bevy/crates/bevy_tasks/src/countdown_event.rs

131 lines
3.9 KiB
Rust
Raw Normal View History

use event_listener::Event;
use std::sync::{
atomic::{AtomicIsize, Ordering},
Arc,
};
#[derive(Debug)]
struct CountdownEventInner {
/// Async primitive that can be awaited and signalled. We fire it when counter hits 0.
event: Event,
/// The number of decrements remaining
counter: AtomicIsize,
}
/// A counter that starts with an initial count `n`. Once it is decremented `n` times, it will be
/// "ready". Call `listen` to get a future that can be awaited.
#[derive(Clone, Debug)]
pub struct CountdownEvent {
inner: Arc<CountdownEventInner>,
}
impl CountdownEvent {
/// Creates a CountdownEvent that must be decremented `n` times for listeners to be
/// signalled
pub fn new(n: isize) -> Self {
let inner = CountdownEventInner {
event: Event::new(),
counter: AtomicIsize::new(n),
};
CountdownEvent {
inner: Arc::new(inner),
}
}
/// Get the number of times decrement must be called to trigger notifying all listeners
pub fn get(&self) -> isize {
self.inner.counter.load(Ordering::Acquire)
}
/// Decrement the counter by one. If this is the Nth call, trigger all listeners
pub fn decrement(&self) {
// If we are the last decrementer, notify listeners
let value = self.inner.counter.fetch_sub(1, Ordering::AcqRel);
if value <= 1 {
self.inner.event.notify(std::usize::MAX);
// Reset to 0 - wrapping an isize negative seems unlikely but should probably do it
// anyways.
self.inner.counter.store(0, Ordering::Release);
}
}
/// Resets the counter. Any listens following this point will not be notified until decrement
/// is called N times
pub fn reset(&self, n: isize) {
self.inner.counter.store(n, Ordering::Release);
}
/// Awaits decrement being called N times
pub async fn listen(&self) {
let mut listener = None;
// The complexity here is due to Event not necessarily signalling awaits that are placed
// after the await is called. So we must check the counter AFTER taking a listener.
loop {
// We're done, break
if self.inner.counter.load(Ordering::Acquire) <= 0 {
break;
}
match listener.take() {
None => {
listener = Some(self.inner.event.listen());
}
Some(l) => {
l.await;
}
}
}
}
}
#[test]
pub fn countdown_event_ready_after() {
let countdown_event = CountdownEvent::new(2);
countdown_event.decrement();
countdown_event.decrement();
futures_lite::future::block_on(countdown_event.listen());
}
#[test]
pub fn countdown_event_ready() {
let countdown_event = CountdownEvent::new(2);
countdown_event.decrement();
let countdown_event_clone = countdown_event.clone();
let handle =
std::thread::spawn(move || futures_lite::future::block_on(countdown_event_clone.listen()));
// Pause to give the new thread time to start blocking (ugly hack)
std::thread::sleep(instant::Duration::from_millis(100));
countdown_event.decrement();
handle.join().unwrap();
}
#[test]
pub fn event_resets_if_listeners_are_cleared() {
let event = Event::new();
// notify all listeners
let listener1 = event.listen();
event.notify(std::usize::MAX);
futures_lite::future::block_on(listener1);
// If all listeners are notified, the structure should now be cleared. We're free to listen again
let listener2 = event.listen();
let listener3 = event.listen();
// Verify that we are still blocked
assert_eq!(
false,
listener2.wait_timeout(instant::Duration::from_millis(10))
);
// Notify all and verify the remaining listener is notified
event.notify(std::usize::MAX);
futures_lite::future::block_on(listener3);
}