vec4<f32>;
range: f32;
radius: f32;
position: vec3<f32>;
view_projection: mat4x4<f32>;
};
[[block]]
struct Lights {
// NOTE: this array size must be kept in sync with the constants defined bevy_pbr2/src/render/light.rs
// TODO: this can be removed if we move to storage buffers for light arrays
omni_lights: array<OmniLight, 10>;
ambient_color: vec4<f32>;
num_lights: u32;
};
let FLAGS_BASE_COLOR_TEXTURE_BIT: u32 = 1u;
let FLAGS_EMISSIVE_TEXTURE_BIT: u32 = 2u;
let FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT: u32 = 4u;
let FLAGS_OCCLUSION_TEXTURE_BIT: u32 = 8u;
let FLAGS_DOUBLE_SIDED_BIT: u32 = 16u;
let FLAGS_UNLIT_BIT: u32 = 32u;
[[group(0), binding(1)]]
var lights: Lights;
[[group(0), binding(2)]]
var shadow_textures: texture_depth_2d_array;
[[group(0), binding(3)]]
var shadow_textures_sampler: sampler_comparison;
[[group(2), binding(0)]]
var material: StandardMaterial;
[[group(2), binding(1)]]
var base_color_texture: texture_2d<f32>;
[[group(2), binding(2)]]
var base_color_sampler: sampler;
[[group(2), binding(3)]]
var emissive_texture: texture_2d<f32>;
[[group(2), binding(4)]]
var emissive_sampler: sampler;
[[group(2), binding(5)]]
var metallic_roughness_texture: texture_2d<f32>;
[[group(2), binding(6)]]
var metallic_roughness_sampler: sampler;
[[group(2), binding(7)]]
var occlusion_texture: texture_2d<f32>;
[[group(2), binding(8)]]
var occlusion_sampler: sampler;
let PI: f32 = 3.141592653589793;
fn saturate(value: f32) -> f32 {
return clamp(value, 0.0, 1.0);
}
// distanceAttenuation is simply the square falloff of light intensity
// combined with a smooth attenuation at the edge of the light radius
//
// light radius is a non-physical construct for efficiency purposes,
// because otherwise every light affects every fragment in the scene
fn getDistanceAttenuation(distanceSquare: f32, inverseRangeSquared: f32) -> f32 {
let factor = distanceSquare * inverseRangeSquared;
let smoothFactor = saturate(1.0 - factor * factor);
let attenuation = smoothFactor * smoothFactor;
return attenuation * 1.0 / max(distanceSquare, 0.0001);
}
// Normal distribution function (specular D)
// Based on https://google.github.io/filament/Filament.html#citation-walter07
// D_GGX(h,α) = α^2 / { π ((n⋅h)^2 (α21) + 1)^2 }
// Simple implementation, has precision problems when using fp16 instead of fp32
// see https://google.github.io/filament/Filament.html#listing_speculardfp16
fn D_GGX(roughness: f32, NoH: f32, h: vec3<f32>) -> f32 {
let oneMinusNoHSquared = 1.0 - NoH * NoH;
let a = NoH * roughness;
let k = roughness / (oneMinusNoHSquared + a * a);
let d = k * k * (1.0 / PI);
return d;
}
// Visibility function (Specular G)
// V(v,l,a) = G(v,l,α) / { 4 (n⋅v) (n⋅l) }
// such that f_r becomes
// f_r(v,l) = D(h,α) V(v,l,α) F(v,h,f0)
// where
// V(v,l,α) = 0.5 / { n⋅l sqrt((n⋅v)^2 (1α2) + α2) + n⋅v sqrt((n⋅l)^2 (1α2) + α2) }
// Note the two sqrt's, that may be slow on mobile, see https://google.github.io/filament/Filament.html#listing_approximatedspecularv
fn V_SmithGGXCorrelated(roughness: f32, NoV: f32, NoL: f32) -> f32 {
let a2 = roughness * roughness;
let lambdaV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2);
let lambdaL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2);
let v = 0.5 / (lambdaV + lambdaL);
return v;
}
// Fresnel function
// see https://google.github.io/filament/Filament.html#citation-schlick94
// F_Schlick(v,h,f_0,f_90) = f_0 + (f_90 f_0) (1 v⋅h)^5
fn F_Schlick_vec(f0: vec3<f32>, f90: f32, VoH: f32) -> vec3<f32> {
// not using mix to keep the vec3 and float versions identical
return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0);
}
fn F_Schlick(f0: f32, f90: f32, VoH: f32) -> f32 {
// not using mix to keep the vec3 and float versions identical
return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0);
}
fn fresnel(f0: vec3<f32>, LoH: f32) -> vec3<f32> {
// f_90 suitable for ambient occlusion
// see https://google.github.io/filament/Filament.html#lighting/occlusion
let f90 = saturate(dot(f0, vec3<f32>(50.0 * 0.33)));
return F_Schlick_vec(f0, f90, LoH);
}
// Specular BRDF
// https://google.github.io/filament/Filament.html#materialsystem/specularbrdf
// Cook-Torrance approximation of the microfacet model integration using Fresnel law F to model f_m
// f_r(v,l) = { D(h,α) G(v,l,α) F(v,h,f0) } / { 4 (n⋅v) (n⋅l) }
fn specular(f0: vec3<f32>, roughness: f32, h: vec3<f32>, NoV: f32, NoL: f32,
NoH: f32, LoH: f32, specularIntensity: f32) -> vec3<f32> {
let D = D_GGX(roughness, NoH, h);
let V = V_SmithGGXCorrelated(roughness, NoV, NoL);
let F = fresnel(f0, LoH);
return (specularIntensity * D * V) * F;
}
// Diffuse BRDF
// https://google.github.io/filament/Filament.html#materialsystem/diffusebrdf
// fd(v,l) = σ/π * 1 / { |n⋅v||n⋅l| } ∫Ω D(m,α) G(v,l,m) (v⋅m) (l⋅m) dm
//
// simplest approximation
// float Fd_Lambert() {
// return 1.0 / PI;
// }
//
// vec3 Fd = diffuseColor * Fd_Lambert();
//
// Disney approximation
// See https://google.github.io/filament/Filament.html#citation-burley12
// minimal quality difference
fn Fd_Burley(roughness: f32, NoV: f32, NoL: f32, LoH: f32) -> f32 {
let f90 = 0.5 + 2.0 * roughness * LoH * LoH;
let lightScatter = F_Schlick(1.0, f90, NoL);
let viewScatter = F_Schlick(1.0, f90, NoV);
return lightScatter * viewScatter * (1.0 / PI);
}
// From https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
fn EnvBRDFApprox(f0: vec3<f32>, perceptual_roughness: f32, NoV: f32) -> vec3<f32> {
let c0 = vec4<f32>(-1.0, -0.0275, -0.572, 0.022);
let c1 = vec4<f32>(1.0, 0.0425, 1.04, -0.04);
let r = perceptual_roughness * c0 + c1;
let a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
let AB = vec2<f32>(-1.04, 1.04) * a004 + r.zw;
return f0 * AB.x + AB.y;
}
fn perceptualRoughnessToRoughness(perceptualRoughness: f32) -> f32 {
// clamp perceptual roughness to prevent precision problems
// According to Filament design 0.089 is recommended for mobile
// Filament uses 0.045 for non-mobile
let clampedPerceptualRoughness = clamp(perceptualRoughness, 0.089, 1.0);
return clampedPerceptualRoughness * clampedPerceptualRoughness;
}
// from https://64.github.io/tonemapping/
// reinhard on RGB oversaturates colors
fn reinhard(color: vec3<f32>) -> vec3<f32> {
return color / (1.0 + color);
}
fn reinhard_extended(color: vec3<f32>, max_white: f32) -> vec3<f32> {
let numerator = color * (1.0f + (color / vec3<f32>(max_white * max_white)));
return numerator / (1.0 + color);
}
// luminance coefficients from Rec. 709.
// https://en.wikipedia.org/wiki/Rec._709
fn luminance(v: vec3<f32>) -> f32 {
return dot(v, vec3<f32>(0.2126, 0.7152, 0.0722));
}
fn change_luminance(c_in: vec3<f32>, l_out: f32) -> vec3<f32> {
let l_in = luminance(c_in);
return c_in * (l_out / l_in);
}
fn reinhard_luminance(color: vec3<f32>) -> vec3<f32> {
let l_old = luminance(color);
let l_new = l_old / (1.0f + l_old);
return change_luminance(color, l_new);
}
fn reinhard_extended_luminance(color: vec3<f32>, max_white_l: f32) -> vec3<f32> {
let l_old = luminance(color);
let numerator = l_old * (1.0f + (l_old / (max_white_l * max_white_l)));
let l_new = numerator / (1.0f + l_old);
return change_luminance(color, l_new);
}
fn omni_light(
world_position: vec3<f32>, light: OmniLight, roughness: f32, NdotV: f32, N: vec3<f32>, V: vec3<f32>,
R: vec3<f32>, F0: vec3<f32>, diffuseColor: vec3<f32>
) -> vec3<f32> {
let light_to_frag = light.position.xyz - world_position.xyz;
let distance_square = dot(light_to_frag, light_to_frag);
let rangeAttenuation =
getDistanceAttenuation(distance_square, light.range);
// Specular.
// Representative Point Area Lights.
// see http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf p14-16
let a = roughness;
let centerToRay = dot(light_to_frag, R) * R - light_to_frag;
let closestPoint = light_to_frag + centerToRay * saturate(light.radius * inverseSqrt(dot(centerToRay, centerToRay)));
let LspecLengthInverse = inverseSqrt(dot(closestPoint, closestPoint));
let normalizationFactor = a / saturate(a + (light.radius * 0.5 * LspecLengthInverse));
let specularIntensity = normalizationFactor * normalizationFactor;
var L: vec3<f32> = closestPoint * LspecLengthInverse; // normalize() equivalent?
var H: vec3<f32> = normalize(L + V);
var NoL: f32 = saturate(dot(N, L));
var NoH: f32 = saturate(dot(N, H));
var LoH: f32 = saturate(dot(L, H));
let specular_light = specular(F0, roughness, H, NdotV, NoL, NoH, LoH, specularIntensity);
// Diffuse.
// Comes after specular since its NoL is used in the lighting equation.
L = normalize(light_to_frag);
H = normalize(L + V);
NoL = saturate(dot(N, L));
NoH = saturate(dot(N, H));
LoH = saturate(dot(L, H));
let diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH);
// Lout = f(v,l) Φ / { 4 π d^2 }⟨n⋅l⟩
// where
// f(v,l) = (f_d(v,l) + f_r(v,l)) * light_color
// Φ is light intensity
// our rangeAttentuation = 1 / d^2 multiplied with an attenuation factor for smoothing at the edge of the non-physical maximum light radius
// It's not 100% clear where the 1/4π goes in the derivation, but we follow the filament shader and leave it out
// See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminanceEquation
// TODO compensate for energy loss https://google.github.io/filament/Filament.html#materialsystem/improvingthebrdfs/energylossinspecularreflectance
// light.color.rgb is premultiplied with light.intensity on the CPU
return ((diffuse + specular_light) * light.color.rgb) * (rangeAttenuation * NoL);
}
fn fetch_shadow(light_id: i32, homogeneous_coords: vec4<f32>) -> f32 {
if (homogeneous_coords.w <= 0.0) {
return 1.0;
}
// compensate for the Y-flip difference between the NDC and texture coordinates
let flip_correction = vec2<f32>(0.5, -0.5);
let proj_correction = 1.0 / homogeneous_coords.w;
// compute texture coordinates for shadow lookup
let light_local = homogeneous_coords.xy * flip_correction * proj_correction + vec2<f32>(0.5, 0.5);
// do the lookup, using HW PCF and comparison
// NOTE: Due to the non-uniform control flow above, we must use the Level variant of
// textureSampleCompare to avoid undefined behaviour due to some of the fragments in
// a quad (2x2 fragments) being processed not being sampled, and this messing with
// mip-mapping functionality. The shadow maps have no mipmaps so Level just samples
// from LOD 0.
return textureSampleCompareLevel(shadow_textures, shadow_textures_sampler, light_local, i32(light_id), homogeneous_coords.z * proj_correction);
}
struct FragmentInput {
[[builtin(front_facing)]] is_front: bool;
[[location(0)]] world_position: vec4<f32>;
[[location(1)]] world_normal: vec3<f32>;
[[location(2)]] uv: vec2<f32>;
};
[[stage(fragment)]]
fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
var output_color: vec4<f32> = material.base_color;
if ((material.flags & FLAGS_BASE_COLOR_TEXTURE_BIT) != 0u) {
output_color = output_color * textureSample(base_color_texture, base_color_sampler, in.uv);
}
// // NOTE: Unlit bit not set means == 0 is true, so the true case is if lit
if ((material.flags & FLAGS_UNLIT_BIT) == 0u) {
// TODO use .a for exposure compensation in HDR
var emissive: vec4<f32> = material.emissive;
if ((material.flags & FLAGS_EMISSIVE_TEXTURE_BIT) != 0u) {
emissive = vec4<f32>(emissive.rgb * textureSample(emissive_texture, emissive_sampler, in.uv).rgb, 1.0);
}
// calculate non-linear roughness from linear perceptualRoughness
var metallic: f32 = material.metallic;
var perceptual_roughness: f32 = material.perceptual_roughness;
if ((material.flags & FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT) != 0u) {
let metallic_roughness = textureSample(metallic_roughness_texture, metallic_roughness_sampler, in.uv);
// Sampling from GLTF standard channels for now
metallic = metallic * metallic_roughness.b;
perceptual_roughness = perceptual_roughness * metallic_roughness.g;
}
let roughness = perceptualRoughnessToRoughness(perceptual_roughness);
var occlusion: f32 = 1.0;
if ((material.flags & FLAGS_OCCLUSION_TEXTURE_BIT) != 0u) {
occlusion = textureSample(occlusion_texture, occlusion_sampler, in.uv).r;
}
var N: vec3<f32> = normalize(in.world_normal);
// FIXME: Normal maps need an additional vertex attribute and vertex stage output/fragment stage input
// Just use a separate shader for lit with normal maps?
// # ifdef STANDARDMATERIAL_NORMAL_MAP
// vec3 T = normalize(v_WorldTangent.xyz);
// vec3 B = cross(N, T) * v_WorldTangent.w;
// # endif
if ((material.flags & FLAGS_DOUBLE_SIDED_BIT) != 0u) {
if (!in.is_front) {
N = -N;
}
// # ifdef STANDARDMATERIAL_NORMAL_MAP
// T = gl_FrontFacing ? T : -T;
// B = gl_FrontFacing ? B : -B;
// # endif
}
// # ifdef STANDARDMATERIAL_NORMAL_MAP
// mat3 TBN = mat3(T, B, N);
// N = TBN * normalize(texture(sampler2D(normal_map, normal_map_sampler), v_Uv).rgb * 2.0 - 1.0);
// # endif
var V: vec3<f32>;
if (view.view_proj.z.z != 1.0) { // If the projection is not orthographic
// Only valid for a perpective projection
V = normalize(view.world_position.xyz - in.world_position.xyz);
} else {
// Ortho view vec
V = normalize(vec3<f32>(-view.view_proj.x.z, -view.view_proj.y.z, -view.view_proj.z.z));
}
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
let NdotV = max(dot(N, V), 0.0001);
// Remapping [0,1] reflectance to F0
// See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping
let reflectance = material.reflectance;
let F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic;
// Diffuse strength inversely related to metallicity
let diffuse_color = output_color.rgb * (1.0 - metallic);
let R = reflect(-V, N);
// accumulate color
var light_accum: vec3<f32> = vec3<f32>(0.0);
for (var i: i32 = 0; i < i32(lights.num_lights); i = i + 1) {
let light = lights.omni_lights[i];
let light_contrib = omni_light(in.world_position.xyz, light, roughness, NdotV, N, V, R, F0, diffuse_color);
let shadow = fetch_shadow(i, light.view_projection * in.world_position);
light_accum = light_accum + light_contrib * shadow;
}
let diffuse_ambient = EnvBRDFApprox(diffuse_color, 1.0, NdotV);
let specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV);
output_color = vec4<f32>(
light_accum +
(diffuse_ambient + specular_ambient) * lights.ambient_color.rgb * occlusion +
emissive.rgb * output_color.a,
output_color.a);
// tone_mapping
output_color = vec4<f32>(reinhard_luminance(output_color.rgb), output_color.a);
// Gamma correction.
// Not needed with sRGB buffer
// output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2));
}
return output_color;
}