bevy/crates/bevy_tasks/src/task.rs

61 lines
2 KiB
Rust
Raw Normal View History

Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
use core::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
2020-09-10 19:54:24 +00:00
/// Wraps `async_executor::Task`, a spawned future.
///
/// Tasks are also futures themselves and yield the output of the spawned future.
///
/// When a task is dropped, its gets canceled and won't be polled again. To cancel a task a bit
/// more gracefully and wait until it stops running, use the [`Task::cancel()`] method.
///
/// Tasks that panic get immediately canceled. Awaiting a canceled task also causes a panic.
#[derive(Debug)]
#[must_use = "Tasks are canceled when dropped, use `.detach()` to run them in the background."]
pub struct Task<T>(async_executor::Task<T>);
impl<T> Task<T> {
/// Creates a new task from a given `async_executor::Task`
pub fn new(task: async_executor::Task<T>) -> Self {
Self(task)
}
/// Detaches the task to let it keep running in the background. See
/// `async_executor::Task::detach`
pub fn detach(self) {
self.0.detach();
}
/// Cancels the task and waits for it to stop running.
///
/// Returns the task's output if it was completed just before it got canceled, or [`None`] if
/// it didn't complete.
///
/// While it's possible to simply drop the [`Task`] to cancel it, this is a cleaner way of
/// canceling because it also waits for the task to stop running.
///
2020-09-10 19:54:24 +00:00
/// See `async_executor::Task::cancel`
pub async fn cancel(self) -> Option<T> {
self.0.cancel().await
}
/// Returns `true` if the current task is finished.
///
///
/// Unlike poll, it doesn't resolve the final value, it just checks if the task has finished.
/// Note that in a multithreaded environment, this task can be finished immediately after calling this function.
pub fn is_finished(&self) -> bool {
self.0.is_finished()
}
}
impl<T> Future for Task<T> {
type Output = T;
2020-09-21 20:13:40 +00:00
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
Pin::new(&mut self.0).poll(cx)
}
}