bevy/crates/bevy_sprite/src/mesh2d/material.rs

346 lines
14 KiB
Rust
Raw Normal View History

use bevy_app::{App, Plugin};
use bevy_asset::{AddAsset, Asset, AssetServer, Handle};
use bevy_core::FloatOrd;
use bevy_core_pipeline::Transparent2d;
use bevy_ecs::{
entity::Entity,
prelude::{Bundle, World},
system::{
lifetimeless::{Read, SQuery, SRes},
Query, Res, ResMut, SystemParamItem,
},
world::FromWorld,
};
use bevy_render::{
mesh::Mesh,
render_asset::{RenderAsset, RenderAssetPlugin, RenderAssets},
render_component::ExtractComponentPlugin,
render_phase::{
AddRenderCommand, DrawFunctions, EntityRenderCommand, RenderCommandResult, RenderPhase,
SetItemPipeline, TrackedRenderPass,
},
render_resource::{
BindGroup, BindGroupLayout, RenderPipelineCache, RenderPipelineDescriptor, Shader,
SpecializedPipeline, SpecializedPipelines,
},
renderer::RenderDevice,
view::{ComputedVisibility, Msaa, Visibility, VisibleEntities},
RenderApp, RenderStage,
};
use bevy_transform::components::{GlobalTransform, Transform};
use std::hash::Hash;
use std::marker::PhantomData;
use crate::{
DrawMesh2d, Mesh2dHandle, Mesh2dPipeline, Mesh2dPipelineKey, Mesh2dUniform, SetMesh2dBindGroup,
SetMesh2dViewBindGroup,
};
/// Materials are used alongside [`Material2dPlugin`] and [`MaterialMesh2dBundle`]
/// to spawn entities that are rendered with a specific [`Material2d`] type. They serve as an easy to use high level
/// way to render [`Mesh2dHandle`] entities with custom shader logic. For materials that can specialize their [`RenderPipelineDescriptor`]
/// based on specific material values, see [`SpecializedMaterial2d`]. [`Material2d`] automatically implements [`SpecializedMaterial2d`]
/// and can be used anywhere that type is used (such as [`Material2dPlugin`]).
pub trait Material2d: Asset + RenderAsset {
/// Returns this material's [`BindGroup`]. This should match the layout returned by [`Material2d::bind_group_layout`].
fn bind_group(material: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup;
/// Returns this material's [`BindGroupLayout`]. This should match the [`BindGroup`] returned by [`Material2d::bind_group`].
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout;
/// Returns this material's vertex shader. If [`None`] is returned, the default mesh vertex shader will be used.
/// Defaults to [`None`].
#[allow(unused_variables)]
fn vertex_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
None
}
/// Returns this material's fragment shader. If [`None`] is returned, the default mesh fragment shader will be used.
/// Defaults to [`None`].
#[allow(unused_variables)]
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
None
}
/// The dynamic uniform indices to set for the given `material`'s [`BindGroup`].
/// Defaults to an empty array / no dynamic uniform indices.
#[allow(unused_variables)]
#[inline]
fn dynamic_uniform_indices(material: &<Self as RenderAsset>::PreparedAsset) -> &[u32] {
&[]
}
}
impl<M: Material2d> SpecializedMaterial2d for M {
type Key = ();
#[inline]
fn key(_material: &<Self as RenderAsset>::PreparedAsset) -> Self::Key {}
#[inline]
fn specialize(_key: Self::Key, _descriptor: &mut RenderPipelineDescriptor) {}
#[inline]
fn bind_group(material: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup {
<M as Material2d>::bind_group(material)
}
#[inline]
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
<M as Material2d>::bind_group_layout(render_device)
}
#[inline]
fn vertex_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
<M as Material2d>::vertex_shader(asset_server)
}
#[inline]
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
<M as Material2d>::fragment_shader(asset_server)
}
#[allow(unused_variables)]
#[inline]
fn dynamic_uniform_indices(material: &<Self as RenderAsset>::PreparedAsset) -> &[u32] {
<M as Material2d>::dynamic_uniform_indices(material)
}
}
/// Materials are used alongside [`Material2dPlugin`] and [`MaterialMesh2dBundle`](crate::MaterialMesh2dBundle)
/// to spawn entities that are rendered with a specific [`SpecializedMaterial2d`] type. They serve as an easy to use high level
/// way to render [`Mesh2dHandle`] entities with custom shader logic. [`SpecializedMaterial2d`s](SpecializedMaterial2d) use their [`SpecializedMaterial2d::Key`]
/// to customize their [`RenderPipelineDescriptor`] based on specific material values. The slightly simpler [`Material2d`] trait
/// should be used for materials that do not need specialization. [`Material2d`] types automatically implement [`SpecializedMaterial2d`].
pub trait SpecializedMaterial2d: Asset + RenderAsset {
/// The key used to specialize this material's [`RenderPipelineDescriptor`].
type Key: PartialEq + Eq + Hash + Clone + Send + Sync;
/// Extract the [`SpecializedMaterial2d::Key`] for the "prepared" version of this material. This key will be
/// passed in to the [`SpecializedMaterial2d::specialize`] function when compiling the [`RenderPipeline`](bevy_render::render_resource::RenderPipeline)
/// for a given entity's material.
fn key(material: &<Self as RenderAsset>::PreparedAsset) -> Self::Key;
/// Specializes the given `descriptor` according to the given `key`.
fn specialize(key: Self::Key, descriptor: &mut RenderPipelineDescriptor);
/// Returns this material's [`BindGroup`]. This should match the layout returned by [`SpecializedMaterial2d::bind_group_layout`].
fn bind_group(material: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup;
/// Returns this material's [`BindGroupLayout`]. This should match the [`BindGroup`] returned by [`SpecializedMaterial2d::bind_group`].
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout;
/// Returns this material's vertex shader. If [`None`] is returned, the default mesh vertex shader will be used.
/// Defaults to [`None`].
#[allow(unused_variables)]
fn vertex_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
None
}
/// Returns this material's fragment shader. If [`None`] is returned, the default mesh fragment shader will be used.
/// Defaults to [`None`].
#[allow(unused_variables)]
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
None
}
/// The dynamic uniform indices to set for the given `material`'s [`BindGroup`].
/// Defaults to an empty array / no dynamic uniform indices.
#[allow(unused_variables)]
#[inline]
fn dynamic_uniform_indices(material: &<Self as RenderAsset>::PreparedAsset) -> &[u32] {
&[]
}
}
/// Adds the necessary ECS resources and render logic to enable rendering entities using the given [`SpecializedMaterial2d`]
/// asset type (which includes [`Material2d`] types).
pub struct Material2dPlugin<M: SpecializedMaterial2d>(PhantomData<M>);
impl<M: SpecializedMaterial2d> Default for Material2dPlugin<M> {
fn default() -> Self {
Self(Default::default())
}
}
impl<M: SpecializedMaterial2d> Plugin for Material2dPlugin<M> {
fn build(&self, app: &mut App) {
app.add_asset::<M>()
.add_plugin(ExtractComponentPlugin::<Handle<M>>::default())
.add_plugin(RenderAssetPlugin::<M>::default());
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.add_render_command::<Transparent2d, DrawMaterial2d<M>>()
.init_resource::<Material2dPipeline<M>>()
.init_resource::<SpecializedPipelines<Material2dPipeline<M>>>()
.add_system_to_stage(RenderStage::Queue, queue_material2d_meshes::<M>);
}
}
}
pub struct Material2dPipeline<M: SpecializedMaterial2d> {
pub mesh2d_pipeline: Mesh2dPipeline,
pub material2d_layout: BindGroupLayout,
pub vertex_shader: Option<Handle<Shader>>,
pub fragment_shader: Option<Handle<Shader>>,
marker: PhantomData<M>,
}
impl<M: SpecializedMaterial2d> SpecializedPipeline for Material2dPipeline<M> {
type Key = (Mesh2dPipelineKey, M::Key);
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
let mut descriptor = self.mesh2d_pipeline.specialize(key.0);
if let Some(vertex_shader) = &self.vertex_shader {
descriptor.vertex.shader = vertex_shader.clone();
}
if let Some(fragment_shader) = &self.fragment_shader {
descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
}
descriptor.layout = Some(vec![
self.mesh2d_pipeline.view_layout.clone(),
self.material2d_layout.clone(),
self.mesh2d_pipeline.mesh_layout.clone(),
]);
M::specialize(key.1, &mut descriptor);
descriptor
}
}
impl<M: SpecializedMaterial2d> FromWorld for Material2dPipeline<M> {
fn from_world(world: &mut World) -> Self {
let asset_server = world.get_resource::<AssetServer>().unwrap();
let render_device = world.get_resource::<RenderDevice>().unwrap();
let material2d_layout = M::bind_group_layout(render_device);
Material2dPipeline {
mesh2d_pipeline: world.get_resource::<Mesh2dPipeline>().unwrap().clone(),
material2d_layout,
vertex_shader: M::vertex_shader(asset_server),
fragment_shader: M::fragment_shader(asset_server),
marker: PhantomData,
}
}
}
type DrawMaterial2d<M> = (
SetItemPipeline,
SetMesh2dViewBindGroup<0>,
SetMaterial2dBindGroup<M, 1>,
SetMesh2dBindGroup<2>,
DrawMesh2d,
);
pub struct SetMaterial2dBindGroup<M: SpecializedMaterial2d, const I: usize>(PhantomData<M>);
impl<M: SpecializedMaterial2d, const I: usize> EntityRenderCommand
for SetMaterial2dBindGroup<M, I>
{
type Param = (SRes<RenderAssets<M>>, SQuery<Read<Handle<M>>>);
fn render<'w>(
_view: Entity,
item: Entity,
(materials, query): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let material2d_handle = query.get(item).unwrap();
let material2d = materials.into_inner().get(material2d_handle).unwrap();
pass.set_bind_group(
I,
M::bind_group(material2d),
M::dynamic_uniform_indices(material2d),
);
RenderCommandResult::Success
}
}
#[allow(clippy::too_many_arguments)]
pub fn queue_material2d_meshes<M: SpecializedMaterial2d>(
transparent_draw_functions: Res<DrawFunctions<Transparent2d>>,
material2d_pipeline: Res<Material2dPipeline<M>>,
mut pipelines: ResMut<SpecializedPipelines<Material2dPipeline<M>>>,
mut pipeline_cache: ResMut<RenderPipelineCache>,
msaa: Res<Msaa>,
render_meshes: Res<RenderAssets<Mesh>>,
render_materials: Res<RenderAssets<M>>,
material2d_meshes: Query<(&Handle<M>, &Mesh2dHandle, &Mesh2dUniform)>,
mut views: Query<(&VisibleEntities, &mut RenderPhase<Transparent2d>)>,
) {
if material2d_meshes.is_empty() {
return;
}
for (visible_entities, mut transparent_phase) in views.iter_mut() {
let draw_transparent_pbr = transparent_draw_functions
.read()
.get_id::<DrawMaterial2d<M>>()
.unwrap();
let mesh_key = Mesh2dPipelineKey::from_msaa_samples(msaa.samples);
for visible_entity in &visible_entities.entities {
if let Ok((material2d_handle, mesh2d_handle, mesh2d_uniform)) =
material2d_meshes.get(*visible_entity)
{
if let Some(material2d) = render_materials.get(material2d_handle) {
let mut mesh2d_key = mesh_key;
if let Some(mesh) = render_meshes.get(&mesh2d_handle.0) {
if mesh.has_tangents {
mesh2d_key |= Mesh2dPipelineKey::VERTEX_TANGENTS;
}
mesh2d_key |=
Mesh2dPipelineKey::from_primitive_topology(mesh.primitive_topology);
}
let specialized_key = M::key(material2d);
let pipeline_id = pipelines.specialize(
&mut pipeline_cache,
&material2d_pipeline,
(mesh2d_key, specialized_key),
);
let mesh_z = mesh2d_uniform.transform.w_axis.z;
transparent_phase.add(Transparent2d {
entity: *visible_entity,
draw_function: draw_transparent_pbr,
pipeline: pipeline_id,
// NOTE: Back-to-front ordering for transparent with ascending sort means far should have the
// lowest sort key and getting closer should increase. As we have
// -z in front of the camera, the largest distance is -far with values increasing toward the
// camera. As such we can just use mesh_z as the distance
sort_key: FloatOrd(mesh_z),
// This material is not batched
batch_range: None,
});
}
}
}
}
}
/// A component bundle for entities with a [`Mesh2dHandle`] and a [`SpecializedMaterial2d`].
#[derive(Bundle, Clone)]
pub struct MaterialMesh2dBundle<M: SpecializedMaterial2d> {
pub mesh: Mesh2dHandle,
pub material: Handle<M>,
pub transform: Transform,
pub global_transform: GlobalTransform,
/// User indication of whether an entity is visible
pub visibility: Visibility,
/// Algorithmically-computed indication of whether an entity is visible and should be extracted for rendering
pub computed_visibility: ComputedVisibility,
}
impl<M: SpecializedMaterial2d> Default for MaterialMesh2dBundle<M> {
fn default() -> Self {
Self {
mesh: Default::default(),
material: Default::default(),
transform: Default::default(),
global_transform: Default::default(),
visibility: Default::default(),
computed_visibility: Default::default(),
}
}
}