bevy/examples/animation/animated_transform.rs

182 lines
6.5 KiB
Rust
Raw Normal View History

//! Create and play an animation defined by code that operates on the [`Transform`] component.
use std::f32::consts::PI;
use bevy::{
animation::{AnimationTarget, AnimationTargetId},
prelude::*,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(AmbientLight {
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: Color::WHITE,
brightness: 150.0,
})
.add_systems(Startup, setup)
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut animations: ResMut<Assets<AnimationClip>>,
Implement the `AnimationGraph`, allowing for multiple animations to be blended together. (#11989) This is an implementation of RFC #51: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md Note that the implementation strategy is different from the one outlined in that RFC, because two-phase animation has now landed. # Objective Bevy needs animation blending. The RFC for this is [RFC 51]. ## Solution This is an implementation of the RFC. Note that the implementation strategy is different from the one outlined there, because two-phase animation has now landed. This is just a draft to get the conversation started. Currently we're missing a few things: - [x] A fully-fleshed-out mechanism for transitions - [x] A serialization format for `AnimationGraph`s - [x] Examples are broken, other than `animated_fox` - [x] Documentation --- ## Changelog ### Added * The `AnimationPlayer` has been reworked to support blending multiple animations together through an `AnimationGraph`, and as such will no longer function unless a `Handle<AnimationGraph>` has been added to the entity containing the player. See [RFC 51] for more details. * Transition functionality has moved from the `AnimationPlayer` to a new component, `AnimationTransitions`, which works in tandem with the `AnimationGraph`. ## Migration Guide * `AnimationPlayer`s can no longer play animations by themselves and need to be paired with a `Handle<AnimationGraph>`. Code that was using `AnimationPlayer` to play animations will need to create an `AnimationGraph` asset first, add a node for the clip (or clips) you want to play, and then supply the index of that node to the `AnimationPlayer`'s `play` method. * The `AnimationPlayer::play_with_transition()` method has been removed and replaced with the `AnimationTransitions` component. If you were previously using `AnimationPlayer::play_with_transition()`, add all animations that you were playing to the `AnimationGraph`, and create an `AnimationTransitions` component to manage the blending between them. [RFC 51]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md --------- Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
mut graphs: ResMut<Assets<AnimationGraph>>,
) {
// Camera
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
Improve lighting in more examples (#12021) # Objective - #11868 changed the lighting system, forcing lights to increase their intensity. The PR fixed most examples, but missed a few. These I later caught in https://github.com/bevyengine/bevy-website/pull/1023. - Related: #11982, #11981. - While there, I noticed that the spotlight example could use a few easy improvements. ## Solution - Increase lighting in `skybox`, `spotlight`, `animated_transform`, and `gltf_skinned_mesh`. - Improve spotlight example. - Make ground plane move with cubes, so they don't phase into each other. - Batch spawn cubes. - Add controls text. - Change controls to allow rotating around spotlights. ## Showcase ### Skybox Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/8ba00d74-6d68-4414-97a8-28afb8305570"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/ad15c471-6979-4dda-9889-9189136d8404"> ### Spotlight Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/53f966de-acf3-46b8-8299-0005c4cb8da0"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/05c73c1e-0739-4226-83d6-e4249a9105e0"> ### Animated Transform Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/6d7d4ea0-e22e-42a5-9905-ea1731d474cf"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/f1ee08d6-d17a-4391-91a6-d903b9fbdc3c"> ### gLTF Skinned Mesh Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/547569a6-d13b-4fe0-a8c1-e11f02c4f9a2"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/34517aba-09e4-4e9b-982a-a4a8b893c48a"> --- ## Changelog - Increased lighting in `skybox`, `spotlight`, `animated_transform`, and `gltf_skinned_mesh` examples. - Improved usability of `spotlight` example.
2024-02-26 17:32:23 +00:00
// Light
commands.spawn((
PointLight {
Improve lighting in more examples (#12021) # Objective - #11868 changed the lighting system, forcing lights to increase their intensity. The PR fixed most examples, but missed a few. These I later caught in https://github.com/bevyengine/bevy-website/pull/1023. - Related: #11982, #11981. - While there, I noticed that the spotlight example could use a few easy improvements. ## Solution - Increase lighting in `skybox`, `spotlight`, `animated_transform`, and `gltf_skinned_mesh`. - Improve spotlight example. - Make ground plane move with cubes, so they don't phase into each other. - Batch spawn cubes. - Add controls text. - Change controls to allow rotating around spotlights. ## Showcase ### Skybox Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/8ba00d74-6d68-4414-97a8-28afb8305570"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/ad15c471-6979-4dda-9889-9189136d8404"> ### Spotlight Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/53f966de-acf3-46b8-8299-0005c4cb8da0"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/05c73c1e-0739-4226-83d6-e4249a9105e0"> ### Animated Transform Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/6d7d4ea0-e22e-42a5-9905-ea1731d474cf"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/f1ee08d6-d17a-4391-91a6-d903b9fbdc3c"> ### gLTF Skinned Mesh Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/547569a6-d13b-4fe0-a8c1-e11f02c4f9a2"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/34517aba-09e4-4e9b-982a-a4a8b893c48a"> --- ## Changelog - Increased lighting in `skybox`, `spotlight`, `animated_transform`, and `gltf_skinned_mesh` examples. - Improved usability of `spotlight` example.
2024-02-26 17:32:23 +00:00
intensity: 500_000.0,
..default()
},
Transform::from_xyz(0.0, 2.5, 0.0),
));
Improve lighting in more examples (#12021) # Objective - #11868 changed the lighting system, forcing lights to increase their intensity. The PR fixed most examples, but missed a few. These I later caught in https://github.com/bevyengine/bevy-website/pull/1023. - Related: #11982, #11981. - While there, I noticed that the spotlight example could use a few easy improvements. ## Solution - Increase lighting in `skybox`, `spotlight`, `animated_transform`, and `gltf_skinned_mesh`. - Improve spotlight example. - Make ground plane move with cubes, so they don't phase into each other. - Batch spawn cubes. - Add controls text. - Change controls to allow rotating around spotlights. ## Showcase ### Skybox Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/8ba00d74-6d68-4414-97a8-28afb8305570"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/ad15c471-6979-4dda-9889-9189136d8404"> ### Spotlight Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/53f966de-acf3-46b8-8299-0005c4cb8da0"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/05c73c1e-0739-4226-83d6-e4249a9105e0"> ### Animated Transform Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/6d7d4ea0-e22e-42a5-9905-ea1731d474cf"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/f1ee08d6-d17a-4391-91a6-d903b9fbdc3c"> ### gLTF Skinned Mesh Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/547569a6-d13b-4fe0-a8c1-e11f02c4f9a2"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/34517aba-09e4-4e9b-982a-a4a8b893c48a"> --- ## Changelog - Increased lighting in `skybox`, `spotlight`, `animated_transform`, and `gltf_skinned_mesh` examples. - Improved usability of `spotlight` example.
2024-02-26 17:32:23 +00:00
Rework animation to be done in two phases. (#11707) # Objective Bevy's animation system currently does tree traversals based on `Name` that aren't necessary. Not only do they require in unsafe code because tree traversals are awkward with parallelism, but they are also somewhat slow, brittle, and complex, which manifested itself as way too many queries in #11670. # Solution Divide animation into two phases: animation *advancement* and animation *evaluation*, which run after one another. *Advancement* operates on the `AnimationPlayer` and sets the current animation time to match the game time. *Evaluation* operates on all animation bones in the scene in parallel and sets the transforms and/or morph weights based on the time and the clip. To do this, we introduce a new component, `AnimationTarget`, which the asset loader places on every bone. It contains the ID of the entity containing the `AnimationPlayer`, as well as a UUID that identifies which bone in the animation the target corresponds to. In the case of glTF, the UUID is derived from the full path name to the bone. The rule that `AnimationTarget`s are descendants of the entity containing `AnimationPlayer` is now just a convention, not a requirement; this allows us to eliminate the unsafe code. # Migration guide * `AnimationClip` now uses UUIDs instead of hierarchical paths based on the `Name` component to refer to bones. This has several consequences: - A new component, `AnimationTarget`, should be placed on each bone that you wish to animate, in order to specify its UUID and the associated `AnimationPlayer`. The glTF loader automatically creates these components as necessary, so most uses of glTF rigs shouldn't need to change. - Moving a bone around the tree, or renaming it, no longer prevents an `AnimationPlayer` from affecting it. - Dynamically changing the `AnimationPlayer` component will likely require manual updating of the `AnimationTarget` components. * Entities with `AnimationPlayer` components may now possess descendants that also have `AnimationPlayer` components. They may not, however, animate the same bones. * As they aren't specific to `TypeId`s, `bevy_reflect::utility::NoOpTypeIdHash` and `bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to `bevy_reflect::utility::NoOpHash` and `bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
// Let's use the `Name` component to target entities. We can use anything we
// like, but names are convenient.
let planet = Name::new("planet");
let orbit_controller = Name::new("orbit_controller");
let satellite = Name::new("satellite");
// Creating the animation
let mut animation = AnimationClip::default();
Curve-based animation (#15434) # Objective This PR extends and reworks the material from #15282 by allowing arbitrary curves to be used by the animation system to animate arbitrary properties. The goals of this work are to: - Allow far greater flexibility in how animations are allowed to be defined in order to be used with `bevy_animation`. - Delegate responsibility over keyframe interpolation to `bevy_math` and the `Curve` libraries and reduce reliance on keyframes in animation definitions generally. - Move away from allowing the glTF spec to completely define animations on a mechanical level. ## Solution ### Overview At a high level, curves have been incorporated into the animation system using the `AnimationCurve` trait (closely related to what was `Keyframes`). From the top down: 1. In `animate_targets`, animations are driven by `VariableCurve`, which is now a thin wrapper around a `Box<dyn AnimationCurve>`. 2. `AnimationCurve` is something built out of a `Curve`, and it tells the animation system how to use the curve's output to actually mutate component properties. The trait looks like this: ```rust /// A low-level trait that provides control over how curves are actually applied to entities /// by the animation system. /// /// Typically, this will not need to be implemented manually, since it is automatically /// implemented by [`AnimatableCurve`] and other curves used by the animation system /// (e.g. those that animate parts of transforms or morph weights). However, this can be /// implemented manually when `AnimatableCurve` is not sufficiently expressive. /// /// In many respects, this behaves like a type-erased form of [`Curve`], where the output /// type of the curve is remembered only in the components that are mutated in the /// implementation of [`apply`]. /// /// [`apply`]: AnimationCurve::apply pub trait AnimationCurve: Reflect + Debug + Send + Sync { /// Returns a boxed clone of this value. fn clone_value(&self) -> Box<dyn AnimationCurve>; /// The range of times for which this animation is defined. fn domain(&self) -> Interval; /// Write the value of sampling this curve at time `t` into `transform` or `entity`, /// as appropriate, interpolating between the existing value and the sampled value /// using the given `weight`. fn apply<'a>( &self, t: f32, transform: Option<Mut<'a, Transform>>, entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>, weight: f32, ) -> Result<(), AnimationEvaluationError>; } ``` 3. The conversion process from a `Curve` to an `AnimationCurve` involves using wrappers which communicate the intent to animate a particular property. For example, here is `TranslationCurve`, which wraps a `Curve<Vec3>` and uses it to animate `Transform::translation`: ```rust /// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates /// the translation component of a transform. pub struct TranslationCurve<C>(pub C); ``` ### Animatable Properties The `AnimatableProperty` trait survives in the transition, and it can be used to allow curves to animate arbitrary component properties. The updated documentation for `AnimatableProperty` explains this process: <details> <summary>Expand AnimatableProperty example</summary An `AnimatableProperty` is a value on a component that Bevy can animate. You can implement this trait on a unit struct in order to support animating custom components other than transforms and morph weights. Use that type in conjunction with `AnimatableCurve` (and perhaps `AnimatableKeyframeCurve` to define the animation itself). For example, in order to animate font size of a text section from 24 pt. to 80 pt., you might use: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = Text; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.sections.get_mut(0)?.style.font_size) } } ``` You can then create an `AnimationClip` to animate this property like so: ```rust let mut animation_clip = AnimationClip::default(); animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [ (0.0, 24.0), (1.0, 80.0), ] ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("Failed to create font size curve") ); ``` Here, the use of `AnimatableKeyframeCurve` creates a curve out of the given keyframe time-value pairs, using the `Animatable` implementation of `f32` to interpolate between them. The invocation of `AnimatableCurve::from_curve` with `FontSizeProperty` indicates that the `f32` output from that curve is to be used to animate the font size of a `Text` component (as configured above). </details> ### glTF Loading glTF animations are now loaded into `Curve` types of various kinds, depending on what is being animated and what interpolation mode is being used. Those types get wrapped into and converted into `Box<dyn AnimationCurve>` and shoved inside of a `VariableCurve` just like everybody else. ### Morph Weights There is an `IterableCurve` abstraction which allows sampling these from a contiguous buffer without allocating. Its only reason for existing is that Rust disallows you from naming function types, otherwise we would just use `Curve` with an iterator output type. (The iterator involves `Map`, and the name of the function type would have to be able to be named, but it is not.) A `WeightsCurve` adaptor turns an `IterableCurve` into an `AnimationCurve`, so it behaves like everything else in that regard. ## Testing Tested by running existing animation examples. Interpolation logic has had additional tests added within the `Curve` API to replace the tests in `bevy_animation`. Some kinds of out-of-bounds errors have become impossible. Performance testing on `many_foxes` (`animate_targets`) suggests that performance is very similar to the existing implementation. Here are a couple trace histograms across different runs (yellow is this branch, red is main). <img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM" src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc"> <img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM" src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e"> --- ## Migration Guide Most user code that does not directly deal with `AnimationClip` and `VariableCurve` will not need to be changed. On the other hand, `VariableCurve` has been completely overhauled. If you were previously defining animation curves in code using keyframes, you will need to migrate that code to use curve constructors instead. For example, a rotation animation defined using keyframes and added to an animation clip like this: ```rust animation_clip.add_curve_to_target( animation_target_id, VariableCurve { keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0], keyframes: Keyframes::Rotation(vec![ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ]), interpolation: Interpolation::Linear, }, ); ``` would now be added like this: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ])) .map(RotationCurve) .expect("Failed to build rotation curve"), ); ``` Note that the interface of `AnimationClip::add_curve_to_target` has also changed (as this example shows, if subtly), and now takes its curve input as an `impl AnimationCurve`. If you need to add a `VariableCurve` directly, a new method `add_variable_curve_to_target` accommodates that (and serves as a one-to-one migration in this regard). ### For reviewers The diff is pretty big, and the structure of some of the changes might not be super-obvious: - `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is based heavily on `Keyframes`, with the adaptors also largely following suite. - The Curve API adaptor structs were moved from `bevy_math::curve::mod` into their own module `adaptors`. There are no functional changes to how these adaptors work; this is just to make room for the specialized reflection implementations since `mod.rs` was getting kind of cramped. - The new module `gltf_curves` holds the additional curve constructions that are needed by the glTF loader. Note that the loader uses a mix of these and off-the-shelf `bevy_math` curve stuff. - `animatable.rs` no longer holds logic related to keyframe interpolation, which is now delegated to the existing abstractions in `bevy_math::curve::cores`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
2024-09-30 19:56:55 +00:00
// A curve can modify a single part of a transform: here, the translation.
Rework animation to be done in two phases. (#11707) # Objective Bevy's animation system currently does tree traversals based on `Name` that aren't necessary. Not only do they require in unsafe code because tree traversals are awkward with parallelism, but they are also somewhat slow, brittle, and complex, which manifested itself as way too many queries in #11670. # Solution Divide animation into two phases: animation *advancement* and animation *evaluation*, which run after one another. *Advancement* operates on the `AnimationPlayer` and sets the current animation time to match the game time. *Evaluation* operates on all animation bones in the scene in parallel and sets the transforms and/or morph weights based on the time and the clip. To do this, we introduce a new component, `AnimationTarget`, which the asset loader places on every bone. It contains the ID of the entity containing the `AnimationPlayer`, as well as a UUID that identifies which bone in the animation the target corresponds to. In the case of glTF, the UUID is derived from the full path name to the bone. The rule that `AnimationTarget`s are descendants of the entity containing `AnimationPlayer` is now just a convention, not a requirement; this allows us to eliminate the unsafe code. # Migration guide * `AnimationClip` now uses UUIDs instead of hierarchical paths based on the `Name` component to refer to bones. This has several consequences: - A new component, `AnimationTarget`, should be placed on each bone that you wish to animate, in order to specify its UUID and the associated `AnimationPlayer`. The glTF loader automatically creates these components as necessary, so most uses of glTF rigs shouldn't need to change. - Moving a bone around the tree, or renaming it, no longer prevents an `AnimationPlayer` from affecting it. - Dynamically changing the `AnimationPlayer` component will likely require manual updating of the `AnimationTarget` components. * Entities with `AnimationPlayer` components may now possess descendants that also have `AnimationPlayer` components. They may not, however, animate the same bones. * As they aren't specific to `TypeId`s, `bevy_reflect::utility::NoOpTypeIdHash` and `bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to `bevy_reflect::utility::NoOpHash` and `bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
let planet_animation_target_id = AnimationTargetId::from_name(&planet);
animation.add_curve_to_target(
planet_animation_target_id,
Curve-based animation (#15434) # Objective This PR extends and reworks the material from #15282 by allowing arbitrary curves to be used by the animation system to animate arbitrary properties. The goals of this work are to: - Allow far greater flexibility in how animations are allowed to be defined in order to be used with `bevy_animation`. - Delegate responsibility over keyframe interpolation to `bevy_math` and the `Curve` libraries and reduce reliance on keyframes in animation definitions generally. - Move away from allowing the glTF spec to completely define animations on a mechanical level. ## Solution ### Overview At a high level, curves have been incorporated into the animation system using the `AnimationCurve` trait (closely related to what was `Keyframes`). From the top down: 1. In `animate_targets`, animations are driven by `VariableCurve`, which is now a thin wrapper around a `Box<dyn AnimationCurve>`. 2. `AnimationCurve` is something built out of a `Curve`, and it tells the animation system how to use the curve's output to actually mutate component properties. The trait looks like this: ```rust /// A low-level trait that provides control over how curves are actually applied to entities /// by the animation system. /// /// Typically, this will not need to be implemented manually, since it is automatically /// implemented by [`AnimatableCurve`] and other curves used by the animation system /// (e.g. those that animate parts of transforms or morph weights). However, this can be /// implemented manually when `AnimatableCurve` is not sufficiently expressive. /// /// In many respects, this behaves like a type-erased form of [`Curve`], where the output /// type of the curve is remembered only in the components that are mutated in the /// implementation of [`apply`]. /// /// [`apply`]: AnimationCurve::apply pub trait AnimationCurve: Reflect + Debug + Send + Sync { /// Returns a boxed clone of this value. fn clone_value(&self) -> Box<dyn AnimationCurve>; /// The range of times for which this animation is defined. fn domain(&self) -> Interval; /// Write the value of sampling this curve at time `t` into `transform` or `entity`, /// as appropriate, interpolating between the existing value and the sampled value /// using the given `weight`. fn apply<'a>( &self, t: f32, transform: Option<Mut<'a, Transform>>, entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>, weight: f32, ) -> Result<(), AnimationEvaluationError>; } ``` 3. The conversion process from a `Curve` to an `AnimationCurve` involves using wrappers which communicate the intent to animate a particular property. For example, here is `TranslationCurve`, which wraps a `Curve<Vec3>` and uses it to animate `Transform::translation`: ```rust /// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates /// the translation component of a transform. pub struct TranslationCurve<C>(pub C); ``` ### Animatable Properties The `AnimatableProperty` trait survives in the transition, and it can be used to allow curves to animate arbitrary component properties. The updated documentation for `AnimatableProperty` explains this process: <details> <summary>Expand AnimatableProperty example</summary An `AnimatableProperty` is a value on a component that Bevy can animate. You can implement this trait on a unit struct in order to support animating custom components other than transforms and morph weights. Use that type in conjunction with `AnimatableCurve` (and perhaps `AnimatableKeyframeCurve` to define the animation itself). For example, in order to animate font size of a text section from 24 pt. to 80 pt., you might use: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = Text; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.sections.get_mut(0)?.style.font_size) } } ``` You can then create an `AnimationClip` to animate this property like so: ```rust let mut animation_clip = AnimationClip::default(); animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [ (0.0, 24.0), (1.0, 80.0), ] ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("Failed to create font size curve") ); ``` Here, the use of `AnimatableKeyframeCurve` creates a curve out of the given keyframe time-value pairs, using the `Animatable` implementation of `f32` to interpolate between them. The invocation of `AnimatableCurve::from_curve` with `FontSizeProperty` indicates that the `f32` output from that curve is to be used to animate the font size of a `Text` component (as configured above). </details> ### glTF Loading glTF animations are now loaded into `Curve` types of various kinds, depending on what is being animated and what interpolation mode is being used. Those types get wrapped into and converted into `Box<dyn AnimationCurve>` and shoved inside of a `VariableCurve` just like everybody else. ### Morph Weights There is an `IterableCurve` abstraction which allows sampling these from a contiguous buffer without allocating. Its only reason for existing is that Rust disallows you from naming function types, otherwise we would just use `Curve` with an iterator output type. (The iterator involves `Map`, and the name of the function type would have to be able to be named, but it is not.) A `WeightsCurve` adaptor turns an `IterableCurve` into an `AnimationCurve`, so it behaves like everything else in that regard. ## Testing Tested by running existing animation examples. Interpolation logic has had additional tests added within the `Curve` API to replace the tests in `bevy_animation`. Some kinds of out-of-bounds errors have become impossible. Performance testing on `many_foxes` (`animate_targets`) suggests that performance is very similar to the existing implementation. Here are a couple trace histograms across different runs (yellow is this branch, red is main). <img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM" src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc"> <img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM" src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e"> --- ## Migration Guide Most user code that does not directly deal with `AnimationClip` and `VariableCurve` will not need to be changed. On the other hand, `VariableCurve` has been completely overhauled. If you were previously defining animation curves in code using keyframes, you will need to migrate that code to use curve constructors instead. For example, a rotation animation defined using keyframes and added to an animation clip like this: ```rust animation_clip.add_curve_to_target( animation_target_id, VariableCurve { keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0], keyframes: Keyframes::Rotation(vec![ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ]), interpolation: Interpolation::Linear, }, ); ``` would now be added like this: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ])) .map(RotationCurve) .expect("Failed to build rotation curve"), ); ``` Note that the interface of `AnimationClip::add_curve_to_target` has also changed (as this example shows, if subtly), and now takes its curve input as an `impl AnimationCurve`. If you need to add a `VariableCurve` directly, a new method `add_variable_curve_to_target` accommodates that (and serves as a one-to-one migration in this regard). ### For reviewers The diff is pretty big, and the structure of some of the changes might not be super-obvious: - `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is based heavily on `Keyframes`, with the adaptors also largely following suite. - The Curve API adaptor structs were moved from `bevy_math::curve::mod` into their own module `adaptors`. There are no functional changes to how these adaptors work; this is just to make room for the specialized reflection implementations since `mod.rs` was getting kind of cramped. - The new module `gltf_curves` holds the additional curve constructions that are needed by the glTF loader. Note that the loader uses a mix of these and off-the-shelf `bevy_math` curve stuff. - `animatable.rs` no longer holds logic related to keyframe interpolation, which is now delegated to the existing abstractions in `bevy_math::curve::cores`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
2024-09-30 19:56:55 +00:00
UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
Vec3::new(1.0, 0.0, 1.0),
Vec3::new(-1.0, 0.0, 1.0),
Vec3::new(-1.0, 0.0, -1.0),
Vec3::new(1.0, 0.0, -1.0),
// in case seamless looping is wanted, the last keyframe should
// be the same as the first one
Vec3::new(1.0, 0.0, 1.0),
]))
.map(TranslationCurve)
.expect("should be able to build translation curve because we pass in valid samples"),
);
// Or it can modify the rotation of the transform.
// To find the entity to modify, the hierarchy will be traversed looking for
Curve-based animation (#15434) # Objective This PR extends and reworks the material from #15282 by allowing arbitrary curves to be used by the animation system to animate arbitrary properties. The goals of this work are to: - Allow far greater flexibility in how animations are allowed to be defined in order to be used with `bevy_animation`. - Delegate responsibility over keyframe interpolation to `bevy_math` and the `Curve` libraries and reduce reliance on keyframes in animation definitions generally. - Move away from allowing the glTF spec to completely define animations on a mechanical level. ## Solution ### Overview At a high level, curves have been incorporated into the animation system using the `AnimationCurve` trait (closely related to what was `Keyframes`). From the top down: 1. In `animate_targets`, animations are driven by `VariableCurve`, which is now a thin wrapper around a `Box<dyn AnimationCurve>`. 2. `AnimationCurve` is something built out of a `Curve`, and it tells the animation system how to use the curve's output to actually mutate component properties. The trait looks like this: ```rust /// A low-level trait that provides control over how curves are actually applied to entities /// by the animation system. /// /// Typically, this will not need to be implemented manually, since it is automatically /// implemented by [`AnimatableCurve`] and other curves used by the animation system /// (e.g. those that animate parts of transforms or morph weights). However, this can be /// implemented manually when `AnimatableCurve` is not sufficiently expressive. /// /// In many respects, this behaves like a type-erased form of [`Curve`], where the output /// type of the curve is remembered only in the components that are mutated in the /// implementation of [`apply`]. /// /// [`apply`]: AnimationCurve::apply pub trait AnimationCurve: Reflect + Debug + Send + Sync { /// Returns a boxed clone of this value. fn clone_value(&self) -> Box<dyn AnimationCurve>; /// The range of times for which this animation is defined. fn domain(&self) -> Interval; /// Write the value of sampling this curve at time `t` into `transform` or `entity`, /// as appropriate, interpolating between the existing value and the sampled value /// using the given `weight`. fn apply<'a>( &self, t: f32, transform: Option<Mut<'a, Transform>>, entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>, weight: f32, ) -> Result<(), AnimationEvaluationError>; } ``` 3. The conversion process from a `Curve` to an `AnimationCurve` involves using wrappers which communicate the intent to animate a particular property. For example, here is `TranslationCurve`, which wraps a `Curve<Vec3>` and uses it to animate `Transform::translation`: ```rust /// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates /// the translation component of a transform. pub struct TranslationCurve<C>(pub C); ``` ### Animatable Properties The `AnimatableProperty` trait survives in the transition, and it can be used to allow curves to animate arbitrary component properties. The updated documentation for `AnimatableProperty` explains this process: <details> <summary>Expand AnimatableProperty example</summary An `AnimatableProperty` is a value on a component that Bevy can animate. You can implement this trait on a unit struct in order to support animating custom components other than transforms and morph weights. Use that type in conjunction with `AnimatableCurve` (and perhaps `AnimatableKeyframeCurve` to define the animation itself). For example, in order to animate font size of a text section from 24 pt. to 80 pt., you might use: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = Text; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.sections.get_mut(0)?.style.font_size) } } ``` You can then create an `AnimationClip` to animate this property like so: ```rust let mut animation_clip = AnimationClip::default(); animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [ (0.0, 24.0), (1.0, 80.0), ] ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("Failed to create font size curve") ); ``` Here, the use of `AnimatableKeyframeCurve` creates a curve out of the given keyframe time-value pairs, using the `Animatable` implementation of `f32` to interpolate between them. The invocation of `AnimatableCurve::from_curve` with `FontSizeProperty` indicates that the `f32` output from that curve is to be used to animate the font size of a `Text` component (as configured above). </details> ### glTF Loading glTF animations are now loaded into `Curve` types of various kinds, depending on what is being animated and what interpolation mode is being used. Those types get wrapped into and converted into `Box<dyn AnimationCurve>` and shoved inside of a `VariableCurve` just like everybody else. ### Morph Weights There is an `IterableCurve` abstraction which allows sampling these from a contiguous buffer without allocating. Its only reason for existing is that Rust disallows you from naming function types, otherwise we would just use `Curve` with an iterator output type. (The iterator involves `Map`, and the name of the function type would have to be able to be named, but it is not.) A `WeightsCurve` adaptor turns an `IterableCurve` into an `AnimationCurve`, so it behaves like everything else in that regard. ## Testing Tested by running existing animation examples. Interpolation logic has had additional tests added within the `Curve` API to replace the tests in `bevy_animation`. Some kinds of out-of-bounds errors have become impossible. Performance testing on `many_foxes` (`animate_targets`) suggests that performance is very similar to the existing implementation. Here are a couple trace histograms across different runs (yellow is this branch, red is main). <img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM" src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc"> <img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM" src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e"> --- ## Migration Guide Most user code that does not directly deal with `AnimationClip` and `VariableCurve` will not need to be changed. On the other hand, `VariableCurve` has been completely overhauled. If you were previously defining animation curves in code using keyframes, you will need to migrate that code to use curve constructors instead. For example, a rotation animation defined using keyframes and added to an animation clip like this: ```rust animation_clip.add_curve_to_target( animation_target_id, VariableCurve { keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0], keyframes: Keyframes::Rotation(vec![ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ]), interpolation: Interpolation::Linear, }, ); ``` would now be added like this: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ])) .map(RotationCurve) .expect("Failed to build rotation curve"), ); ``` Note that the interface of `AnimationClip::add_curve_to_target` has also changed (as this example shows, if subtly), and now takes its curve input as an `impl AnimationCurve`. If you need to add a `VariableCurve` directly, a new method `add_variable_curve_to_target` accommodates that (and serves as a one-to-one migration in this regard). ### For reviewers The diff is pretty big, and the structure of some of the changes might not be super-obvious: - `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is based heavily on `Keyframes`, with the adaptors also largely following suite. - The Curve API adaptor structs were moved from `bevy_math::curve::mod` into their own module `adaptors`. There are no functional changes to how these adaptors work; this is just to make room for the specialized reflection implementations since `mod.rs` was getting kind of cramped. - The new module `gltf_curves` holds the additional curve constructions that are needed by the glTF loader. Note that the loader uses a mix of these and off-the-shelf `bevy_math` curve stuff. - `animatable.rs` no longer holds logic related to keyframe interpolation, which is now delegated to the existing abstractions in `bevy_math::curve::cores`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
2024-09-30 19:56:55 +00:00
// an entity with the right name at each level.
Rework animation to be done in two phases. (#11707) # Objective Bevy's animation system currently does tree traversals based on `Name` that aren't necessary. Not only do they require in unsafe code because tree traversals are awkward with parallelism, but they are also somewhat slow, brittle, and complex, which manifested itself as way too many queries in #11670. # Solution Divide animation into two phases: animation *advancement* and animation *evaluation*, which run after one another. *Advancement* operates on the `AnimationPlayer` and sets the current animation time to match the game time. *Evaluation* operates on all animation bones in the scene in parallel and sets the transforms and/or morph weights based on the time and the clip. To do this, we introduce a new component, `AnimationTarget`, which the asset loader places on every bone. It contains the ID of the entity containing the `AnimationPlayer`, as well as a UUID that identifies which bone in the animation the target corresponds to. In the case of glTF, the UUID is derived from the full path name to the bone. The rule that `AnimationTarget`s are descendants of the entity containing `AnimationPlayer` is now just a convention, not a requirement; this allows us to eliminate the unsafe code. # Migration guide * `AnimationClip` now uses UUIDs instead of hierarchical paths based on the `Name` component to refer to bones. This has several consequences: - A new component, `AnimationTarget`, should be placed on each bone that you wish to animate, in order to specify its UUID and the associated `AnimationPlayer`. The glTF loader automatically creates these components as necessary, so most uses of glTF rigs shouldn't need to change. - Moving a bone around the tree, or renaming it, no longer prevents an `AnimationPlayer` from affecting it. - Dynamically changing the `AnimationPlayer` component will likely require manual updating of the `AnimationTarget` components. * Entities with `AnimationPlayer` components may now possess descendants that also have `AnimationPlayer` components. They may not, however, animate the same bones. * As they aren't specific to `TypeId`s, `bevy_reflect::utility::NoOpTypeIdHash` and `bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to `bevy_reflect::utility::NoOpHash` and `bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
let orbit_controller_animation_target_id =
AnimationTargetId::from_names([planet.clone(), orbit_controller.clone()].iter());
animation.add_curve_to_target(
orbit_controller_animation_target_id,
Curve-based animation (#15434) # Objective This PR extends and reworks the material from #15282 by allowing arbitrary curves to be used by the animation system to animate arbitrary properties. The goals of this work are to: - Allow far greater flexibility in how animations are allowed to be defined in order to be used with `bevy_animation`. - Delegate responsibility over keyframe interpolation to `bevy_math` and the `Curve` libraries and reduce reliance on keyframes in animation definitions generally. - Move away from allowing the glTF spec to completely define animations on a mechanical level. ## Solution ### Overview At a high level, curves have been incorporated into the animation system using the `AnimationCurve` trait (closely related to what was `Keyframes`). From the top down: 1. In `animate_targets`, animations are driven by `VariableCurve`, which is now a thin wrapper around a `Box<dyn AnimationCurve>`. 2. `AnimationCurve` is something built out of a `Curve`, and it tells the animation system how to use the curve's output to actually mutate component properties. The trait looks like this: ```rust /// A low-level trait that provides control over how curves are actually applied to entities /// by the animation system. /// /// Typically, this will not need to be implemented manually, since it is automatically /// implemented by [`AnimatableCurve`] and other curves used by the animation system /// (e.g. those that animate parts of transforms or morph weights). However, this can be /// implemented manually when `AnimatableCurve` is not sufficiently expressive. /// /// In many respects, this behaves like a type-erased form of [`Curve`], where the output /// type of the curve is remembered only in the components that are mutated in the /// implementation of [`apply`]. /// /// [`apply`]: AnimationCurve::apply pub trait AnimationCurve: Reflect + Debug + Send + Sync { /// Returns a boxed clone of this value. fn clone_value(&self) -> Box<dyn AnimationCurve>; /// The range of times for which this animation is defined. fn domain(&self) -> Interval; /// Write the value of sampling this curve at time `t` into `transform` or `entity`, /// as appropriate, interpolating between the existing value and the sampled value /// using the given `weight`. fn apply<'a>( &self, t: f32, transform: Option<Mut<'a, Transform>>, entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>, weight: f32, ) -> Result<(), AnimationEvaluationError>; } ``` 3. The conversion process from a `Curve` to an `AnimationCurve` involves using wrappers which communicate the intent to animate a particular property. For example, here is `TranslationCurve`, which wraps a `Curve<Vec3>` and uses it to animate `Transform::translation`: ```rust /// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates /// the translation component of a transform. pub struct TranslationCurve<C>(pub C); ``` ### Animatable Properties The `AnimatableProperty` trait survives in the transition, and it can be used to allow curves to animate arbitrary component properties. The updated documentation for `AnimatableProperty` explains this process: <details> <summary>Expand AnimatableProperty example</summary An `AnimatableProperty` is a value on a component that Bevy can animate. You can implement this trait on a unit struct in order to support animating custom components other than transforms and morph weights. Use that type in conjunction with `AnimatableCurve` (and perhaps `AnimatableKeyframeCurve` to define the animation itself). For example, in order to animate font size of a text section from 24 pt. to 80 pt., you might use: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = Text; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.sections.get_mut(0)?.style.font_size) } } ``` You can then create an `AnimationClip` to animate this property like so: ```rust let mut animation_clip = AnimationClip::default(); animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [ (0.0, 24.0), (1.0, 80.0), ] ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("Failed to create font size curve") ); ``` Here, the use of `AnimatableKeyframeCurve` creates a curve out of the given keyframe time-value pairs, using the `Animatable` implementation of `f32` to interpolate between them. The invocation of `AnimatableCurve::from_curve` with `FontSizeProperty` indicates that the `f32` output from that curve is to be used to animate the font size of a `Text` component (as configured above). </details> ### glTF Loading glTF animations are now loaded into `Curve` types of various kinds, depending on what is being animated and what interpolation mode is being used. Those types get wrapped into and converted into `Box<dyn AnimationCurve>` and shoved inside of a `VariableCurve` just like everybody else. ### Morph Weights There is an `IterableCurve` abstraction which allows sampling these from a contiguous buffer without allocating. Its only reason for existing is that Rust disallows you from naming function types, otherwise we would just use `Curve` with an iterator output type. (The iterator involves `Map`, and the name of the function type would have to be able to be named, but it is not.) A `WeightsCurve` adaptor turns an `IterableCurve` into an `AnimationCurve`, so it behaves like everything else in that regard. ## Testing Tested by running existing animation examples. Interpolation logic has had additional tests added within the `Curve` API to replace the tests in `bevy_animation`. Some kinds of out-of-bounds errors have become impossible. Performance testing on `many_foxes` (`animate_targets`) suggests that performance is very similar to the existing implementation. Here are a couple trace histograms across different runs (yellow is this branch, red is main). <img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM" src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc"> <img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM" src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e"> --- ## Migration Guide Most user code that does not directly deal with `AnimationClip` and `VariableCurve` will not need to be changed. On the other hand, `VariableCurve` has been completely overhauled. If you were previously defining animation curves in code using keyframes, you will need to migrate that code to use curve constructors instead. For example, a rotation animation defined using keyframes and added to an animation clip like this: ```rust animation_clip.add_curve_to_target( animation_target_id, VariableCurve { keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0], keyframes: Keyframes::Rotation(vec![ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ]), interpolation: Interpolation::Linear, }, ); ``` would now be added like this: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ])) .map(RotationCurve) .expect("Failed to build rotation curve"), ); ``` Note that the interface of `AnimationClip::add_curve_to_target` has also changed (as this example shows, if subtly), and now takes its curve input as an `impl AnimationCurve`. If you need to add a `VariableCurve` directly, a new method `add_variable_curve_to_target` accommodates that (and serves as a one-to-one migration in this regard). ### For reviewers The diff is pretty big, and the structure of some of the changes might not be super-obvious: - `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is based heavily on `Keyframes`, with the adaptors also largely following suite. - The Curve API adaptor structs were moved from `bevy_math::curve::mod` into their own module `adaptors`. There are no functional changes to how these adaptors work; this is just to make room for the specialized reflection implementations since `mod.rs` was getting kind of cramped. - The new module `gltf_curves` holds the additional curve constructions that are needed by the glTF loader. Note that the loader uses a mix of these and off-the-shelf `bevy_math` curve stuff. - `animatable.rs` no longer holds logic related to keyframe interpolation, which is now delegated to the existing abstractions in `bevy_math::curve::cores`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
2024-09-30 19:56:55 +00:00
UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
Quat::IDENTITY,
Quat::from_axis_angle(Vec3::Y, PI / 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
Quat::IDENTITY,
]))
.map(RotationCurve)
.expect("Failed to build rotation curve"),
);
// If a curve in an animation is shorter than the other, it will not repeat
// until all other curves are finished. In that case, another animation should
Curve-based animation (#15434) # Objective This PR extends and reworks the material from #15282 by allowing arbitrary curves to be used by the animation system to animate arbitrary properties. The goals of this work are to: - Allow far greater flexibility in how animations are allowed to be defined in order to be used with `bevy_animation`. - Delegate responsibility over keyframe interpolation to `bevy_math` and the `Curve` libraries and reduce reliance on keyframes in animation definitions generally. - Move away from allowing the glTF spec to completely define animations on a mechanical level. ## Solution ### Overview At a high level, curves have been incorporated into the animation system using the `AnimationCurve` trait (closely related to what was `Keyframes`). From the top down: 1. In `animate_targets`, animations are driven by `VariableCurve`, which is now a thin wrapper around a `Box<dyn AnimationCurve>`. 2. `AnimationCurve` is something built out of a `Curve`, and it tells the animation system how to use the curve's output to actually mutate component properties. The trait looks like this: ```rust /// A low-level trait that provides control over how curves are actually applied to entities /// by the animation system. /// /// Typically, this will not need to be implemented manually, since it is automatically /// implemented by [`AnimatableCurve`] and other curves used by the animation system /// (e.g. those that animate parts of transforms or morph weights). However, this can be /// implemented manually when `AnimatableCurve` is not sufficiently expressive. /// /// In many respects, this behaves like a type-erased form of [`Curve`], where the output /// type of the curve is remembered only in the components that are mutated in the /// implementation of [`apply`]. /// /// [`apply`]: AnimationCurve::apply pub trait AnimationCurve: Reflect + Debug + Send + Sync { /// Returns a boxed clone of this value. fn clone_value(&self) -> Box<dyn AnimationCurve>; /// The range of times for which this animation is defined. fn domain(&self) -> Interval; /// Write the value of sampling this curve at time `t` into `transform` or `entity`, /// as appropriate, interpolating between the existing value and the sampled value /// using the given `weight`. fn apply<'a>( &self, t: f32, transform: Option<Mut<'a, Transform>>, entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>, weight: f32, ) -> Result<(), AnimationEvaluationError>; } ``` 3. The conversion process from a `Curve` to an `AnimationCurve` involves using wrappers which communicate the intent to animate a particular property. For example, here is `TranslationCurve`, which wraps a `Curve<Vec3>` and uses it to animate `Transform::translation`: ```rust /// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates /// the translation component of a transform. pub struct TranslationCurve<C>(pub C); ``` ### Animatable Properties The `AnimatableProperty` trait survives in the transition, and it can be used to allow curves to animate arbitrary component properties. The updated documentation for `AnimatableProperty` explains this process: <details> <summary>Expand AnimatableProperty example</summary An `AnimatableProperty` is a value on a component that Bevy can animate. You can implement this trait on a unit struct in order to support animating custom components other than transforms and morph weights. Use that type in conjunction with `AnimatableCurve` (and perhaps `AnimatableKeyframeCurve` to define the animation itself). For example, in order to animate font size of a text section from 24 pt. to 80 pt., you might use: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = Text; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.sections.get_mut(0)?.style.font_size) } } ``` You can then create an `AnimationClip` to animate this property like so: ```rust let mut animation_clip = AnimationClip::default(); animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [ (0.0, 24.0), (1.0, 80.0), ] ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("Failed to create font size curve") ); ``` Here, the use of `AnimatableKeyframeCurve` creates a curve out of the given keyframe time-value pairs, using the `Animatable` implementation of `f32` to interpolate between them. The invocation of `AnimatableCurve::from_curve` with `FontSizeProperty` indicates that the `f32` output from that curve is to be used to animate the font size of a `Text` component (as configured above). </details> ### glTF Loading glTF animations are now loaded into `Curve` types of various kinds, depending on what is being animated and what interpolation mode is being used. Those types get wrapped into and converted into `Box<dyn AnimationCurve>` and shoved inside of a `VariableCurve` just like everybody else. ### Morph Weights There is an `IterableCurve` abstraction which allows sampling these from a contiguous buffer without allocating. Its only reason for existing is that Rust disallows you from naming function types, otherwise we would just use `Curve` with an iterator output type. (The iterator involves `Map`, and the name of the function type would have to be able to be named, but it is not.) A `WeightsCurve` adaptor turns an `IterableCurve` into an `AnimationCurve`, so it behaves like everything else in that regard. ## Testing Tested by running existing animation examples. Interpolation logic has had additional tests added within the `Curve` API to replace the tests in `bevy_animation`. Some kinds of out-of-bounds errors have become impossible. Performance testing on `many_foxes` (`animate_targets`) suggests that performance is very similar to the existing implementation. Here are a couple trace histograms across different runs (yellow is this branch, red is main). <img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM" src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc"> <img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM" src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e"> --- ## Migration Guide Most user code that does not directly deal with `AnimationClip` and `VariableCurve` will not need to be changed. On the other hand, `VariableCurve` has been completely overhauled. If you were previously defining animation curves in code using keyframes, you will need to migrate that code to use curve constructors instead. For example, a rotation animation defined using keyframes and added to an animation clip like this: ```rust animation_clip.add_curve_to_target( animation_target_id, VariableCurve { keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0], keyframes: Keyframes::Rotation(vec![ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ]), interpolation: Interpolation::Linear, }, ); ``` would now be added like this: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ])) .map(RotationCurve) .expect("Failed to build rotation curve"), ); ``` Note that the interface of `AnimationClip::add_curve_to_target` has also changed (as this example shows, if subtly), and now takes its curve input as an `impl AnimationCurve`. If you need to add a `VariableCurve` directly, a new method `add_variable_curve_to_target` accommodates that (and serves as a one-to-one migration in this regard). ### For reviewers The diff is pretty big, and the structure of some of the changes might not be super-obvious: - `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is based heavily on `Keyframes`, with the adaptors also largely following suite. - The Curve API adaptor structs were moved from `bevy_math::curve::mod` into their own module `adaptors`. There are no functional changes to how these adaptors work; this is just to make room for the specialized reflection implementations since `mod.rs` was getting kind of cramped. - The new module `gltf_curves` holds the additional curve constructions that are needed by the glTF loader. Note that the loader uses a mix of these and off-the-shelf `bevy_math` curve stuff. - `animatable.rs` no longer holds logic related to keyframe interpolation, which is now delegated to the existing abstractions in `bevy_math::curve::cores`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
2024-09-30 19:56:55 +00:00
// be created for each part that would have a different duration / period.
Rework animation to be done in two phases. (#11707) # Objective Bevy's animation system currently does tree traversals based on `Name` that aren't necessary. Not only do they require in unsafe code because tree traversals are awkward with parallelism, but they are also somewhat slow, brittle, and complex, which manifested itself as way too many queries in #11670. # Solution Divide animation into two phases: animation *advancement* and animation *evaluation*, which run after one another. *Advancement* operates on the `AnimationPlayer` and sets the current animation time to match the game time. *Evaluation* operates on all animation bones in the scene in parallel and sets the transforms and/or morph weights based on the time and the clip. To do this, we introduce a new component, `AnimationTarget`, which the asset loader places on every bone. It contains the ID of the entity containing the `AnimationPlayer`, as well as a UUID that identifies which bone in the animation the target corresponds to. In the case of glTF, the UUID is derived from the full path name to the bone. The rule that `AnimationTarget`s are descendants of the entity containing `AnimationPlayer` is now just a convention, not a requirement; this allows us to eliminate the unsafe code. # Migration guide * `AnimationClip` now uses UUIDs instead of hierarchical paths based on the `Name` component to refer to bones. This has several consequences: - A new component, `AnimationTarget`, should be placed on each bone that you wish to animate, in order to specify its UUID and the associated `AnimationPlayer`. The glTF loader automatically creates these components as necessary, so most uses of glTF rigs shouldn't need to change. - Moving a bone around the tree, or renaming it, no longer prevents an `AnimationPlayer` from affecting it. - Dynamically changing the `AnimationPlayer` component will likely require manual updating of the `AnimationTarget` components. * Entities with `AnimationPlayer` components may now possess descendants that also have `AnimationPlayer` components. They may not, however, animate the same bones. * As they aren't specific to `TypeId`s, `bevy_reflect::utility::NoOpTypeIdHash` and `bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to `bevy_reflect::utility::NoOpHash` and `bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
let satellite_animation_target_id = AnimationTargetId::from_names(
[planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
);
animation.add_curve_to_target(
satellite_animation_target_id,
Curve-based animation (#15434) # Objective This PR extends and reworks the material from #15282 by allowing arbitrary curves to be used by the animation system to animate arbitrary properties. The goals of this work are to: - Allow far greater flexibility in how animations are allowed to be defined in order to be used with `bevy_animation`. - Delegate responsibility over keyframe interpolation to `bevy_math` and the `Curve` libraries and reduce reliance on keyframes in animation definitions generally. - Move away from allowing the glTF spec to completely define animations on a mechanical level. ## Solution ### Overview At a high level, curves have been incorporated into the animation system using the `AnimationCurve` trait (closely related to what was `Keyframes`). From the top down: 1. In `animate_targets`, animations are driven by `VariableCurve`, which is now a thin wrapper around a `Box<dyn AnimationCurve>`. 2. `AnimationCurve` is something built out of a `Curve`, and it tells the animation system how to use the curve's output to actually mutate component properties. The trait looks like this: ```rust /// A low-level trait that provides control over how curves are actually applied to entities /// by the animation system. /// /// Typically, this will not need to be implemented manually, since it is automatically /// implemented by [`AnimatableCurve`] and other curves used by the animation system /// (e.g. those that animate parts of transforms or morph weights). However, this can be /// implemented manually when `AnimatableCurve` is not sufficiently expressive. /// /// In many respects, this behaves like a type-erased form of [`Curve`], where the output /// type of the curve is remembered only in the components that are mutated in the /// implementation of [`apply`]. /// /// [`apply`]: AnimationCurve::apply pub trait AnimationCurve: Reflect + Debug + Send + Sync { /// Returns a boxed clone of this value. fn clone_value(&self) -> Box<dyn AnimationCurve>; /// The range of times for which this animation is defined. fn domain(&self) -> Interval; /// Write the value of sampling this curve at time `t` into `transform` or `entity`, /// as appropriate, interpolating between the existing value and the sampled value /// using the given `weight`. fn apply<'a>( &self, t: f32, transform: Option<Mut<'a, Transform>>, entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>, weight: f32, ) -> Result<(), AnimationEvaluationError>; } ``` 3. The conversion process from a `Curve` to an `AnimationCurve` involves using wrappers which communicate the intent to animate a particular property. For example, here is `TranslationCurve`, which wraps a `Curve<Vec3>` and uses it to animate `Transform::translation`: ```rust /// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates /// the translation component of a transform. pub struct TranslationCurve<C>(pub C); ``` ### Animatable Properties The `AnimatableProperty` trait survives in the transition, and it can be used to allow curves to animate arbitrary component properties. The updated documentation for `AnimatableProperty` explains this process: <details> <summary>Expand AnimatableProperty example</summary An `AnimatableProperty` is a value on a component that Bevy can animate. You can implement this trait on a unit struct in order to support animating custom components other than transforms and morph weights. Use that type in conjunction with `AnimatableCurve` (and perhaps `AnimatableKeyframeCurve` to define the animation itself). For example, in order to animate font size of a text section from 24 pt. to 80 pt., you might use: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = Text; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.sections.get_mut(0)?.style.font_size) } } ``` You can then create an `AnimationClip` to animate this property like so: ```rust let mut animation_clip = AnimationClip::default(); animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [ (0.0, 24.0), (1.0, 80.0), ] ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("Failed to create font size curve") ); ``` Here, the use of `AnimatableKeyframeCurve` creates a curve out of the given keyframe time-value pairs, using the `Animatable` implementation of `f32` to interpolate between them. The invocation of `AnimatableCurve::from_curve` with `FontSizeProperty` indicates that the `f32` output from that curve is to be used to animate the font size of a `Text` component (as configured above). </details> ### glTF Loading glTF animations are now loaded into `Curve` types of various kinds, depending on what is being animated and what interpolation mode is being used. Those types get wrapped into and converted into `Box<dyn AnimationCurve>` and shoved inside of a `VariableCurve` just like everybody else. ### Morph Weights There is an `IterableCurve` abstraction which allows sampling these from a contiguous buffer without allocating. Its only reason for existing is that Rust disallows you from naming function types, otherwise we would just use `Curve` with an iterator output type. (The iterator involves `Map`, and the name of the function type would have to be able to be named, but it is not.) A `WeightsCurve` adaptor turns an `IterableCurve` into an `AnimationCurve`, so it behaves like everything else in that regard. ## Testing Tested by running existing animation examples. Interpolation logic has had additional tests added within the `Curve` API to replace the tests in `bevy_animation`. Some kinds of out-of-bounds errors have become impossible. Performance testing on `many_foxes` (`animate_targets`) suggests that performance is very similar to the existing implementation. Here are a couple trace histograms across different runs (yellow is this branch, red is main). <img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM" src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc"> <img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM" src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e"> --- ## Migration Guide Most user code that does not directly deal with `AnimationClip` and `VariableCurve` will not need to be changed. On the other hand, `VariableCurve` has been completely overhauled. If you were previously defining animation curves in code using keyframes, you will need to migrate that code to use curve constructors instead. For example, a rotation animation defined using keyframes and added to an animation clip like this: ```rust animation_clip.add_curve_to_target( animation_target_id, VariableCurve { keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0], keyframes: Keyframes::Rotation(vec![ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ]), interpolation: Interpolation::Linear, }, ); ``` would now be added like this: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ])) .map(RotationCurve) .expect("Failed to build rotation curve"), ); ``` Note that the interface of `AnimationClip::add_curve_to_target` has also changed (as this example shows, if subtly), and now takes its curve input as an `impl AnimationCurve`. If you need to add a `VariableCurve` directly, a new method `add_variable_curve_to_target` accommodates that (and serves as a one-to-one migration in this regard). ### For reviewers The diff is pretty big, and the structure of some of the changes might not be super-obvious: - `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is based heavily on `Keyframes`, with the adaptors also largely following suite. - The Curve API adaptor structs were moved from `bevy_math::curve::mod` into their own module `adaptors`. There are no functional changes to how these adaptors work; this is just to make room for the specialized reflection implementations since `mod.rs` was getting kind of cramped. - The new module `gltf_curves` holds the additional curve constructions that are needed by the glTF loader. Note that the loader uses a mix of these and off-the-shelf `bevy_math` curve stuff. - `animatable.rs` no longer holds logic related to keyframe interpolation, which is now delegated to the existing abstractions in `bevy_math::curve::cores`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
2024-09-30 19:56:55 +00:00
UnevenSampleAutoCurve::new(
[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
.into_iter()
.zip([
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
]),
)
.map(ScaleCurve)
.expect("Failed to build scale curve"),
);
Curve-based animation (#15434) # Objective This PR extends and reworks the material from #15282 by allowing arbitrary curves to be used by the animation system to animate arbitrary properties. The goals of this work are to: - Allow far greater flexibility in how animations are allowed to be defined in order to be used with `bevy_animation`. - Delegate responsibility over keyframe interpolation to `bevy_math` and the `Curve` libraries and reduce reliance on keyframes in animation definitions generally. - Move away from allowing the glTF spec to completely define animations on a mechanical level. ## Solution ### Overview At a high level, curves have been incorporated into the animation system using the `AnimationCurve` trait (closely related to what was `Keyframes`). From the top down: 1. In `animate_targets`, animations are driven by `VariableCurve`, which is now a thin wrapper around a `Box<dyn AnimationCurve>`. 2. `AnimationCurve` is something built out of a `Curve`, and it tells the animation system how to use the curve's output to actually mutate component properties. The trait looks like this: ```rust /// A low-level trait that provides control over how curves are actually applied to entities /// by the animation system. /// /// Typically, this will not need to be implemented manually, since it is automatically /// implemented by [`AnimatableCurve`] and other curves used by the animation system /// (e.g. those that animate parts of transforms or morph weights). However, this can be /// implemented manually when `AnimatableCurve` is not sufficiently expressive. /// /// In many respects, this behaves like a type-erased form of [`Curve`], where the output /// type of the curve is remembered only in the components that are mutated in the /// implementation of [`apply`]. /// /// [`apply`]: AnimationCurve::apply pub trait AnimationCurve: Reflect + Debug + Send + Sync { /// Returns a boxed clone of this value. fn clone_value(&self) -> Box<dyn AnimationCurve>; /// The range of times for which this animation is defined. fn domain(&self) -> Interval; /// Write the value of sampling this curve at time `t` into `transform` or `entity`, /// as appropriate, interpolating between the existing value and the sampled value /// using the given `weight`. fn apply<'a>( &self, t: f32, transform: Option<Mut<'a, Transform>>, entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>, weight: f32, ) -> Result<(), AnimationEvaluationError>; } ``` 3. The conversion process from a `Curve` to an `AnimationCurve` involves using wrappers which communicate the intent to animate a particular property. For example, here is `TranslationCurve`, which wraps a `Curve<Vec3>` and uses it to animate `Transform::translation`: ```rust /// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates /// the translation component of a transform. pub struct TranslationCurve<C>(pub C); ``` ### Animatable Properties The `AnimatableProperty` trait survives in the transition, and it can be used to allow curves to animate arbitrary component properties. The updated documentation for `AnimatableProperty` explains this process: <details> <summary>Expand AnimatableProperty example</summary An `AnimatableProperty` is a value on a component that Bevy can animate. You can implement this trait on a unit struct in order to support animating custom components other than transforms and morph weights. Use that type in conjunction with `AnimatableCurve` (and perhaps `AnimatableKeyframeCurve` to define the animation itself). For example, in order to animate font size of a text section from 24 pt. to 80 pt., you might use: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = Text; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.sections.get_mut(0)?.style.font_size) } } ``` You can then create an `AnimationClip` to animate this property like so: ```rust let mut animation_clip = AnimationClip::default(); animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [ (0.0, 24.0), (1.0, 80.0), ] ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("Failed to create font size curve") ); ``` Here, the use of `AnimatableKeyframeCurve` creates a curve out of the given keyframe time-value pairs, using the `Animatable` implementation of `f32` to interpolate between them. The invocation of `AnimatableCurve::from_curve` with `FontSizeProperty` indicates that the `f32` output from that curve is to be used to animate the font size of a `Text` component (as configured above). </details> ### glTF Loading glTF animations are now loaded into `Curve` types of various kinds, depending on what is being animated and what interpolation mode is being used. Those types get wrapped into and converted into `Box<dyn AnimationCurve>` and shoved inside of a `VariableCurve` just like everybody else. ### Morph Weights There is an `IterableCurve` abstraction which allows sampling these from a contiguous buffer without allocating. Its only reason for existing is that Rust disallows you from naming function types, otherwise we would just use `Curve` with an iterator output type. (The iterator involves `Map`, and the name of the function type would have to be able to be named, but it is not.) A `WeightsCurve` adaptor turns an `IterableCurve` into an `AnimationCurve`, so it behaves like everything else in that regard. ## Testing Tested by running existing animation examples. Interpolation logic has had additional tests added within the `Curve` API to replace the tests in `bevy_animation`. Some kinds of out-of-bounds errors have become impossible. Performance testing on `many_foxes` (`animate_targets`) suggests that performance is very similar to the existing implementation. Here are a couple trace histograms across different runs (yellow is this branch, red is main). <img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM" src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc"> <img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM" src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e"> --- ## Migration Guide Most user code that does not directly deal with `AnimationClip` and `VariableCurve` will not need to be changed. On the other hand, `VariableCurve` has been completely overhauled. If you were previously defining animation curves in code using keyframes, you will need to migrate that code to use curve constructors instead. For example, a rotation animation defined using keyframes and added to an animation clip like this: ```rust animation_clip.add_curve_to_target( animation_target_id, VariableCurve { keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0], keyframes: Keyframes::Rotation(vec![ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ]), interpolation: Interpolation::Linear, }, ); ``` would now be added like this: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ])) .map(RotationCurve) .expect("Failed to build rotation curve"), ); ``` Note that the interface of `AnimationClip::add_curve_to_target` has also changed (as this example shows, if subtly), and now takes its curve input as an `impl AnimationCurve`. If you need to add a `VariableCurve` directly, a new method `add_variable_curve_to_target` accommodates that (and serves as a one-to-one migration in this regard). ### For reviewers The diff is pretty big, and the structure of some of the changes might not be super-obvious: - `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is based heavily on `Keyframes`, with the adaptors also largely following suite. - The Curve API adaptor structs were moved from `bevy_math::curve::mod` into their own module `adaptors`. There are no functional changes to how these adaptors work; this is just to make room for the specialized reflection implementations since `mod.rs` was getting kind of cramped. - The new module `gltf_curves` holds the additional curve constructions that are needed by the glTF loader. Note that the loader uses a mix of these and off-the-shelf `bevy_math` curve stuff. - `animatable.rs` no longer holds logic related to keyframe interpolation, which is now delegated to the existing abstractions in `bevy_math::curve::cores`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
2024-09-30 19:56:55 +00:00
// There can be more than one curve targeting the same entity path.
Rework animation to be done in two phases. (#11707) # Objective Bevy's animation system currently does tree traversals based on `Name` that aren't necessary. Not only do they require in unsafe code because tree traversals are awkward with parallelism, but they are also somewhat slow, brittle, and complex, which manifested itself as way too many queries in #11670. # Solution Divide animation into two phases: animation *advancement* and animation *evaluation*, which run after one another. *Advancement* operates on the `AnimationPlayer` and sets the current animation time to match the game time. *Evaluation* operates on all animation bones in the scene in parallel and sets the transforms and/or morph weights based on the time and the clip. To do this, we introduce a new component, `AnimationTarget`, which the asset loader places on every bone. It contains the ID of the entity containing the `AnimationPlayer`, as well as a UUID that identifies which bone in the animation the target corresponds to. In the case of glTF, the UUID is derived from the full path name to the bone. The rule that `AnimationTarget`s are descendants of the entity containing `AnimationPlayer` is now just a convention, not a requirement; this allows us to eliminate the unsafe code. # Migration guide * `AnimationClip` now uses UUIDs instead of hierarchical paths based on the `Name` component to refer to bones. This has several consequences: - A new component, `AnimationTarget`, should be placed on each bone that you wish to animate, in order to specify its UUID and the associated `AnimationPlayer`. The glTF loader automatically creates these components as necessary, so most uses of glTF rigs shouldn't need to change. - Moving a bone around the tree, or renaming it, no longer prevents an `AnimationPlayer` from affecting it. - Dynamically changing the `AnimationPlayer` component will likely require manual updating of the `AnimationTarget` components. * Entities with `AnimationPlayer` components may now possess descendants that also have `AnimationPlayer` components. They may not, however, animate the same bones. * As they aren't specific to `TypeId`s, `bevy_reflect::utility::NoOpTypeIdHash` and `bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to `bevy_reflect::utility::NoOpHash` and `bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
animation.add_curve_to_target(
AnimationTargetId::from_names(
[planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
),
Curve-based animation (#15434) # Objective This PR extends and reworks the material from #15282 by allowing arbitrary curves to be used by the animation system to animate arbitrary properties. The goals of this work are to: - Allow far greater flexibility in how animations are allowed to be defined in order to be used with `bevy_animation`. - Delegate responsibility over keyframe interpolation to `bevy_math` and the `Curve` libraries and reduce reliance on keyframes in animation definitions generally. - Move away from allowing the glTF spec to completely define animations on a mechanical level. ## Solution ### Overview At a high level, curves have been incorporated into the animation system using the `AnimationCurve` trait (closely related to what was `Keyframes`). From the top down: 1. In `animate_targets`, animations are driven by `VariableCurve`, which is now a thin wrapper around a `Box<dyn AnimationCurve>`. 2. `AnimationCurve` is something built out of a `Curve`, and it tells the animation system how to use the curve's output to actually mutate component properties. The trait looks like this: ```rust /// A low-level trait that provides control over how curves are actually applied to entities /// by the animation system. /// /// Typically, this will not need to be implemented manually, since it is automatically /// implemented by [`AnimatableCurve`] and other curves used by the animation system /// (e.g. those that animate parts of transforms or morph weights). However, this can be /// implemented manually when `AnimatableCurve` is not sufficiently expressive. /// /// In many respects, this behaves like a type-erased form of [`Curve`], where the output /// type of the curve is remembered only in the components that are mutated in the /// implementation of [`apply`]. /// /// [`apply`]: AnimationCurve::apply pub trait AnimationCurve: Reflect + Debug + Send + Sync { /// Returns a boxed clone of this value. fn clone_value(&self) -> Box<dyn AnimationCurve>; /// The range of times for which this animation is defined. fn domain(&self) -> Interval; /// Write the value of sampling this curve at time `t` into `transform` or `entity`, /// as appropriate, interpolating between the existing value and the sampled value /// using the given `weight`. fn apply<'a>( &self, t: f32, transform: Option<Mut<'a, Transform>>, entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>, weight: f32, ) -> Result<(), AnimationEvaluationError>; } ``` 3. The conversion process from a `Curve` to an `AnimationCurve` involves using wrappers which communicate the intent to animate a particular property. For example, here is `TranslationCurve`, which wraps a `Curve<Vec3>` and uses it to animate `Transform::translation`: ```rust /// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates /// the translation component of a transform. pub struct TranslationCurve<C>(pub C); ``` ### Animatable Properties The `AnimatableProperty` trait survives in the transition, and it can be used to allow curves to animate arbitrary component properties. The updated documentation for `AnimatableProperty` explains this process: <details> <summary>Expand AnimatableProperty example</summary An `AnimatableProperty` is a value on a component that Bevy can animate. You can implement this trait on a unit struct in order to support animating custom components other than transforms and morph weights. Use that type in conjunction with `AnimatableCurve` (and perhaps `AnimatableKeyframeCurve` to define the animation itself). For example, in order to animate font size of a text section from 24 pt. to 80 pt., you might use: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = Text; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.sections.get_mut(0)?.style.font_size) } } ``` You can then create an `AnimationClip` to animate this property like so: ```rust let mut animation_clip = AnimationClip::default(); animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [ (0.0, 24.0), (1.0, 80.0), ] ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("Failed to create font size curve") ); ``` Here, the use of `AnimatableKeyframeCurve` creates a curve out of the given keyframe time-value pairs, using the `Animatable` implementation of `f32` to interpolate between them. The invocation of `AnimatableCurve::from_curve` with `FontSizeProperty` indicates that the `f32` output from that curve is to be used to animate the font size of a `Text` component (as configured above). </details> ### glTF Loading glTF animations are now loaded into `Curve` types of various kinds, depending on what is being animated and what interpolation mode is being used. Those types get wrapped into and converted into `Box<dyn AnimationCurve>` and shoved inside of a `VariableCurve` just like everybody else. ### Morph Weights There is an `IterableCurve` abstraction which allows sampling these from a contiguous buffer without allocating. Its only reason for existing is that Rust disallows you from naming function types, otherwise we would just use `Curve` with an iterator output type. (The iterator involves `Map`, and the name of the function type would have to be able to be named, but it is not.) A `WeightsCurve` adaptor turns an `IterableCurve` into an `AnimationCurve`, so it behaves like everything else in that regard. ## Testing Tested by running existing animation examples. Interpolation logic has had additional tests added within the `Curve` API to replace the tests in `bevy_animation`. Some kinds of out-of-bounds errors have become impossible. Performance testing on `many_foxes` (`animate_targets`) suggests that performance is very similar to the existing implementation. Here are a couple trace histograms across different runs (yellow is this branch, red is main). <img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM" src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc"> <img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM" src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e"> --- ## Migration Guide Most user code that does not directly deal with `AnimationClip` and `VariableCurve` will not need to be changed. On the other hand, `VariableCurve` has been completely overhauled. If you were previously defining animation curves in code using keyframes, you will need to migrate that code to use curve constructors instead. For example, a rotation animation defined using keyframes and added to an animation clip like this: ```rust animation_clip.add_curve_to_target( animation_target_id, VariableCurve { keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0], keyframes: Keyframes::Rotation(vec![ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ]), interpolation: Interpolation::Linear, }, ); ``` would now be added like this: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ])) .map(RotationCurve) .expect("Failed to build rotation curve"), ); ``` Note that the interface of `AnimationClip::add_curve_to_target` has also changed (as this example shows, if subtly), and now takes its curve input as an `impl AnimationCurve`. If you need to add a `VariableCurve` directly, a new method `add_variable_curve_to_target` accommodates that (and serves as a one-to-one migration in this regard). ### For reviewers The diff is pretty big, and the structure of some of the changes might not be super-obvious: - `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is based heavily on `Keyframes`, with the adaptors also largely following suite. - The Curve API adaptor structs were moved from `bevy_math::curve::mod` into their own module `adaptors`. There are no functional changes to how these adaptors work; this is just to make room for the specialized reflection implementations since `mod.rs` was getting kind of cramped. - The new module `gltf_curves` holds the additional curve constructions that are needed by the glTF loader. Note that the loader uses a mix of these and off-the-shelf `bevy_math` curve stuff. - `animatable.rs` no longer holds logic related to keyframe interpolation, which is now delegated to the existing abstractions in `bevy_math::curve::cores`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
2024-09-30 19:56:55 +00:00
UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
Quat::IDENTITY,
Quat::from_axis_angle(Vec3::Y, PI / 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
Quat::IDENTITY,
]))
.map(RotationCurve)
.expect("should be able to build translation curve because we pass in valid samples"),
);
Implement the `AnimationGraph`, allowing for multiple animations to be blended together. (#11989) This is an implementation of RFC #51: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md Note that the implementation strategy is different from the one outlined in that RFC, because two-phase animation has now landed. # Objective Bevy needs animation blending. The RFC for this is [RFC 51]. ## Solution This is an implementation of the RFC. Note that the implementation strategy is different from the one outlined there, because two-phase animation has now landed. This is just a draft to get the conversation started. Currently we're missing a few things: - [x] A fully-fleshed-out mechanism for transitions - [x] A serialization format for `AnimationGraph`s - [x] Examples are broken, other than `animated_fox` - [x] Documentation --- ## Changelog ### Added * The `AnimationPlayer` has been reworked to support blending multiple animations together through an `AnimationGraph`, and as such will no longer function unless a `Handle<AnimationGraph>` has been added to the entity containing the player. See [RFC 51] for more details. * Transition functionality has moved from the `AnimationPlayer` to a new component, `AnimationTransitions`, which works in tandem with the `AnimationGraph`. ## Migration Guide * `AnimationPlayer`s can no longer play animations by themselves and need to be paired with a `Handle<AnimationGraph>`. Code that was using `AnimationPlayer` to play animations will need to create an `AnimationGraph` asset first, add a node for the clip (or clips) you want to play, and then supply the index of that node to the `AnimationPlayer`'s `play` method. * The `AnimationPlayer::play_with_transition()` method has been removed and replaced with the `AnimationTransitions` component. If you were previously using `AnimationPlayer::play_with_transition()`, add all animations that you were playing to the `AnimationGraph`, and create an `AnimationTransitions` component to manage the blending between them. [RFC 51]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md --------- Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
// Create the animation graph
let (graph, animation_index) = AnimationGraph::from_clip(animations.add(animation));
// Create the animation player, and set it to repeat
let mut player = AnimationPlayer::default();
Implement the `AnimationGraph`, allowing for multiple animations to be blended together. (#11989) This is an implementation of RFC #51: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md Note that the implementation strategy is different from the one outlined in that RFC, because two-phase animation has now landed. # Objective Bevy needs animation blending. The RFC for this is [RFC 51]. ## Solution This is an implementation of the RFC. Note that the implementation strategy is different from the one outlined there, because two-phase animation has now landed. This is just a draft to get the conversation started. Currently we're missing a few things: - [x] A fully-fleshed-out mechanism for transitions - [x] A serialization format for `AnimationGraph`s - [x] Examples are broken, other than `animated_fox` - [x] Documentation --- ## Changelog ### Added * The `AnimationPlayer` has been reworked to support blending multiple animations together through an `AnimationGraph`, and as such will no longer function unless a `Handle<AnimationGraph>` has been added to the entity containing the player. See [RFC 51] for more details. * Transition functionality has moved from the `AnimationPlayer` to a new component, `AnimationTransitions`, which works in tandem with the `AnimationGraph`. ## Migration Guide * `AnimationPlayer`s can no longer play animations by themselves and need to be paired with a `Handle<AnimationGraph>`. Code that was using `AnimationPlayer` to play animations will need to create an `AnimationGraph` asset first, add a node for the clip (or clips) you want to play, and then supply the index of that node to the `AnimationPlayer`'s `play` method. * The `AnimationPlayer::play_with_transition()` method has been removed and replaced with the `AnimationTransitions` component. If you were previously using `AnimationPlayer::play_with_transition()`, add all animations that you were playing to the `AnimationGraph`, and create an `AnimationTransitions` component to manage the blending between them. [RFC 51]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md --------- Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
player.play(animation_index).repeat();
// Create the scene that will be animated
// First entity is the planet
Rework animation to be done in two phases. (#11707) # Objective Bevy's animation system currently does tree traversals based on `Name` that aren't necessary. Not only do they require in unsafe code because tree traversals are awkward with parallelism, but they are also somewhat slow, brittle, and complex, which manifested itself as way too many queries in #11670. # Solution Divide animation into two phases: animation *advancement* and animation *evaluation*, which run after one another. *Advancement* operates on the `AnimationPlayer` and sets the current animation time to match the game time. *Evaluation* operates on all animation bones in the scene in parallel and sets the transforms and/or morph weights based on the time and the clip. To do this, we introduce a new component, `AnimationTarget`, which the asset loader places on every bone. It contains the ID of the entity containing the `AnimationPlayer`, as well as a UUID that identifies which bone in the animation the target corresponds to. In the case of glTF, the UUID is derived from the full path name to the bone. The rule that `AnimationTarget`s are descendants of the entity containing `AnimationPlayer` is now just a convention, not a requirement; this allows us to eliminate the unsafe code. # Migration guide * `AnimationClip` now uses UUIDs instead of hierarchical paths based on the `Name` component to refer to bones. This has several consequences: - A new component, `AnimationTarget`, should be placed on each bone that you wish to animate, in order to specify its UUID and the associated `AnimationPlayer`. The glTF loader automatically creates these components as necessary, so most uses of glTF rigs shouldn't need to change. - Moving a bone around the tree, or renaming it, no longer prevents an `AnimationPlayer` from affecting it. - Dynamically changing the `AnimationPlayer` component will likely require manual updating of the `AnimationTarget` components. * Entities with `AnimationPlayer` components may now possess descendants that also have `AnimationPlayer` components. They may not, however, animate the same bones. * As they aren't specific to `TypeId`s, `bevy_reflect::utility::NoOpTypeIdHash` and `bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to `bevy_reflect::utility::NoOpHash` and `bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
let planet_entity = commands
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
.spawn((
Accept Bundles for insert and remove. Deprecate insert/remove_bundle (#6039) # Objective Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there. ## Solution - Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World) - Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection` - Add `remove_intersection` --- ## Changelog - Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World) - `insert_bundle` and `remove_bundle` are deprecated ## Migration Guide Replace `insert_bundle` with `insert`: ```rust // Old (0.8) commands.spawn().insert_bundle(SomeBundle::default()); // New (0.9) commands.spawn().insert(SomeBundle::default()); ``` Replace `remove_bundle` with `remove`: ```rust // Old (0.8) commands.entity(some_entity).remove_bundle::<SomeBundle>(); // New (0.9) commands.entity(some_entity).remove::<SomeBundle>(); ``` Replace `remove_bundle_intersection` with `remove_intersection`: ```rust // Old (0.8) world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>(); // New (0.9) world.entity_mut(some_entity).remove_intersection::<SomeBundle>(); ``` Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves: ```rust // Old (0.8) commands.spawn() .insert_bundle(SomeBundle::default()) .insert(SomeComponent); // New (0.9) - Option 1 commands.spawn().insert(( SomeBundle::default(), SomeComponent, )) // New (0.9) - Option 2 commands.spawn_bundle(( SomeBundle::default(), SomeComponent, )) ``` ## Next Steps Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
2022-09-21 21:47:53 +00:00
PbrBundle {
Deprecate shapes in `bevy_render::mesh::shape` (#11773) # Objective #11431 and #11688 implemented meshing support for Bevy's new geometric primitives. The next step is to deprecate the shapes in `bevy_render::mesh::shape` and to later remove them completely for 0.14. ## Solution Deprecate the shapes and reduce code duplication by utilizing the primitive meshing API for the old shapes where possible. Note that some shapes have behavior that can't be exactly reproduced with the new primitives yet: - `Box` is more of an AABB with min/max extents - `Plane` supports a subdivision count - `Quad` has a `flipped` property These types have not been changed to utilize the new primitives yet. --- ## Changelog - Deprecated all shapes in `bevy_render::mesh::shape` - Changed all examples to use new primitives for meshing ## Migration Guide Bevy has previously used rendering-specific types like `UVSphere` and `Quad` for primitive mesh shapes. These have now been deprecated to use the geometric primitives newly introduced in version 0.13. Some examples: ```rust let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0)); let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0)); let before = meshes.add(shape::Quad::default()); let after = meshes.add(Rectangle::default()); let before = meshes.add(shape::Plane::from_size(5.0)); // The surface normal can now also be specified when using `new` let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0)); let before = meshes.add( Mesh::try_from(shape::Icosphere { radius: 0.5, subdivisions: 5, }) .unwrap(), ); let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap()); ```
2024-02-08 18:01:34 +00:00
mesh: meshes.add(Sphere::default()),
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
material: materials.add(Color::srgb(0.8, 0.7, 0.6)),
Accept Bundles for insert and remove. Deprecate insert/remove_bundle (#6039) # Objective Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there. ## Solution - Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World) - Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection` - Add `remove_intersection` --- ## Changelog - Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World) - `insert_bundle` and `remove_bundle` are deprecated ## Migration Guide Replace `insert_bundle` with `insert`: ```rust // Old (0.8) commands.spawn().insert_bundle(SomeBundle::default()); // New (0.9) commands.spawn().insert(SomeBundle::default()); ``` Replace `remove_bundle` with `remove`: ```rust // Old (0.8) commands.entity(some_entity).remove_bundle::<SomeBundle>(); // New (0.9) commands.entity(some_entity).remove::<SomeBundle>(); ``` Replace `remove_bundle_intersection` with `remove_intersection`: ```rust // Old (0.8) world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>(); // New (0.9) world.entity_mut(some_entity).remove_intersection::<SomeBundle>(); ``` Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves: ```rust // Old (0.8) commands.spawn() .insert_bundle(SomeBundle::default()) .insert(SomeComponent); // New (0.9) - Option 1 commands.spawn().insert(( SomeBundle::default(), SomeComponent, )) // New (0.9) - Option 2 commands.spawn_bundle(( SomeBundle::default(), SomeComponent, )) ``` ## Next Steps Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
2022-09-21 21:47:53 +00:00
..default()
},
Implement the `AnimationGraph`, allowing for multiple animations to be blended together. (#11989) This is an implementation of RFC #51: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md Note that the implementation strategy is different from the one outlined in that RFC, because two-phase animation has now landed. # Objective Bevy needs animation blending. The RFC for this is [RFC 51]. ## Solution This is an implementation of the RFC. Note that the implementation strategy is different from the one outlined there, because two-phase animation has now landed. This is just a draft to get the conversation started. Currently we're missing a few things: - [x] A fully-fleshed-out mechanism for transitions - [x] A serialization format for `AnimationGraph`s - [x] Examples are broken, other than `animated_fox` - [x] Documentation --- ## Changelog ### Added * The `AnimationPlayer` has been reworked to support blending multiple animations together through an `AnimationGraph`, and as such will no longer function unless a `Handle<AnimationGraph>` has been added to the entity containing the player. See [RFC 51] for more details. * Transition functionality has moved from the `AnimationPlayer` to a new component, `AnimationTransitions`, which works in tandem with the `AnimationGraph`. ## Migration Guide * `AnimationPlayer`s can no longer play animations by themselves and need to be paired with a `Handle<AnimationGraph>`. Code that was using `AnimationPlayer` to play animations will need to create an `AnimationGraph` asset first, add a node for the clip (or clips) you want to play, and then supply the index of that node to the `AnimationPlayer`'s `play` method. * The `AnimationPlayer::play_with_transition()` method has been removed and replaced with the `AnimationTransitions` component. If you were previously using `AnimationPlayer::play_with_transition()`, add all animations that you were playing to the `AnimationGraph`, and create an `AnimationTransitions` component to manage the blending between them. [RFC 51]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md --------- Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
// Add the animation graph and player
Accept Bundles for insert and remove. Deprecate insert/remove_bundle (#6039) # Objective Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there. ## Solution - Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World) - Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection` - Add `remove_intersection` --- ## Changelog - Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World) - `insert_bundle` and `remove_bundle` are deprecated ## Migration Guide Replace `insert_bundle` with `insert`: ```rust // Old (0.8) commands.spawn().insert_bundle(SomeBundle::default()); // New (0.9) commands.spawn().insert(SomeBundle::default()); ``` Replace `remove_bundle` with `remove`: ```rust // Old (0.8) commands.entity(some_entity).remove_bundle::<SomeBundle>(); // New (0.9) commands.entity(some_entity).remove::<SomeBundle>(); ``` Replace `remove_bundle_intersection` with `remove_intersection`: ```rust // Old (0.8) world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>(); // New (0.9) world.entity_mut(some_entity).remove_intersection::<SomeBundle>(); ``` Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves: ```rust // Old (0.8) commands.spawn() .insert_bundle(SomeBundle::default()) .insert(SomeComponent); // New (0.9) - Option 1 commands.spawn().insert(( SomeBundle::default(), SomeComponent, )) // New (0.9) - Option 2 commands.spawn_bundle(( SomeBundle::default(), SomeComponent, )) ``` ## Next Steps Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
2022-09-21 21:47:53 +00:00
planet,
Implement the `AnimationGraph`, allowing for multiple animations to be blended together. (#11989) This is an implementation of RFC #51: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md Note that the implementation strategy is different from the one outlined in that RFC, because two-phase animation has now landed. # Objective Bevy needs animation blending. The RFC for this is [RFC 51]. ## Solution This is an implementation of the RFC. Note that the implementation strategy is different from the one outlined there, because two-phase animation has now landed. This is just a draft to get the conversation started. Currently we're missing a few things: - [x] A fully-fleshed-out mechanism for transitions - [x] A serialization format for `AnimationGraph`s - [x] Examples are broken, other than `animated_fox` - [x] Documentation --- ## Changelog ### Added * The `AnimationPlayer` has been reworked to support blending multiple animations together through an `AnimationGraph`, and as such will no longer function unless a `Handle<AnimationGraph>` has been added to the entity containing the player. See [RFC 51] for more details. * Transition functionality has moved from the `AnimationPlayer` to a new component, `AnimationTransitions`, which works in tandem with the `AnimationGraph`. ## Migration Guide * `AnimationPlayer`s can no longer play animations by themselves and need to be paired with a `Handle<AnimationGraph>`. Code that was using `AnimationPlayer` to play animations will need to create an `AnimationGraph` asset first, add a node for the clip (or clips) you want to play, and then supply the index of that node to the `AnimationPlayer`'s `play` method. * The `AnimationPlayer::play_with_transition()` method has been removed and replaced with the `AnimationTransitions` component. If you were previously using `AnimationPlayer::play_with_transition()`, add all animations that you were playing to the `AnimationGraph`, and create an `AnimationTransitions` component to manage the blending between them. [RFC 51]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md --------- Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
graphs.add(graph),
Accept Bundles for insert and remove. Deprecate insert/remove_bundle (#6039) # Objective Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there. ## Solution - Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World) - Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection` - Add `remove_intersection` --- ## Changelog - Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World) - `insert_bundle` and `remove_bundle` are deprecated ## Migration Guide Replace `insert_bundle` with `insert`: ```rust // Old (0.8) commands.spawn().insert_bundle(SomeBundle::default()); // New (0.9) commands.spawn().insert(SomeBundle::default()); ``` Replace `remove_bundle` with `remove`: ```rust // Old (0.8) commands.entity(some_entity).remove_bundle::<SomeBundle>(); // New (0.9) commands.entity(some_entity).remove::<SomeBundle>(); ``` Replace `remove_bundle_intersection` with `remove_intersection`: ```rust // Old (0.8) world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>(); // New (0.9) world.entity_mut(some_entity).remove_intersection::<SomeBundle>(); ``` Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves: ```rust // Old (0.8) commands.spawn() .insert_bundle(SomeBundle::default()) .insert(SomeComponent); // New (0.9) - Option 1 commands.spawn().insert(( SomeBundle::default(), SomeComponent, )) // New (0.9) - Option 2 commands.spawn_bundle(( SomeBundle::default(), SomeComponent, )) ``` ## Next Steps Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
2022-09-21 21:47:53 +00:00
player,
))
Rework animation to be done in two phases. (#11707) # Objective Bevy's animation system currently does tree traversals based on `Name` that aren't necessary. Not only do they require in unsafe code because tree traversals are awkward with parallelism, but they are also somewhat slow, brittle, and complex, which manifested itself as way too many queries in #11670. # Solution Divide animation into two phases: animation *advancement* and animation *evaluation*, which run after one another. *Advancement* operates on the `AnimationPlayer` and sets the current animation time to match the game time. *Evaluation* operates on all animation bones in the scene in parallel and sets the transforms and/or morph weights based on the time and the clip. To do this, we introduce a new component, `AnimationTarget`, which the asset loader places on every bone. It contains the ID of the entity containing the `AnimationPlayer`, as well as a UUID that identifies which bone in the animation the target corresponds to. In the case of glTF, the UUID is derived from the full path name to the bone. The rule that `AnimationTarget`s are descendants of the entity containing `AnimationPlayer` is now just a convention, not a requirement; this allows us to eliminate the unsafe code. # Migration guide * `AnimationClip` now uses UUIDs instead of hierarchical paths based on the `Name` component to refer to bones. This has several consequences: - A new component, `AnimationTarget`, should be placed on each bone that you wish to animate, in order to specify its UUID and the associated `AnimationPlayer`. The glTF loader automatically creates these components as necessary, so most uses of glTF rigs shouldn't need to change. - Moving a bone around the tree, or renaming it, no longer prevents an `AnimationPlayer` from affecting it. - Dynamically changing the `AnimationPlayer` component will likely require manual updating of the `AnimationTarget` components. * Entities with `AnimationPlayer` components may now possess descendants that also have `AnimationPlayer` components. They may not, however, animate the same bones. * As they aren't specific to `TypeId`s, `bevy_reflect::utility::NoOpTypeIdHash` and `bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to `bevy_reflect::utility::NoOpHash` and `bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
.id();
commands
.entity(planet_entity)
.insert(AnimationTarget {
id: planet_animation_target_id,
player: planet_entity,
})
.with_children(|p| {
// This entity is just used for animation, but doesn't display anything
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
p.spawn((
enum `Visibility` component (#6320) Consolidation of all the feedback about #6271 as well as the addition of an "unconditionally visible" mode. # Objective The current implementation of the `Visibility` struct simply wraps a boolean.. which seems like an odd pattern when rust has such nice enums that allow for more expression using pattern-matching. Additionally as it stands Bevy only has two settings for visibility of an entity: - "unconditionally hidden" `Visibility { is_visible: false }`, - "inherit visibility from parent" `Visibility { is_visible: true }` where a root level entity set to "inherit" is visible. Note that given the behaviour, the current naming of the inner field is a little deceptive or unclear. Using an enum for `Visibility` opens the door for adding an extra behaviour mode. This PR adds a new "unconditionally visible" mode, which causes an entity to be visible even if its Parent entity is hidden. There should not really be any performance cost to the addition of this new mode. -- The recently added `toggle` method is removed in this PR, as its semantics could be confusing with 3 variants. ## Solution Change the Visibility component into ```rust enum Visibility { Hidden, // unconditionally hidden Visible, // unconditionally visible Inherited, // inherit visibility from parent } ``` --- ## Changelog ### Changed `Visibility` is now an enum ## Migration Guide - evaluation of the `visibility.is_visible` field should now check for `visibility == Visibility::Inherited`. - setting the `visibility.is_visible` field should now directly set the value: `*visibility = Visibility::Inherited`. - usage of `Visibility::VISIBLE` or `Visibility::INVISIBLE` should now use `Visibility::Inherited` or `Visibility::Hidden` respectively. - `ComputedVisibility::INVISIBLE` and `SpatialBundle::VISIBLE_IDENTITY` have been renamed to `ComputedVisibility::HIDDEN` and `SpatialBundle::INHERITED_IDENTITY` respectively. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-12-25 00:39:29 +00:00
SpatialBundle::INHERITED_IDENTITY,
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
orbit_controller,
Rework animation to be done in two phases. (#11707) # Objective Bevy's animation system currently does tree traversals based on `Name` that aren't necessary. Not only do they require in unsafe code because tree traversals are awkward with parallelism, but they are also somewhat slow, brittle, and complex, which manifested itself as way too many queries in #11670. # Solution Divide animation into two phases: animation *advancement* and animation *evaluation*, which run after one another. *Advancement* operates on the `AnimationPlayer` and sets the current animation time to match the game time. *Evaluation* operates on all animation bones in the scene in parallel and sets the transforms and/or morph weights based on the time and the clip. To do this, we introduce a new component, `AnimationTarget`, which the asset loader places on every bone. It contains the ID of the entity containing the `AnimationPlayer`, as well as a UUID that identifies which bone in the animation the target corresponds to. In the case of glTF, the UUID is derived from the full path name to the bone. The rule that `AnimationTarget`s are descendants of the entity containing `AnimationPlayer` is now just a convention, not a requirement; this allows us to eliminate the unsafe code. # Migration guide * `AnimationClip` now uses UUIDs instead of hierarchical paths based on the `Name` component to refer to bones. This has several consequences: - A new component, `AnimationTarget`, should be placed on each bone that you wish to animate, in order to specify its UUID and the associated `AnimationPlayer`. The glTF loader automatically creates these components as necessary, so most uses of glTF rigs shouldn't need to change. - Moving a bone around the tree, or renaming it, no longer prevents an `AnimationPlayer` from affecting it. - Dynamically changing the `AnimationPlayer` component will likely require manual updating of the `AnimationTarget` components. * Entities with `AnimationPlayer` components may now possess descendants that also have `AnimationPlayer` components. They may not, however, animate the same bones. * As they aren't specific to `TypeId`s, `bevy_reflect::utility::NoOpTypeIdHash` and `bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to `bevy_reflect::utility::NoOpHash` and `bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
AnimationTarget {
id: orbit_controller_animation_target_id,
player: planet_entity,
},
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
))
.with_children(|p| {
// The satellite, placed at a distance of the planet
p.spawn((
PbrBundle {
transform: Transform::from_xyz(1.5, 0.0, 0.0),
Deprecate shapes in `bevy_render::mesh::shape` (#11773) # Objective #11431 and #11688 implemented meshing support for Bevy's new geometric primitives. The next step is to deprecate the shapes in `bevy_render::mesh::shape` and to later remove them completely for 0.14. ## Solution Deprecate the shapes and reduce code duplication by utilizing the primitive meshing API for the old shapes where possible. Note that some shapes have behavior that can't be exactly reproduced with the new primitives yet: - `Box` is more of an AABB with min/max extents - `Plane` supports a subdivision count - `Quad` has a `flipped` property These types have not been changed to utilize the new primitives yet. --- ## Changelog - Deprecated all shapes in `bevy_render::mesh::shape` - Changed all examples to use new primitives for meshing ## Migration Guide Bevy has previously used rendering-specific types like `UVSphere` and `Quad` for primitive mesh shapes. These have now been deprecated to use the geometric primitives newly introduced in version 0.13. Some examples: ```rust let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0)); let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0)); let before = meshes.add(shape::Quad::default()); let after = meshes.add(Rectangle::default()); let before = meshes.add(shape::Plane::from_size(5.0)); // The surface normal can now also be specified when using `new` let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0)); let before = meshes.add( Mesh::try_from(shape::Icosphere { radius: 0.5, subdivisions: 5, }) .unwrap(), ); let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap()); ```
2024-02-08 18:01:34 +00:00
mesh: meshes.add(Cuboid::new(0.5, 0.5, 0.5)),
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
material: materials.add(Color::srgb(0.3, 0.9, 0.3)),
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
..default()
},
Rework animation to be done in two phases. (#11707) # Objective Bevy's animation system currently does tree traversals based on `Name` that aren't necessary. Not only do they require in unsafe code because tree traversals are awkward with parallelism, but they are also somewhat slow, brittle, and complex, which manifested itself as way too many queries in #11670. # Solution Divide animation into two phases: animation *advancement* and animation *evaluation*, which run after one another. *Advancement* operates on the `AnimationPlayer` and sets the current animation time to match the game time. *Evaluation* operates on all animation bones in the scene in parallel and sets the transforms and/or morph weights based on the time and the clip. To do this, we introduce a new component, `AnimationTarget`, which the asset loader places on every bone. It contains the ID of the entity containing the `AnimationPlayer`, as well as a UUID that identifies which bone in the animation the target corresponds to. In the case of glTF, the UUID is derived from the full path name to the bone. The rule that `AnimationTarget`s are descendants of the entity containing `AnimationPlayer` is now just a convention, not a requirement; this allows us to eliminate the unsafe code. # Migration guide * `AnimationClip` now uses UUIDs instead of hierarchical paths based on the `Name` component to refer to bones. This has several consequences: - A new component, `AnimationTarget`, should be placed on each bone that you wish to animate, in order to specify its UUID and the associated `AnimationPlayer`. The glTF loader automatically creates these components as necessary, so most uses of glTF rigs shouldn't need to change. - Moving a bone around the tree, or renaming it, no longer prevents an `AnimationPlayer` from affecting it. - Dynamically changing the `AnimationPlayer` component will likely require manual updating of the `AnimationTarget` components. * Entities with `AnimationPlayer` components may now possess descendants that also have `AnimationPlayer` components. They may not, however, animate the same bones. * As they aren't specific to `TypeId`s, `bevy_reflect::utility::NoOpTypeIdHash` and `bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to `bevy_reflect::utility::NoOpHash` and `bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
AnimationTarget {
id: satellite_animation_target_id,
player: planet_entity,
},
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
satellite,
));
});
});
}