bevy/crates/bevy_sprite/src/collide_aabb.rs

192 lines
6 KiB
Rust
Raw Normal View History

//! Utilities for detecting if and on which side two axis-aligned bounding boxes (AABB) collide.
use bevy_math::{Vec2, Vec3};
2020-06-27 04:40:09 +00:00
#[derive(Debug, PartialEq, Eq)]
2020-06-27 04:40:09 +00:00
pub enum Collision {
Left,
Right,
Top,
Bottom,
Inside,
2020-06-27 04:40:09 +00:00
}
// TODO: ideally we can remove this once bevy gets a physics system
/// Axis-aligned bounding box collision with "side" detection
/// * `a_pos` and `b_pos` are the center positions of the rectangles, typically obtained by
/// extracting the `translation` field from a `Transform` component
/// * `a_size` and `b_size` are the dimensions (width and height) of the rectangles.
///
/// The return value is the side of `B` that `A` has collided with. `Left` means that
/// `A` collided with `B`'s left side. `Top` means that `A` collided with `B`'s top side.
/// If the collision occurs on multiple sides, the side with the deepest penetration is returned.
/// If all sides are involved, `Inside` is returned.
2020-06-27 04:40:09 +00:00
pub fn collide(a_pos: Vec3, a_size: Vec2, b_pos: Vec3, b_size: Vec2) -> Option<Collision> {
let a_min = a_pos.truncate() - a_size / 2.0;
let a_max = a_pos.truncate() + a_size / 2.0;
let b_min = b_pos.truncate() - b_size / 2.0;
let b_max = b_pos.truncate() + b_size / 2.0;
// check to see if the two rectangles are intersecting
if a_min.x < b_max.x && a_max.x > b_min.x && a_min.y < b_max.y && a_max.y > b_min.y {
2020-06-27 04:40:09 +00:00
// check to see if we hit on the left or right side
let (x_collision, x_depth) = if a_min.x < b_min.x && a_max.x > b_min.x && a_max.x < b_max.x
{
(Collision::Left, b_min.x - a_max.x)
} else if a_min.x > b_min.x && a_min.x < b_max.x && a_max.x > b_max.x {
(Collision::Right, a_min.x - b_max.x)
} else {
(Collision::Inside, -f32::INFINITY)
};
2020-06-27 04:40:09 +00:00
// check to see if we hit on the top or bottom side
let (y_collision, y_depth) = if a_min.y < b_min.y && a_max.y > b_min.y && a_max.y < b_max.y
{
(Collision::Bottom, b_min.y - a_max.y)
} else if a_min.y > b_min.y && a_min.y < b_max.y && a_max.y > b_max.y {
(Collision::Top, a_min.y - b_max.y)
} else {
(Collision::Inside, -f32::INFINITY)
};
2020-06-27 04:40:09 +00:00
// if we had an "x" and a "y" collision, pick the "primary" side using penetration depth
if y_depth.abs() < x_depth.abs() {
Some(y_collision)
} else {
Some(x_collision)
2020-06-27 04:40:09 +00:00
}
} else {
None
}
}
#[cfg(test)]
mod test {
use super::*;
fn collide_two_rectangles(
// (x, y, size x, size y)
a: (f32, f32, f32, f32),
b: (f32, f32, f32, f32),
) -> Option<Collision> {
collide(
Vec3::new(a.0, a.1, 0.),
Vec2::new(a.2, a.3),
Vec3::new(b.0, b.1, 0.),
Vec2::new(b.2, b.3),
)
}
#[test]
fn inside_collision() {
// Identical
#[rustfmt::skip]
let res = collide_two_rectangles(
(1., 1., 1., 1.),
(1., 1., 1., 1.),
);
assert_eq!(res, Some(Collision::Inside));
// B inside A
#[rustfmt::skip]
let res = collide_two_rectangles(
(2., 2., 2., 2.),
(2., 2., 1., 1.),
);
assert_eq!(res, Some(Collision::Inside));
// A inside B
#[rustfmt::skip]
let res = collide_two_rectangles(
(2., 2., 1., 1.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Inside));
}
#[test]
fn collision_based_on_b() {
// Right of B
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 2., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Right));
// Left of B
#[rustfmt::skip]
let res = collide_two_rectangles(
(1., 2., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Left));
// Top of B
#[rustfmt::skip]
let res = collide_two_rectangles(
(2., 3., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Top));
// Bottom of B
#[rustfmt::skip]
let res = collide_two_rectangles(
(2., 1., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Bottom));
}
// In case the X-collision depth is equal to the Y-collision depth, always
// prefer X-collision, meaning, `Left` or `Right` over `Top` and `Bottom`.
#[test]
fn prefer_x_collision() {
// Bottom-left collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(1., 1., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Left));
// Top-left collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(1., 3., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Left));
// Bottom-right collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 1., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Right));
// Top-right collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 3., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Right));
}
// If the collision intersection area stretches more along the Y-axis then
// return `Top` or `Bottom`. Otherwise, `Left` or `Right`.
#[test]
fn collision_depth_wins() {
// Top-right collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 3., 2., 2.),
(2.5, 2.,2., 2.),
);
assert_eq!(res, Some(Collision::Top));
// Top-right collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 3., 2., 2.),
(2., 2.5, 2., 2.),
);
assert_eq!(res, Some(Collision::Right));
}
}