bevy/crates/bevy_render/src/render_resource/shader.rs

1085 lines
31 KiB
Rust
Raw Normal View History

Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
use bevy_asset::{AssetLoader, Handle, LoadContext, LoadedAsset};
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
use bevy_reflect::{TypeUuid, Uuid};
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
use bevy_utils::{tracing::error, BoxedFuture, HashMap};
use naga::back::wgsl::WriterFlags;
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
use naga::{valid::ModuleInfo, Module};
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
use once_cell::sync::Lazy;
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
use regex::Regex;
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
use std::{
borrow::Cow, collections::HashSet, marker::Copy, ops::Deref, path::PathBuf, str::FromStr,
};
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
use thiserror::Error;
use wgpu::{ShaderModuleDescriptor, ShaderSource};
#[derive(Copy, Clone, Hash, Eq, PartialEq, Debug)]
pub struct ShaderId(Uuid);
impl ShaderId {
#[allow(clippy::new_without_default)]
pub fn new() -> Self {
ShaderId(Uuid::new_v4())
}
}
#[derive(Error, Debug)]
pub enum ShaderReflectError {
#[error(transparent)]
WgslParse(#[from] naga::front::wgsl::ParseError),
#[error("GLSL Parse Error: {0:?}")]
GlslParse(Vec<naga::front::glsl::Error>),
#[error(transparent)]
SpirVParse(#[from] naga::front::spv::Error),
#[error(transparent)]
Validation(#[from] naga::WithSpan<naga::valid::ValidationError>),
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}
/// A shader, as defined by its [`ShaderSource`] and [`ShaderStage`](naga::ShaderStage)
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
/// This is an "unprocessed" shader. It can contain preprocessor directives.
#[derive(Debug, Clone, TypeUuid)]
#[uuid = "d95bc916-6c55-4de3-9622-37e7b6969fda"]
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
pub struct Shader {
source: Source,
import_path: Option<ShaderImport>,
imports: Vec<ShaderImport>,
}
impl Shader {
pub fn from_wgsl(source: impl Into<Cow<'static, str>>) -> Shader {
let source = source.into();
Shader {
imports: SHADER_IMPORT_PROCESSOR.get_imports_from_str(&source),
source: Source::Wgsl(source),
import_path: None,
}
}
pub fn from_glsl(source: impl Into<Cow<'static, str>>, stage: naga::ShaderStage) -> Shader {
let source = source.into();
Shader {
imports: SHADER_IMPORT_PROCESSOR.get_imports_from_str(&source),
source: Source::Glsl(source, stage),
import_path: None,
}
}
pub fn from_spirv(source: impl Into<Cow<'static, [u8]>>) -> Shader {
Shader {
imports: Vec::new(),
source: Source::SpirV(source.into()),
import_path: None,
}
}
pub fn set_import_path<P: Into<String>>(&mut self, import_path: P) {
self.import_path = Some(ShaderImport::Custom(import_path.into()));
}
pub fn with_import_path<P: Into<String>>(mut self, import_path: P) -> Self {
self.set_import_path(import_path);
self
}
#[inline]
pub fn import_path(&self) -> Option<&ShaderImport> {
self.import_path.as_ref()
}
pub fn imports(&self) -> impl ExactSizeIterator<Item = &ShaderImport> {
self.imports.iter()
}
}
#[derive(Debug, Clone)]
pub enum Source {
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
Wgsl(Cow<'static, str>),
Glsl(Cow<'static, str>, naga::ShaderStage),
SpirV(Cow<'static, [u8]>),
// TODO: consider the following
// PrecompiledSpirVMacros(HashMap<HashSet<String>, Vec<u32>>)
// NagaModule(Module) ... Module impls Serialize/Deserialize
}
/// A processed [Shader]. This cannot contain preprocessor directions. It must be "ready to compile"
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
#[derive(PartialEq, Eq, Debug)]
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
pub enum ProcessedShader {
Wgsl(Cow<'static, str>),
Glsl(Cow<'static, str>, naga::ShaderStage),
SpirV(Cow<'static, [u8]>),
}
impl ProcessedShader {
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
pub fn get_wgsl_source(&self) -> Option<&str> {
if let ProcessedShader::Wgsl(source) = self {
Some(source)
} else {
None
}
}
pub fn get_glsl_source(&self) -> Option<&str> {
if let ProcessedShader::Glsl(source, _stage) = self {
Some(source)
} else {
None
}
}
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
pub fn reflect(&self) -> Result<ShaderReflection, ShaderReflectError> {
let module = match &self {
// TODO: process macros here
ProcessedShader::Wgsl(source) => naga::front::wgsl::parse_str(source)?,
ProcessedShader::Glsl(source, shader_stage) => {
let mut parser = naga::front::glsl::Parser::default();
parser
.parse(&naga::front::glsl::Options::from(*shader_stage), source)
.map_err(ShaderReflectError::GlslParse)?
}
ProcessedShader::SpirV(source) => naga::front::spv::parse_u8_slice(
source,
&naga::front::spv::Options {
adjust_coordinate_space: false,
..naga::front::spv::Options::default()
},
)?,
};
let module_info = naga::valid::Validator::new(
naga::valid::ValidationFlags::default(),
naga::valid::Capabilities::default(),
)
.validate(&module)?;
Ok(ShaderReflection {
module,
module_info,
})
}
pub fn get_module_descriptor(&self) -> Result<ShaderModuleDescriptor, AsModuleDescriptorError> {
Ok(ShaderModuleDescriptor {
label: None,
source: match self {
ProcessedShader::Wgsl(source) => ShaderSource::Wgsl(source.clone()),
ProcessedShader::Glsl(_source, _stage) => {
let reflection = self.reflect()?;
// TODO: it probably makes more sense to convert this to spirv, but as of writing
// this comment, naga's spirv conversion is broken
let wgsl = reflection.get_wgsl()?;
ShaderSource::Wgsl(wgsl.into())
}
ProcessedShader::SpirV(_) => {
// TODO: we can probably just transmute the u8 array to u32?
let reflection = self.reflect()?;
let spirv = reflection.get_spirv()?;
ShaderSource::SpirV(Cow::Owned(spirv))
}
},
})
}
}
#[derive(Error, Debug)]
pub enum AsModuleDescriptorError {
#[error(transparent)]
ShaderReflectError(#[from] ShaderReflectError),
#[error(transparent)]
WgslConversion(#[from] naga::back::wgsl::Error),
#[error(transparent)]
SpirVConversion(#[from] naga::back::spv::Error),
}
pub struct ShaderReflection {
pub module: Module,
pub module_info: ModuleInfo,
}
impl ShaderReflection {
pub fn get_spirv(&self) -> Result<Vec<u32>, naga::back::spv::Error> {
naga::back::spv::write_vec(
&self.module,
&self.module_info,
&naga::back::spv::Options {
flags: naga::back::spv::WriterFlags::empty(),
..naga::back::spv::Options::default()
},
None,
)
}
pub fn get_wgsl(&self) -> Result<String, naga::back::wgsl::Error> {
naga::back::wgsl::write_string(&self.module, &self.module_info, WriterFlags::EXPLICIT_TYPES)
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}
}
#[derive(Default)]
pub struct ShaderLoader;
impl AssetLoader for ShaderLoader {
fn load<'a>(
&'a self,
bytes: &'a [u8],
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<(), anyhow::Error>> {
Box::pin(async move {
let ext = load_context.path().extension().unwrap().to_str().unwrap();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
let mut shader = match ext {
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
"spv" => Shader::from_spirv(Vec::from(bytes)),
"wgsl" => Shader::from_wgsl(String::from_utf8(Vec::from(bytes))?),
"vert" => Shader::from_glsl(
String::from_utf8(Vec::from(bytes))?,
naga::ShaderStage::Vertex,
),
"frag" => Shader::from_glsl(
String::from_utf8(Vec::from(bytes))?,
naga::ShaderStage::Fragment,
),
_ => panic!("unhandled extension: {}", ext),
};
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
shader.import_path = Some(ShaderImport::AssetPath(
load_context.path().to_string_lossy().to_string(),
));
let imports = SHADER_IMPORT_PROCESSOR.get_imports(&shader);
let mut asset = LoadedAsset::new(shader);
for import in imports {
if let ShaderImport::AssetPath(asset_path) = import {
let path = PathBuf::from_str(&asset_path)?;
asset.add_dependency(path.into());
}
}
load_context.set_default_asset(asset);
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
Ok(())
})
}
fn extensions(&self) -> &[&str] {
&["spv", "wgsl", "vert", "frag"]
}
}
#[derive(Error, Debug, PartialEq, Eq)]
pub enum ProcessShaderError {
#[error("Too many '# endif' lines. Each endif should be preceded by an if statement.")]
TooManyEndIfs,
#[error(
"Not enough '# endif' lines. Each if statement should be followed by an endif statement."
)]
NotEnoughEndIfs,
#[error("This Shader's format does not support processing shader defs.")]
ShaderFormatDoesNotSupportShaderDefs,
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
#[error("This Shader's formatdoes not support imports.")]
ShaderFormatDoesNotSupportImports,
#[error("Unresolved import: {0:?}.")]
UnresolvedImport(ShaderImport),
#[error("The shader import {0:?} does not match the source file type. Support for this might be added in the future.")]
MismatchedImportFormat(ShaderImport),
}
pub struct ShaderImportProcessor {
import_asset_path_regex: Regex,
import_custom_path_regex: Regex,
}
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub enum ShaderImport {
AssetPath(String),
Custom(String),
}
impl Default for ShaderImportProcessor {
fn default() -> Self {
Self {
import_asset_path_regex: Regex::new(r#"^\s*#\s*import\s*"(.+)""#).unwrap(),
import_custom_path_regex: Regex::new(r"^\s*#\s*import\s*(.+)").unwrap(),
}
}
}
impl ShaderImportProcessor {
pub fn get_imports(&self, shader: &Shader) -> Vec<ShaderImport> {
match &shader.source {
Source::Wgsl(source) => self.get_imports_from_str(source),
Source::Glsl(source, _stage) => self.get_imports_from_str(source),
Source::SpirV(_source) => Vec::new(),
}
}
pub fn get_imports_from_str(&self, shader: &str) -> Vec<ShaderImport> {
let mut imports = Vec::new();
for line in shader.split('\n') {
if let Some(cap) = self.import_asset_path_regex.captures(line) {
let import = cap.get(1).unwrap();
imports.push(ShaderImport::AssetPath(import.as_str().to_string()));
} else if let Some(cap) = self.import_custom_path_regex.captures(line) {
let import = cap.get(1).unwrap();
imports.push(ShaderImport::Custom(import.as_str().to_string()));
}
}
imports
}
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
pub static SHADER_IMPORT_PROCESSOR: Lazy<ShaderImportProcessor> =
Lazy::new(ShaderImportProcessor::default);
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
pub struct ShaderProcessor {
ifdef_regex: Regex,
ifndef_regex: Regex,
else_regex: Regex,
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
endif_regex: Regex,
}
impl Default for ShaderProcessor {
fn default() -> Self {
Self {
ifdef_regex: Regex::new(r"^\s*#\s*ifdef\s*([\w|\d|_]+)").unwrap(),
ifndef_regex: Regex::new(r"^\s*#\s*ifndef\s*([\w|\d|_]+)").unwrap(),
else_regex: Regex::new(r"^\s*#\s*else").unwrap(),
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
endif_regex: Regex::new(r"^\s*#\s*endif").unwrap(),
}
}
}
impl ShaderProcessor {
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
pub fn process(
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
&self,
shader: &Shader,
shader_defs: &[String],
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
shaders: &HashMap<Handle<Shader>, Shader>,
import_handles: &HashMap<ShaderImport, Handle<Shader>>,
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
) -> Result<ProcessedShader, ProcessShaderError> {
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
let shader_str = match &shader.source {
Source::Wgsl(source) => source.deref(),
Source::Glsl(source, _stage) => source.deref(),
Source::SpirV(source) => {
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
if shader_defs.is_empty() {
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
return Ok(ProcessedShader::SpirV(source.clone()));
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
} else {
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
return Err(ProcessShaderError::ShaderFormatDoesNotSupportShaderDefs);
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}
}
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
};
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
let shader_defs = HashSet::<String>::from_iter(shader_defs.iter().cloned());
let mut scopes = vec![true];
let mut final_string = String::new();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
for line in shader_str.split('\n') {
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
if let Some(cap) = self.ifdef_regex.captures(line) {
let def = cap.get(1).unwrap();
scopes.push(*scopes.last().unwrap() && shader_defs.contains(def.as_str()));
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
} else if let Some(cap) = self.ifndef_regex.captures(line) {
let def = cap.get(1).unwrap();
scopes.push(*scopes.last().unwrap() && !shader_defs.contains(def.as_str()));
} else if self.else_regex.is_match(line) {
let mut is_parent_scope_truthy = true;
if scopes.len() > 1 {
is_parent_scope_truthy = scopes[scopes.len() - 2];
}
if let Some(last) = scopes.last_mut() {
*last = is_parent_scope_truthy && !*last;
}
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
} else if self.endif_regex.is_match(line) {
scopes.pop();
if scopes.is_empty() {
return Err(ProcessShaderError::TooManyEndIfs);
}
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
} else if let Some(cap) = SHADER_IMPORT_PROCESSOR
.import_asset_path_regex
.captures(line)
{
let import = ShaderImport::AssetPath(cap.get(1).unwrap().as_str().to_string());
apply_import(import_handles, shaders, &import, shader, &mut final_string)?;
} else if let Some(cap) = SHADER_IMPORT_PROCESSOR
.import_custom_path_regex
.captures(line)
{
let import = ShaderImport::Custom(cap.get(1).unwrap().as_str().to_string());
apply_import(import_handles, shaders, &import, shader, &mut final_string)?;
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
} else if *scopes.last().unwrap() {
final_string.push_str(line);
final_string.push('\n');
}
}
final_string.pop();
if scopes.len() != 1 {
return Err(ProcessShaderError::NotEnoughEndIfs);
}
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
let processed_source = Cow::from(final_string);
match &shader.source {
Source::Wgsl(_source) => Ok(ProcessedShader::Wgsl(processed_source)),
Source::Glsl(_source, stage) => Ok(ProcessedShader::Glsl(processed_source, *stage)),
Source::SpirV(_source) => {
unreachable!("SpirV has early return");
}
}
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}
}
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
fn apply_import(
import_handles: &HashMap<ShaderImport, Handle<Shader>>,
shaders: &HashMap<Handle<Shader>, Shader>,
import: &ShaderImport,
shader: &Shader,
final_string: &mut String,
) -> Result<(), ProcessShaderError> {
let imported_shader = import_handles
.get(import)
.and_then(|handle| shaders.get(handle))
.ok_or_else(|| ProcessShaderError::UnresolvedImport(import.clone()))?;
match &shader.source {
Source::Wgsl(_) => {
if let Source::Wgsl(import_source) = &imported_shader.source {
final_string.push_str(import_source);
} else {
return Err(ProcessShaderError::MismatchedImportFormat(import.clone()));
}
}
Source::Glsl(_, _) => {
if let Source::Glsl(import_source, _) = &imported_shader.source {
final_string.push_str(import_source);
} else {
return Err(ProcessShaderError::MismatchedImportFormat(import.clone()));
}
}
Source::SpirV(_) => {
return Err(ProcessShaderError::ShaderFormatDoesNotSupportImports);
}
}
Ok(())
}
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
#[cfg(test)]
mod tests {
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
use bevy_asset::Handle;
use bevy_utils::HashMap;
use naga::ShaderStage;
use crate::render_resource::{ProcessShaderError, Shader, ShaderImport, ShaderProcessor};
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
#[rustfmt::skip]
const WGSL: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
#ifdef TEXTURE
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
[[group(1), binding(0)]]
var sprite_texture: texture_2d<f32>;
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
#endif
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
const WGSL_ELSE: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
#ifdef TEXTURE
[[group(1), binding(0)]]
var sprite_texture: texture_2d<f32>;
#else
[[group(1), binding(0)]]
var sprite_texture: texture_2d_array<f32>;
#endif
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
const WGSL_NESTED_IFDEF: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
# ifdef TEXTURE
# ifdef ATTRIBUTE
[[group(1), binding(0)]]
var sprite_texture: texture_2d<f32>;
# endif
# endif
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
const WGSL_NESTED_IFDEF_ELSE: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
# ifdef TEXTURE
# ifdef ATTRIBUTE
[[group(1), binding(0)]]
var sprite_texture: texture_2d<f32>;
#else
[[group(1), binding(0)]]
var sprite_texture: texture_2d_array<f32>;
# endif
# endif
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
#[test]
fn process_shader_def_defined() {
#[rustfmt::skip]
const EXPECTED: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
[[group(1), binding(0)]]
var sprite_texture: texture_2d<f32>;
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
let processor = ShaderProcessor::default();
let result = processor
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
.process(
&Shader::from_wgsl(WGSL),
&["TEXTURE".to_string()],
&HashMap::default(),
&HashMap::default(),
)
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
.unwrap();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}
#[test]
fn process_shader_def_not_defined() {
#[rustfmt::skip]
const EXPECTED: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
let processor = ShaderProcessor::default();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
let result = processor
.process(
&Shader::from_wgsl(WGSL),
&[],
&HashMap::default(),
&HashMap::default(),
)
.unwrap();
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}
#[test]
fn process_shader_def_else() {
#[rustfmt::skip]
const EXPECTED: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
[[group(1), binding(0)]]
var sprite_texture: texture_2d_array<f32>;
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
let processor = ShaderProcessor::default();
let result = processor
.process(
&Shader::from_wgsl(WGSL_ELSE),
&[],
&HashMap::default(),
&HashMap::default(),
)
.unwrap();
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
}
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
#[test]
fn process_shader_def_unclosed() {
#[rustfmt::skip]
const INPUT: &str = r"
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
#ifdef FOO
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
";
let processor = ShaderProcessor::default();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
let result = processor.process(
&Shader::from_wgsl(INPUT),
&[],
&HashMap::default(),
&HashMap::default(),
);
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
assert_eq!(result, Err(ProcessShaderError::NotEnoughEndIfs));
}
#[test]
fn process_shader_def_too_closed() {
#[rustfmt::skip]
const INPUT: &str = r"
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
#endif
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
";
let processor = ShaderProcessor::default();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
let result = processor.process(
&Shader::from_wgsl(INPUT),
&[],
&HashMap::default(),
&HashMap::default(),
);
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
assert_eq!(result, Err(ProcessShaderError::TooManyEndIfs));
}
#[test]
fn process_shader_def_commented() {
#[rustfmt::skip]
const INPUT: &str = r"
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
// #ifdef FOO
fn foo() { }
";
let processor = ShaderProcessor::default();
let result = processor
.process(
&Shader::from_wgsl(INPUT),
&[],
&HashMap::default(),
&HashMap::default(),
)
.unwrap();
assert_eq!(result.get_wgsl_source().unwrap(), INPUT);
}
#[test]
fn process_import_wgsl() {
#[rustfmt::skip]
const FOO: &str = r"
fn foo() { }
";
#[rustfmt::skip]
const INPUT: &str = r"
#import FOO
fn bar() { }
";
#[rustfmt::skip]
const EXPECTED: &str = r"
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
fn foo() { }
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
fn bar() { }
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
";
let processor = ShaderProcessor::default();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
let mut shaders = HashMap::default();
let mut import_handles = HashMap::default();
let foo_handle = Handle::<Shader>::default();
shaders.insert(foo_handle.clone_weak(), Shader::from_wgsl(FOO));
import_handles.insert(
ShaderImport::Custom("FOO".to_string()),
foo_handle.clone_weak(),
);
let result = processor
.process(&Shader::from_wgsl(INPUT), &[], &shaders, &import_handles)
.unwrap();
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
}
#[test]
fn process_import_glsl() {
#[rustfmt::skip]
const FOO: &str = r"
void foo() { }
";
#[rustfmt::skip]
const INPUT: &str = r"
#import FOO
void bar() { }
";
#[rustfmt::skip]
const EXPECTED: &str = r"
void foo() { }
void bar() { }
";
let processor = ShaderProcessor::default();
let mut shaders = HashMap::default();
let mut import_handles = HashMap::default();
let foo_handle = Handle::<Shader>::default();
shaders.insert(
foo_handle.clone_weak(),
Shader::from_glsl(FOO, ShaderStage::Vertex),
);
import_handles.insert(
ShaderImport::Custom("FOO".to_string()),
foo_handle.clone_weak(),
);
let result = processor
.process(
&Shader::from_glsl(INPUT, ShaderStage::Vertex),
&[],
&shaders,
&import_handles,
)
.unwrap();
assert_eq!(result.get_glsl_source().unwrap(), EXPECTED);
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}
#[test]
fn process_nested_shader_def_outer_defined_inner_not() {
#[rustfmt::skip]
const EXPECTED: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
let processor = ShaderProcessor::default();
let result = processor
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
.process(
&Shader::from_wgsl(WGSL_NESTED_IFDEF),
&["TEXTURE".to_string()],
&HashMap::default(),
&HashMap::default(),
)
.unwrap();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
}
#[test]
fn process_nested_shader_def_outer_defined_inner_else() {
#[rustfmt::skip]
const EXPECTED: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
[[group(1), binding(0)]]
var sprite_texture: texture_2d_array<f32>;
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
let processor = ShaderProcessor::default();
let result = processor
.process(
&Shader::from_wgsl(WGSL_NESTED_IFDEF_ELSE),
&["TEXTURE".to_string()],
&HashMap::default(),
&HashMap::default(),
)
.unwrap();
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
}
#[test]
fn process_nested_shader_def_neither_defined() {
#[rustfmt::skip]
const EXPECTED: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
let processor = ShaderProcessor::default();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
let result = processor
.process(
&Shader::from_wgsl(WGSL_NESTED_IFDEF),
&[],
&HashMap::default(),
&HashMap::default(),
)
.unwrap();
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
}
#[test]
fn process_nested_shader_def_neither_defined_else() {
#[rustfmt::skip]
const EXPECTED: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
let processor = ShaderProcessor::default();
let result = processor
.process(
&Shader::from_wgsl(WGSL_NESTED_IFDEF_ELSE),
&[],
&HashMap::default(),
&HashMap::default(),
)
.unwrap();
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
}
#[test]
fn process_nested_shader_def_inner_defined_outer_not() {
#[rustfmt::skip]
const EXPECTED: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
let processor = ShaderProcessor::default();
let result = processor
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
.process(
&Shader::from_wgsl(WGSL_NESTED_IFDEF),
&["ATTRIBUTE".to_string()],
&HashMap::default(),
&HashMap::default(),
)
.unwrap();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
}
#[test]
fn process_nested_shader_def_both_defined() {
#[rustfmt::skip]
const EXPECTED: &str = r"
struct View {
view_proj: mat4x4<f32>;
world_position: vec3<f32>;
};
[[group(0), binding(0)]]
var<uniform> view: View;
[[group(1), binding(0)]]
var sprite_texture: texture_2d<f32>;
struct VertexOutput {
[[location(0)]] uv: vec2<f32>;
[[builtin(position)]] position: vec4<f32>;
};
[[stage(vertex)]]
fn vertex(
[[location(0)]] vertex_position: vec3<f32>,
[[location(1)]] vertex_uv: vec2<f32>
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
return out;
}
";
let processor = ShaderProcessor::default();
let result = processor
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
.process(
&Shader::from_wgsl(WGSL_NESTED_IFDEF),
&["TEXTURE".to_string(), "ATTRIBUTE".to_string()],
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
&HashMap::default(),
&HashMap::default(),
)
.unwrap();
Shader Imports. Decouple Mesh logic from PBR (#3137) ## Shader Imports This adds "whole file" shader imports. These come in two flavors: ### Asset Path Imports ```rust // /assets/shaders/custom.wgsl #import "shaders/custom_material.wgsl" [[stage(fragment)]] fn fragment() -> [[location(0)]] vec4<f32> { return get_color(); } ``` ```rust // /assets/shaders/custom_material.wgsl [[block]] struct CustomMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CustomMaterial; ``` ### Custom Path Imports Enables defining custom import paths. These are intended to be used by crates to export shader functionality: ```rust // bevy_pbr2/src/render/pbr.wgsl #import bevy_pbr::mesh_view_bind_group #import bevy_pbr::mesh_bind_group [[block]] struct StandardMaterial { base_color: vec4<f32>; emissive: vec4<f32>; perceptual_roughness: f32; metallic: f32; reflectance: f32; flags: u32; }; /* rest of PBR fragment shader here */ ``` ```rust impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap(); shaders.set_untracked( MESH_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_bind_group"), ); shaders.set_untracked( MESH_VIEW_BIND_GROUP_HANDLE, Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl")) .with_import_path("bevy_pbr::mesh_view_bind_group"), ); ``` By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention. Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that. ## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials. ## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`. ## RenderCommands are now fallible This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". # Next Steps * Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct) * Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders * Move shader import logic into the asset preprocessor once bevy gets support for that. Fixes #3132
2021-11-18 03:45:02 +00:00
assert_eq!(result.get_wgsl_source().unwrap(), EXPECTED);
}
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}