2024-05-03 17:45:17 +00:00
|
|
|
//! This example showcases auto exposure,
|
|
|
|
//! which automatically (but not instantly) adjusts the brightness of the scene in a way that mimics the function of the human eye.
|
|
|
|
//! Auto exposure requires compute shader capabilities, so it's not available on WebGL.
|
|
|
|
//!
|
|
|
|
//! ## Controls
|
|
|
|
//!
|
|
|
|
//! | Key Binding | Action |
|
|
|
|
//! |:-------------------|:---------------------------------------|
|
|
|
|
//! | `Left` / `Right` | Rotate Camera |
|
|
|
|
//! | `C` | Toggle Compensation Curve |
|
|
|
|
//! | `M` | Toggle Metering Mask |
|
|
|
|
//! | `V` | Visualize Metering Mask |
|
|
|
|
|
|
|
|
use bevy::{
|
|
|
|
core_pipeline::{
|
Rename rendering components for improved consistency and clarity (#15035)
# Objective
The names of numerous rendering components in Bevy are inconsistent and
a bit confusing. Relevant names include:
- `AutoExposureSettings`
- `AutoExposureSettingsUniform`
- `BloomSettings`
- `BloomUniform` (no `Settings`)
- `BloomPrefilterSettings`
- `ChromaticAberration` (no `Settings`)
- `ContrastAdaptiveSharpeningSettings`
- `DepthOfFieldSettings`
- `DepthOfFieldUniform` (no `Settings`)
- `FogSettings`
- `SmaaSettings`, `Fxaa`, `TemporalAntiAliasSettings` (really
inconsistent??)
- `ScreenSpaceAmbientOcclusionSettings`
- `ScreenSpaceReflectionsSettings`
- `VolumetricFogSettings`
Firstly, there's a lot of inconsistency between `Foo`/`FooSettings` and
`FooUniform`/`FooSettingsUniform` and whether names are abbreviated or
not.
Secondly, the `Settings` post-fix seems unnecessary and a bit confusing
semantically, since it makes it seem like the component is mostly just
auxiliary configuration instead of the core *thing* that actually
enables the feature. This will be an even bigger problem once bundles
like `TemporalAntiAliasBundle` are deprecated in favor of required
components, as users will expect a component named `TemporalAntiAlias`
(or similar), not `TemporalAntiAliasSettings`.
## Solution
Drop the `Settings` post-fix from the component names, and change some
names to be more consistent.
- `AutoExposure`
- `AutoExposureUniform`
- `Bloom`
- `BloomUniform`
- `BloomPrefilter`
- `ChromaticAberration`
- `ContrastAdaptiveSharpening`
- `DepthOfField`
- `DepthOfFieldUniform`
- `DistanceFog`
- `Smaa`, `Fxaa`, `TemporalAntiAliasing` (note: we might want to change
to `Taa`, see "Discussion")
- `ScreenSpaceAmbientOcclusion`
- `ScreenSpaceReflections`
- `VolumetricFog`
I kept the old names as deprecated type aliases to make migration a bit
less painful for users. We should remove them after the next release.
(And let me know if I should just... not add them at all)
I also added some very basic docs for a few types where they were
missing, like on `Fxaa` and `DepthOfField`.
## Discussion
- `TemporalAntiAliasing` is still inconsistent with `Smaa` and `Fxaa`.
Consensus [on
Discord](https://discord.com/channels/691052431525675048/743663924229963868/1280601167209955431)
seemed to be that renaming to `Taa` would probably be fine, but I think
it's a bit more controversial, and it would've required renaming a lot
of related types like `TemporalAntiAliasNode`,
`TemporalAntiAliasBundle`, and `TemporalAntiAliasPlugin`, so I think
it's better to leave to a follow-up.
- I think `Fog` should probably have a more specific name like
`DistanceFog` considering it seems to be distinct from `VolumetricFog`.
~~This should probably be done in a follow-up though, so I just removed
the `Settings` post-fix for now.~~ (done)
---
## Migration Guide
Many rendering components have been renamed for improved consistency and
clarity.
- `AutoExposureSettings` → `AutoExposure`
- `BloomSettings` → `Bloom`
- `BloomPrefilterSettings` → `BloomPrefilter`
- `ContrastAdaptiveSharpeningSettings` → `ContrastAdaptiveSharpening`
- `DepthOfFieldSettings` → `DepthOfField`
- `FogSettings` → `DistanceFog`
- `SmaaSettings` → `Smaa`
- `TemporalAntiAliasSettings` → `TemporalAntiAliasing`
- `ScreenSpaceAmbientOcclusionSettings` → `ScreenSpaceAmbientOcclusion`
- `ScreenSpaceReflectionsSettings` → `ScreenSpaceReflections`
- `VolumetricFogSettings` → `VolumetricFog`
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-10 01:11:46 +00:00
|
|
|
auto_exposure::{AutoExposure, AutoExposureCompensationCurve, AutoExposurePlugin},
|
2024-05-03 17:45:17 +00:00
|
|
|
Skybox,
|
|
|
|
},
|
|
|
|
math::{cubic_splines::LinearSpline, primitives::Plane3d, vec2},
|
|
|
|
prelude::*,
|
|
|
|
};
|
|
|
|
|
|
|
|
fn main() {
|
|
|
|
App::new()
|
|
|
|
.add_plugins(DefaultPlugins)
|
|
|
|
.add_plugins(AutoExposurePlugin)
|
|
|
|
.add_systems(Startup, setup)
|
|
|
|
.add_systems(Update, example_control_system)
|
|
|
|
.run();
|
|
|
|
}
|
|
|
|
|
|
|
|
fn setup(
|
|
|
|
mut commands: Commands,
|
|
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
|
|
mut compensation_curves: ResMut<Assets<AutoExposureCompensationCurve>>,
|
|
|
|
asset_server: Res<AssetServer>,
|
|
|
|
) {
|
|
|
|
let metering_mask = asset_server.load("textures/basic_metering_mask.png");
|
|
|
|
|
|
|
|
commands.spawn((
|
2024-10-05 01:59:52 +00:00
|
|
|
Camera3d::default(),
|
|
|
|
Camera {
|
|
|
|
hdr: true,
|
2024-05-03 17:45:17 +00:00
|
|
|
..default()
|
|
|
|
},
|
2024-10-05 01:59:52 +00:00
|
|
|
Transform::from_xyz(1.0, 0.0, 0.0).looking_at(Vec3::ZERO, Vec3::Y),
|
Rename rendering components for improved consistency and clarity (#15035)
# Objective
The names of numerous rendering components in Bevy are inconsistent and
a bit confusing. Relevant names include:
- `AutoExposureSettings`
- `AutoExposureSettingsUniform`
- `BloomSettings`
- `BloomUniform` (no `Settings`)
- `BloomPrefilterSettings`
- `ChromaticAberration` (no `Settings`)
- `ContrastAdaptiveSharpeningSettings`
- `DepthOfFieldSettings`
- `DepthOfFieldUniform` (no `Settings`)
- `FogSettings`
- `SmaaSettings`, `Fxaa`, `TemporalAntiAliasSettings` (really
inconsistent??)
- `ScreenSpaceAmbientOcclusionSettings`
- `ScreenSpaceReflectionsSettings`
- `VolumetricFogSettings`
Firstly, there's a lot of inconsistency between `Foo`/`FooSettings` and
`FooUniform`/`FooSettingsUniform` and whether names are abbreviated or
not.
Secondly, the `Settings` post-fix seems unnecessary and a bit confusing
semantically, since it makes it seem like the component is mostly just
auxiliary configuration instead of the core *thing* that actually
enables the feature. This will be an even bigger problem once bundles
like `TemporalAntiAliasBundle` are deprecated in favor of required
components, as users will expect a component named `TemporalAntiAlias`
(or similar), not `TemporalAntiAliasSettings`.
## Solution
Drop the `Settings` post-fix from the component names, and change some
names to be more consistent.
- `AutoExposure`
- `AutoExposureUniform`
- `Bloom`
- `BloomUniform`
- `BloomPrefilter`
- `ChromaticAberration`
- `ContrastAdaptiveSharpening`
- `DepthOfField`
- `DepthOfFieldUniform`
- `DistanceFog`
- `Smaa`, `Fxaa`, `TemporalAntiAliasing` (note: we might want to change
to `Taa`, see "Discussion")
- `ScreenSpaceAmbientOcclusion`
- `ScreenSpaceReflections`
- `VolumetricFog`
I kept the old names as deprecated type aliases to make migration a bit
less painful for users. We should remove them after the next release.
(And let me know if I should just... not add them at all)
I also added some very basic docs for a few types where they were
missing, like on `Fxaa` and `DepthOfField`.
## Discussion
- `TemporalAntiAliasing` is still inconsistent with `Smaa` and `Fxaa`.
Consensus [on
Discord](https://discord.com/channels/691052431525675048/743663924229963868/1280601167209955431)
seemed to be that renaming to `Taa` would probably be fine, but I think
it's a bit more controversial, and it would've required renaming a lot
of related types like `TemporalAntiAliasNode`,
`TemporalAntiAliasBundle`, and `TemporalAntiAliasPlugin`, so I think
it's better to leave to a follow-up.
- I think `Fog` should probably have a more specific name like
`DistanceFog` considering it seems to be distinct from `VolumetricFog`.
~~This should probably be done in a follow-up though, so I just removed
the `Settings` post-fix for now.~~ (done)
---
## Migration Guide
Many rendering components have been renamed for improved consistency and
clarity.
- `AutoExposureSettings` → `AutoExposure`
- `BloomSettings` → `Bloom`
- `BloomPrefilterSettings` → `BloomPrefilter`
- `ContrastAdaptiveSharpeningSettings` → `ContrastAdaptiveSharpening`
- `DepthOfFieldSettings` → `DepthOfField`
- `FogSettings` → `DistanceFog`
- `SmaaSettings` → `Smaa`
- `TemporalAntiAliasSettings` → `TemporalAntiAliasing`
- `ScreenSpaceAmbientOcclusionSettings` → `ScreenSpaceAmbientOcclusion`
- `ScreenSpaceReflectionsSettings` → `ScreenSpaceReflections`
- `VolumetricFogSettings` → `VolumetricFog`
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-10 01:11:46 +00:00
|
|
|
AutoExposure {
|
2024-05-03 17:45:17 +00:00
|
|
|
metering_mask: metering_mask.clone(),
|
|
|
|
..default()
|
|
|
|
},
|
|
|
|
Skybox {
|
|
|
|
image: asset_server.load("environment_maps/pisa_specular_rgb9e5_zstd.ktx2"),
|
2024-08-21 12:29:33 +00:00
|
|
|
brightness: light_consts::lux::DIRECT_SUNLIGHT,
|
2024-07-19 15:00:50 +00:00
|
|
|
..default()
|
2024-05-03 17:45:17 +00:00
|
|
|
},
|
|
|
|
));
|
|
|
|
|
|
|
|
commands.insert_resource(ExampleResources {
|
|
|
|
basic_compensation_curve: compensation_curves.add(
|
|
|
|
AutoExposureCompensationCurve::from_curve(LinearSpline::new([
|
|
|
|
vec2(-4.0, -2.0),
|
|
|
|
vec2(0.0, 0.0),
|
|
|
|
vec2(2.0, 0.0),
|
|
|
|
vec2(4.0, 2.0),
|
|
|
|
]))
|
|
|
|
.unwrap(),
|
|
|
|
),
|
|
|
|
basic_metering_mask: metering_mask.clone(),
|
|
|
|
});
|
|
|
|
|
|
|
|
let plane = meshes.add(Mesh::from(
|
|
|
|
Plane3d {
|
|
|
|
normal: -Dir3::Z,
|
|
|
|
half_size: Vec2::new(2.0, 0.5),
|
|
|
|
}
|
|
|
|
.mesh(),
|
|
|
|
));
|
|
|
|
|
|
|
|
// Build a dimly lit box around the camera, with a slot to see the bright skybox.
|
|
|
|
for level in -1..=1 {
|
|
|
|
for side in [-Vec3::X, Vec3::X, -Vec3::Z, Vec3::Z] {
|
|
|
|
if level == 0 && Vec3::Z == side {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
let height = Vec3::Y * level as f32;
|
|
|
|
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
commands.spawn((
|
|
|
|
Mesh3d(plane.clone()),
|
|
|
|
MeshMaterial3d(materials.add(StandardMaterial {
|
2024-05-03 17:45:17 +00:00
|
|
|
base_color: Color::srgb(
|
|
|
|
0.5 + side.x * 0.5,
|
|
|
|
0.75 - level as f32 * 0.25,
|
|
|
|
0.5 + side.z * 0.5,
|
|
|
|
),
|
|
|
|
..default()
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
})),
|
2024-10-10 17:24:26 +00:00
|
|
|
Transform::from_translation(side * 2.0 + height).looking_at(height, Vec3::Y),
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
));
|
2024-05-03 17:45:17 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
commands.insert_resource(AmbientLight {
|
|
|
|
color: Color::WHITE,
|
|
|
|
brightness: 0.0,
|
|
|
|
});
|
|
|
|
|
2024-10-01 03:20:43 +00:00
|
|
|
commands.spawn((
|
|
|
|
PointLight {
|
2024-05-29 22:37:42 +00:00
|
|
|
intensity: 2000.0,
|
2024-05-03 17:45:17 +00:00
|
|
|
..default()
|
|
|
|
},
|
2024-10-01 03:20:43 +00:00
|
|
|
Transform::from_xyz(0.0, 0.0, 0.0),
|
|
|
|
));
|
2024-05-03 17:45:17 +00:00
|
|
|
|
Migrate UI bundles to required components (#15898)
# Objective
- Migrate UI bundles to required components, fixes #15889
## Solution
- deprecate `NodeBundle` in favor of `Node`
- deprecate `ImageBundle` in favor of `UiImage`
- deprecate `ButtonBundle` in favor of `Button`
## Testing
CI.
## Migration Guide
- Replace all uses of `NodeBundle` with `Node`. e.g.
```diff
commands
- .spawn(NodeBundle {
- style: Style {
+ .spawn((
+ Node::default(),
+ Style {
width: Val::Percent(100.),
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
..default()
},
- ..default()
- })
+ ))
```
- Replace all uses of `ButtonBundle` with `Button`. e.g.
```diff
.spawn((
- ButtonBundle {
- style: Style {
- width: Val::Px(w),
- height: Val::Px(h),
- // horizontally center child text
- justify_content: JustifyContent::Center,
- // vertically center child text
- align_items: AlignItems::Center,
- margin: UiRect::all(Val::Px(20.0)),
- ..default()
- },
- image: image.clone().into(),
+ Button,
+ Style {
+ width: Val::Px(w),
+ height: Val::Px(h),
+ // horizontally center child text
+ justify_content: JustifyContent::Center,
+ // vertically center child text
+ align_items: AlignItems::Center,
+ margin: UiRect::all(Val::Px(20.0)),
..default()
},
+ UiImage::from(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
))
```
- Replace all uses of `ImageBundle` with `UiImage`. e.g.
```diff
- commands.spawn(ImageBundle {
- image: UiImage {
+ commands.spawn((
+ UiImage {
texture: metering_mask,
..default()
},
- style: Style {
+ Style {
width: Val::Percent(100.0),
height: Val::Percent(100.0),
..default()
},
- ..default()
- });
+ ));
```
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
|
|
|
commands.spawn((
|
2024-11-07 21:52:58 +00:00
|
|
|
ImageNode {
|
2024-10-23 23:24:17 +00:00
|
|
|
image: metering_mask,
|
2024-05-03 17:45:17 +00:00
|
|
|
..default()
|
|
|
|
},
|
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective
Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)
## Solution
As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.
This accomplishes a number of goals:
## Ergonomics wins
Specifying both `Node` and `Style` is now no longer required for
non-default styles
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
## Conceptual clarity
`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).
By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.
## Next Steps
* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.
---
## Migration Guide
Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:
Before:
```rust
fn system(nodes: Query<&Node>) {
for node in &nodes {
let computed_size = node.size();
}
}
```
After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
for computed_node in &computed_nodes {
let computed_size = computed_node.size();
}
}
```
2024-10-18 22:25:33 +00:00
|
|
|
Node {
|
2024-05-03 17:45:17 +00:00
|
|
|
width: Val::Percent(100.0),
|
|
|
|
height: Val::Percent(100.0),
|
|
|
|
..default()
|
|
|
|
},
|
Migrate UI bundles to required components (#15898)
# Objective
- Migrate UI bundles to required components, fixes #15889
## Solution
- deprecate `NodeBundle` in favor of `Node`
- deprecate `ImageBundle` in favor of `UiImage`
- deprecate `ButtonBundle` in favor of `Button`
## Testing
CI.
## Migration Guide
- Replace all uses of `NodeBundle` with `Node`. e.g.
```diff
commands
- .spawn(NodeBundle {
- style: Style {
+ .spawn((
+ Node::default(),
+ Style {
width: Val::Percent(100.),
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
..default()
},
- ..default()
- })
+ ))
```
- Replace all uses of `ButtonBundle` with `Button`. e.g.
```diff
.spawn((
- ButtonBundle {
- style: Style {
- width: Val::Px(w),
- height: Val::Px(h),
- // horizontally center child text
- justify_content: JustifyContent::Center,
- // vertically center child text
- align_items: AlignItems::Center,
- margin: UiRect::all(Val::Px(20.0)),
- ..default()
- },
- image: image.clone().into(),
+ Button,
+ Style {
+ width: Val::Px(w),
+ height: Val::Px(h),
+ // horizontally center child text
+ justify_content: JustifyContent::Center,
+ // vertically center child text
+ align_items: AlignItems::Center,
+ margin: UiRect::all(Val::Px(20.0)),
..default()
},
+ UiImage::from(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
))
```
- Replace all uses of `ImageBundle` with `UiImage`. e.g.
```diff
- commands.spawn(ImageBundle {
- image: UiImage {
+ commands.spawn((
+ UiImage {
texture: metering_mask,
..default()
},
- style: Style {
+ Style {
width: Val::Percent(100.0),
height: Val::Percent(100.0),
..default()
},
- ..default()
- });
+ ));
```
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
|
|
|
));
|
2024-05-03 17:45:17 +00:00
|
|
|
|
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective
Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)
## Solution
As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.
This accomplishes a number of goals:
## Ergonomics wins
Specifying both `Node` and `Style` is now no longer required for
non-default styles
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
## Conceptual clarity
`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).
By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.
## Next Steps
* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.
---
## Migration Guide
Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:
Before:
```rust
fn system(nodes: Query<&Node>) {
for node in &nodes {
let computed_size = node.size();
}
}
```
After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
for computed_node in &computed_nodes {
let computed_size = computed_node.size();
}
}
```
2024-10-18 22:25:33 +00:00
|
|
|
let text_font = TextFont::default();
|
2024-05-03 17:45:17 +00:00
|
|
|
|
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.**
# Objective
- Implement https://github.com/bevyengine/bevy/discussions/15014
## Solution
This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.
Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.
## Testing
- [x] Text examples all work.
---
## Showcase
TODO: showcase-worthy
## Migration Guide
TODO: very breaking
### Accessing text spans by index
Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.
Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
let text = query.single_mut();
text.sections[1].value = format_time(time.elapsed());
}
```
After:
```rust
fn refresh_text(
query: Query<Entity, With<TimeText>>,
mut writer: UiTextWriter,
time: Res<Time>
) {
let entity = query.single();
*writer.text(entity, 1) = format_time(time.elapsed());
}
```
### Iterating text spans
Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
|
|
|
commands.spawn((Text::new("Left / Right - Rotate Camera\nC - Toggle Compensation Curve\nM - Toggle Metering Mask\nV - Visualize Metering Mask"),
|
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective
Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)
## Solution
As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.
This accomplishes a number of goals:
## Ergonomics wins
Specifying both `Node` and `Style` is now no longer required for
non-default styles
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
## Conceptual clarity
`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).
By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.
## Next Steps
* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.
---
## Migration Guide
Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:
Before:
```rust
fn system(nodes: Query<&Node>) {
for node in &nodes {
let computed_size = node.size();
}
}
```
After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
for computed_node in &computed_nodes {
let computed_size = computed_node.size();
}
}
```
2024-10-18 22:25:33 +00:00
|
|
|
text_font.clone(), Node {
|
2024-05-03 17:45:17 +00:00
|
|
|
position_type: PositionType::Absolute,
|
2024-05-30 23:11:23 +00:00
|
|
|
top: Val::Px(12.0),
|
|
|
|
left: Val::Px(12.0),
|
2024-05-03 17:45:17 +00:00
|
|
|
..default()
|
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.**
# Objective
- Implement https://github.com/bevyengine/bevy/discussions/15014
## Solution
This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.
Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.
## Testing
- [x] Text examples all work.
---
## Showcase
TODO: showcase-worthy
## Migration Guide
TODO: very breaking
### Accessing text spans by index
Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.
Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
let text = query.single_mut();
text.sections[1].value = format_time(time.elapsed());
}
```
After:
```rust
fn refresh_text(
query: Query<Entity, With<TimeText>>,
mut writer: UiTextWriter,
time: Res<Time>
) {
let entity = query.single();
*writer.text(entity, 1) = format_time(time.elapsed());
}
```
### Iterating text spans
Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
|
|
|
})
|
2024-05-03 17:45:17 +00:00
|
|
|
);
|
|
|
|
|
|
|
|
commands.spawn((
|
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.**
# Objective
- Implement https://github.com/bevyengine/bevy/discussions/15014
## Solution
This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.
Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.
## Testing
- [x] Text examples all work.
---
## Showcase
TODO: showcase-worthy
## Migration Guide
TODO: very breaking
### Accessing text spans by index
Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.
Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
let text = query.single_mut();
text.sections[1].value = format_time(time.elapsed());
}
```
After:
```rust
fn refresh_text(
query: Query<Entity, With<TimeText>>,
mut writer: UiTextWriter,
time: Res<Time>
) {
let entity = query.single();
*writer.text(entity, 1) = format_time(time.elapsed());
}
```
### Iterating text spans
Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
|
|
|
Text::default(),
|
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective
Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)
## Solution
As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.
This accomplishes a number of goals:
## Ergonomics wins
Specifying both `Node` and `Style` is now no longer required for
non-default styles
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
## Conceptual clarity
`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).
By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.
## Next Steps
* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.
---
## Migration Guide
Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:
Before:
```rust
fn system(nodes: Query<&Node>) {
for node in &nodes {
let computed_size = node.size();
}
}
```
After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
for computed_node in &computed_nodes {
let computed_size = computed_node.size();
}
}
```
2024-10-18 22:25:33 +00:00
|
|
|
text_font,
|
|
|
|
Node {
|
2024-05-03 17:45:17 +00:00
|
|
|
position_type: PositionType::Absolute,
|
2024-09-02 22:48:48 +00:00
|
|
|
top: Val::Px(12.0),
|
|
|
|
right: Val::Px(12.0),
|
2024-05-03 17:45:17 +00:00
|
|
|
..default()
|
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.**
# Objective
- Implement https://github.com/bevyengine/bevy/discussions/15014
## Solution
This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.
Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.
## Testing
- [x] Text examples all work.
---
## Showcase
TODO: showcase-worthy
## Migration Guide
TODO: very breaking
### Accessing text spans by index
Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.
Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
let text = query.single_mut();
text.sections[1].value = format_time(time.elapsed());
}
```
After:
```rust
fn refresh_text(
query: Query<Entity, With<TimeText>>,
mut writer: UiTextWriter,
time: Res<Time>
) {
let entity = query.single();
*writer.text(entity, 1) = format_time(time.elapsed());
}
```
### Iterating text spans
Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
|
|
|
},
|
2024-05-03 17:45:17 +00:00
|
|
|
ExampleDisplay,
|
|
|
|
));
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Component)]
|
|
|
|
struct ExampleDisplay;
|
|
|
|
|
|
|
|
#[derive(Resource)]
|
|
|
|
struct ExampleResources {
|
|
|
|
basic_compensation_curve: Handle<AutoExposureCompensationCurve>,
|
|
|
|
basic_metering_mask: Handle<Image>,
|
|
|
|
}
|
|
|
|
|
|
|
|
fn example_control_system(
|
2024-10-13 20:32:06 +00:00
|
|
|
camera: Single<(&mut Transform, &mut AutoExposure), With<Camera3d>>,
|
|
|
|
mut display: Single<&mut Text, With<ExampleDisplay>>,
|
2024-11-07 21:52:58 +00:00
|
|
|
mut mask_image: Single<&mut Node, With<ImageNode>>,
|
2024-05-03 17:45:17 +00:00
|
|
|
time: Res<Time>,
|
|
|
|
input: Res<ButtonInput<KeyCode>>,
|
|
|
|
resources: Res<ExampleResources>,
|
|
|
|
) {
|
2024-10-13 20:32:06 +00:00
|
|
|
let (mut camera_transform, mut auto_exposure) = camera.into_inner();
|
2024-05-03 17:45:17 +00:00
|
|
|
|
|
|
|
let rotation = if input.pressed(KeyCode::ArrowLeft) {
|
2024-10-16 21:09:32 +00:00
|
|
|
time.delta_secs()
|
2024-05-03 17:45:17 +00:00
|
|
|
} else if input.pressed(KeyCode::ArrowRight) {
|
2024-10-16 21:09:32 +00:00
|
|
|
-time.delta_secs()
|
2024-05-03 17:45:17 +00:00
|
|
|
} else {
|
|
|
|
0.0
|
|
|
|
};
|
|
|
|
|
|
|
|
camera_transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(rotation));
|
|
|
|
|
|
|
|
if input.just_pressed(KeyCode::KeyC) {
|
|
|
|
auto_exposure.compensation_curve =
|
|
|
|
if auto_exposure.compensation_curve == resources.basic_compensation_curve {
|
|
|
|
Handle::default()
|
|
|
|
} else {
|
|
|
|
resources.basic_compensation_curve.clone()
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
if input.just_pressed(KeyCode::KeyM) {
|
|
|
|
auto_exposure.metering_mask =
|
|
|
|
if auto_exposure.metering_mask == resources.basic_metering_mask {
|
|
|
|
Handle::default()
|
|
|
|
} else {
|
|
|
|
resources.basic_metering_mask.clone()
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2024-10-13 20:32:06 +00:00
|
|
|
mask_image.display = if input.pressed(KeyCode::KeyV) {
|
2024-05-03 17:45:17 +00:00
|
|
|
Display::Flex
|
|
|
|
} else {
|
|
|
|
Display::None
|
|
|
|
};
|
|
|
|
|
2024-10-13 20:32:06 +00:00
|
|
|
display.0 = format!(
|
2024-05-03 17:45:17 +00:00
|
|
|
"Compensation Curve: {}\nMetering Mask: {}",
|
|
|
|
if auto_exposure.compensation_curve == resources.basic_compensation_curve {
|
|
|
|
"Enabled"
|
|
|
|
} else {
|
|
|
|
"Disabled"
|
|
|
|
},
|
|
|
|
if auto_exposure.metering_mask == resources.basic_metering_mask {
|
|
|
|
"Enabled"
|
|
|
|
} else {
|
|
|
|
"Disabled"
|
|
|
|
},
|
|
|
|
);
|
|
|
|
}
|