bevy/examples/2d/rotation.rs

237 lines
9.5 KiB
Rust
Raw Normal View History

//! Demonstrates rotating entities in 2D using quaternions.
use bevy::{math::ops, prelude::*};
const BOUNDS: Vec2 = Vec2::new(1200.0, 640.0);
fn main() {
App::new()
.add_plugins(DefaultPlugins)
Unify `FixedTime` and `Time` while fixing several problems (#8964) # Objective Current `FixedTime` and `Time` have several problems. This pull aims to fix many of them at once. - If there is a longer pause between app updates, time will jump forward a lot at once and fixed time will iterate on `FixedUpdate` for a large number of steps. If the pause is merely seconds, then this will just mean jerkiness and possible unexpected behaviour in gameplay. If the pause is hours/days as with OS suspend, the game will appear to freeze until it has caught up with real time. - If calculating a fixed step takes longer than specified fixed step period, the game will enter a death spiral where rendering each frame takes longer and longer due to more and more fixed step updates being run per frame and the game appears to freeze. - There is no way to see current fixed step elapsed time inside fixed steps. In order to track this, the game designer needs to add a custom system inside `FixedUpdate` that calculates elapsed or step count in a resource. - Access to delta time inside fixed step is `FixedStep::period` rather than `Time::delta`. This, coupled with the issue that `Time::elapsed` isn't available at all for fixed steps, makes it that time requiring systems are either implemented to be run in `FixedUpdate` or `Update`, but rarely work in both. - Fixes #8800 - Fixes #8543 - Fixes #7439 - Fixes #5692 ## Solution - Create a generic `Time<T>` clock that has no processing logic but which can be instantiated for multiple usages. This is also exposed for users to add custom clocks. - Create three standard clocks, `Time<Real>`, `Time<Virtual>` and `Time<Fixed>`, all of which contain their individual logic. - Create one "default" clock, which is just `Time` (or `Time<()>`), which will be overwritten from `Time<Virtual>` on each update, and `Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do not care specifically which time they track can work both in `Update` and `FixedUpdate` without changes and the behaviour is intuitive. - Add `max_delta` to virtual time update, which limits how much can be added to virtual time by a single update. This fixes both the behaviour after a long freeze, and also the death spiral by limiting how many fixed timestep iterations there can be per update. Possible future work could be adding `max_accumulator` to add a sort of "leaky bucket" time processing to possibly smooth out jumps in time while keeping frame rate stable. - Many minor tweaks and clarifications to the time functions and their documentation. ## Changelog - `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match `Time` API - `FixedTime` is now `Time<Fixed>` and matches `Time` API. - `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds. - `Time` inside `FixedUpdate` now reflects fixed timestep time, making systems portable between `Update ` and `FixedUpdate`. - `Time::pause()`, `Time::set_relative_speed()` and related methods must now be called as `Time<Virtual>::pause()` etc. - There is a new `max_delta` setting in `Time<Virtual>` that limits how much the clock can jump by a single update. The default value is 0.25 seconds. - Removed `on_fixed_timer()` condition as `on_timer()` does the right thing inside `FixedUpdate` now. ## Migration Guide - Change all `Res<Time>` instances that access `raw_delta()`, `raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`, `elapsed()`, etc. - Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>` and use `delta()`. - The default timestep has been changed from 60 Hz to 64 Hz. If you wish to restore the old behaviour, use `app.insert_resource(Time::<Fixed>::from_hz(60.0))`. - Change `app.insert_resource(FixedTime::new(duration))` to `app.insert_resource(Time::<Fixed>::from_duration(duration))` - Change `app.insert_resource(FixedTime::new_from_secs(secs))` to `app.insert_resource(Time::<Fixed>::from_seconds(secs))` - Change `system.on_fixed_timer(duration)` to `system.on_timer(duration)`. Timers in systems placed in `FixedUpdate` schedule automatically use the fixed time clock. - Change `ResMut<Time>` calls to `pause()`, `is_paused()`, `set_relative_speed()` and related methods to `ResMut<Time<Virtual>>` calls. The API is the same, with the exception that `relative_speed()` will return the actual last ste relative speed, while `effective_relative_speed()` returns 0.0 if the time is paused and corresponds to the speed that was set when the update for the current frame started. ## Todo - [x] Update pull name and description - [x] Top level documentation on usage - [x] Fix examples - [x] Decide on default `max_delta` value - [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed` good? - [x] Decide if the three clock inner structures should be in prelude - [x] Decide on best way to configure values at startup: is manually inserting a new clock instance okay, or should there be config struct separately? - [x] Fix links in docs - [x] Decide what should be public and what not - [x] Decide how `wrap_period` should be handled when it is changed - [x] ~~Add toggles to disable setting the clock as default?~~ No, separate pull if needed. - [x] Add tests - [x] Reformat, ensure adheres to conventions etc. - [x] Build documentation and see that it looks correct ## Contributors Huge thanks to @alice-i-cecile and @maniwani while building this pull. It was a shared effort! --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com> Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
.insert_resource(Time::<Fixed>::from_hz(60.0))
.add_systems(Startup, setup)
.add_systems(
FixedUpdate,
Migrate engine to Schedule v3 (#7267) Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
(
player_movement_system,
snap_to_player_system,
rotate_to_player_system,
),
)
.run();
}
/// player component
#[derive(Component)]
struct Player {
/// linear speed in meters per second
movement_speed: f32,
/// rotation speed in radians per second
rotation_speed: f32,
}
/// snap to player ship behavior
#[derive(Component)]
struct SnapToPlayer;
/// rotate to face player ship behavior
#[derive(Component)]
struct RotateToPlayer {
/// rotation speed in radians per second
rotation_speed: f32,
}
/// Add the game's entities to our world and creates an orthographic camera for 2D rendering.
///
/// The Bevy coordinate system is the same for 2D and 3D, in terms of 2D this means that:
///
/// * `X` axis goes from left to right (`+X` points right)
/// * `Y` axis goes from bottom to top (`+Y` point up)
/// * `Z` axis goes from far to near (`+Z` points towards you, out of the screen)
///
/// The origin is at the center of the screen.
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
let ship_handle = asset_server.load("textures/simplespace/ship_C.png");
let enemy_a_handle = asset_server.load("textures/simplespace/enemy_A.png");
let enemy_b_handle = asset_server.load("textures/simplespace/enemy_B.png");
// 2D orthographic camera
commands.spawn(Camera2d);
let horizontal_margin = BOUNDS.x / 4.0;
let vertical_margin = BOUNDS.y / 4.0;
// player controlled ship
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
commands.spawn((
Sprite::from_image(ship_handle),
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
Player {
movement_speed: 500.0, // meters per second
rotation_speed: f32::to_radians(360.0), // degrees per second
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
},
));
// enemy that snaps to face the player spawns on the bottom and left
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
commands.spawn((
Sprite::from_image(enemy_a_handle.clone()),
Transform::from_xyz(0.0 - horizontal_margin, 0.0, 0.0),
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
SnapToPlayer,
));
commands.spawn((
Sprite::from_image(enemy_a_handle),
Transform::from_xyz(0.0, 0.0 - vertical_margin, 0.0),
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
SnapToPlayer,
));
// enemy that rotates to face the player enemy spawns on the top and right
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
commands.spawn((
Sprite::from_image(enemy_b_handle.clone()),
Transform::from_xyz(0.0 + horizontal_margin, 0.0, 0.0),
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
RotateToPlayer {
rotation_speed: f32::to_radians(45.0), // degrees per second
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
},
));
commands.spawn((
Sprite::from_image(enemy_b_handle),
Transform::from_xyz(0.0, 0.0 + vertical_margin, 0.0),
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
RotateToPlayer {
rotation_speed: f32::to_radians(90.0), // degrees per second
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
},
));
}
/// Demonstrates applying rotation and movement based on keyboard input.
fn player_movement_system(
Unify `FixedTime` and `Time` while fixing several problems (#8964) # Objective Current `FixedTime` and `Time` have several problems. This pull aims to fix many of them at once. - If there is a longer pause between app updates, time will jump forward a lot at once and fixed time will iterate on `FixedUpdate` for a large number of steps. If the pause is merely seconds, then this will just mean jerkiness and possible unexpected behaviour in gameplay. If the pause is hours/days as with OS suspend, the game will appear to freeze until it has caught up with real time. - If calculating a fixed step takes longer than specified fixed step period, the game will enter a death spiral where rendering each frame takes longer and longer due to more and more fixed step updates being run per frame and the game appears to freeze. - There is no way to see current fixed step elapsed time inside fixed steps. In order to track this, the game designer needs to add a custom system inside `FixedUpdate` that calculates elapsed or step count in a resource. - Access to delta time inside fixed step is `FixedStep::period` rather than `Time::delta`. This, coupled with the issue that `Time::elapsed` isn't available at all for fixed steps, makes it that time requiring systems are either implemented to be run in `FixedUpdate` or `Update`, but rarely work in both. - Fixes #8800 - Fixes #8543 - Fixes #7439 - Fixes #5692 ## Solution - Create a generic `Time<T>` clock that has no processing logic but which can be instantiated for multiple usages. This is also exposed for users to add custom clocks. - Create three standard clocks, `Time<Real>`, `Time<Virtual>` and `Time<Fixed>`, all of which contain their individual logic. - Create one "default" clock, which is just `Time` (or `Time<()>`), which will be overwritten from `Time<Virtual>` on each update, and `Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do not care specifically which time they track can work both in `Update` and `FixedUpdate` without changes and the behaviour is intuitive. - Add `max_delta` to virtual time update, which limits how much can be added to virtual time by a single update. This fixes both the behaviour after a long freeze, and also the death spiral by limiting how many fixed timestep iterations there can be per update. Possible future work could be adding `max_accumulator` to add a sort of "leaky bucket" time processing to possibly smooth out jumps in time while keeping frame rate stable. - Many minor tweaks and clarifications to the time functions and their documentation. ## Changelog - `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match `Time` API - `FixedTime` is now `Time<Fixed>` and matches `Time` API. - `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds. - `Time` inside `FixedUpdate` now reflects fixed timestep time, making systems portable between `Update ` and `FixedUpdate`. - `Time::pause()`, `Time::set_relative_speed()` and related methods must now be called as `Time<Virtual>::pause()` etc. - There is a new `max_delta` setting in `Time<Virtual>` that limits how much the clock can jump by a single update. The default value is 0.25 seconds. - Removed `on_fixed_timer()` condition as `on_timer()` does the right thing inside `FixedUpdate` now. ## Migration Guide - Change all `Res<Time>` instances that access `raw_delta()`, `raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`, `elapsed()`, etc. - Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>` and use `delta()`. - The default timestep has been changed from 60 Hz to 64 Hz. If you wish to restore the old behaviour, use `app.insert_resource(Time::<Fixed>::from_hz(60.0))`. - Change `app.insert_resource(FixedTime::new(duration))` to `app.insert_resource(Time::<Fixed>::from_duration(duration))` - Change `app.insert_resource(FixedTime::new_from_secs(secs))` to `app.insert_resource(Time::<Fixed>::from_seconds(secs))` - Change `system.on_fixed_timer(duration)` to `system.on_timer(duration)`. Timers in systems placed in `FixedUpdate` schedule automatically use the fixed time clock. - Change `ResMut<Time>` calls to `pause()`, `is_paused()`, `set_relative_speed()` and related methods to `ResMut<Time<Virtual>>` calls. The API is the same, with the exception that `relative_speed()` will return the actual last ste relative speed, while `effective_relative_speed()` returns 0.0 if the time is paused and corresponds to the speed that was set when the update for the current frame started. ## Todo - [x] Update pull name and description - [x] Top level documentation on usage - [x] Fix examples - [x] Decide on default `max_delta` value - [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed` good? - [x] Decide if the three clock inner structures should be in prelude - [x] Decide on best way to configure values at startup: is manually inserting a new clock instance okay, or should there be config struct separately? - [x] Fix links in docs - [x] Decide what should be public and what not - [x] Decide how `wrap_period` should be handled when it is changed - [x] ~~Add toggles to disable setting the clock as default?~~ No, separate pull if needed. - [x] Add tests - [x] Reformat, ensure adheres to conventions etc. - [x] Build documentation and see that it looks correct ## Contributors Huge thanks to @alice-i-cecile and @maniwani while building this pull. It was a shared effort! --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com> Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
time: Res<Time>,
keyboard_input: Res<ButtonInput<KeyCode>>,
query: Single<(&Player, &mut Transform)>,
) {
let (ship, mut transform) = query.into_inner();
let mut rotation_factor = 0.0;
let mut movement_factor = 0.0;
Update winit dependency to 0.29 (#10702) # Objective - Update winit dependency to 0.29 ## Changelog ### KeyCode changes - Removed `ScanCode`, as it was [replaced by KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292). - `ReceivedCharacter.char` is now a `SmolStr`, [relevant doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text). - Changed most `KeyCode` values, and added more. KeyCode has changed meaning. With this PR, it refers to physical position on keyboard rather than the printed letter on keyboard keys. In practice this means: - On QWERTY keyboard layouts, nothing changes - On any other keyboard layout, `KeyCode` no longer reflects the label on key. - This is "good". In bevy 0.12, when you used WASD for movement, users with non-QWERTY keyboards couldn't play your game! This was especially bad for non-latin keyboards. Now, WASD represents the physical keys. A French player will press the ZQSD keys, which are near each other, Kyrgyz players will use "Цфыв". - This is "bad" as well. You can't know in advance what the label of the key for input is. Your UI says "press WASD to move", even if in reality, they should be pressing "ZQSD" or "Цфыв". You also no longer can use `KeyCode` for text inputs. In any case, it was a pretty bad API for text input. You should use `ReceivedCharacter` now instead. ### Other changes - Use `web-time` rather than `instant` crate. (https://github.com/rust-windowing/winit/pull/2836) - winit did split `run_return` in `run_onDemand` and `pump_events`, I did the same change in bevy_winit and used `pump_events`. - Removed `return_from_run` from `WinitSettings` as `winit::run` now returns on supported platforms. - I left the example "return_after_run" as I think it's still useful. - This winit change is done partly to allow to create a new window after quitting all windows: https://github.com/emilk/egui/issues/1918 ; this PR doesn't address. - added `width` and `height` properties in the `canvas` from wasm example (https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168) ## Known regressions (important follow ups?) - Provide an API for reacting when a specific key from current layout was released. - possible solutions: use winit::Key from winit::KeyEvent ; mapping between KeyCode and Key ; or . - We don't receive characters through alt+numpad (e.g. alt + 151 = "ù") anymore ; reproduced on winit example "ime". maybe related to https://github.com/rust-windowing/winit/issues/2945 - (windows) Window content doesn't refresh at all when resizing. By reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect we should just fire a `window.request_redraw();` from `AboutToWait`, and handle actual redrawing within `RedrawRequested`. I'm not sure how to move all that code so I'd appreciate it to be a follow up. - (windows) unreleased winit fix for using set_control_flow in AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm not sure what the implications are, but that feels bad 🤔 ## Follow up I'd like to avoid bloating this PR, here are a few follow up tasks worthy of a separate PR, or new issue to track them once this PR is closed, as they would either complicate reviews, or at risk of being controversial: - remove CanvasParentResizePlugin (https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856) - avoid mentionning explicitly winit in docs from bevy_window ? - NamedKey integration on bevy_input: https://github.com/rust-windowing/winit/pull/3143 introduced a new NamedKey variant. I implemented it only on the converters but we'd benefit making the same changes to bevy_input. - Add more info in KeyboardInput https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313 - https://github.com/bevyengine/bevy/pull/9905 added a workaround on a bug allegedly fixed by winit 0.29. We should check if it's still necessary. - update to raw_window_handle 0.6 - blocked by wgpu - Rename `KeyCode` to `PhysicalKeyCode` https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015 - remove `instant` dependency, [replaced by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd need to update to : - fastrand >= 2.0 - [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7 - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0 - Verify license, see [discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800) - we might be missing a short notice or description of changes made - Consider using https://github.com/rust-windowing/cursor-icon directly rather than vendoring it in bevy. - investigate [this unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986) (`winit_window.canvas().unwrap();`) - Use more good things about winit's update - https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428 ## Migration Guide This PR should have one.
2023-12-21 07:40:47 +00:00
if keyboard_input.pressed(KeyCode::ArrowLeft) {
rotation_factor += 1.0;
}
Update winit dependency to 0.29 (#10702) # Objective - Update winit dependency to 0.29 ## Changelog ### KeyCode changes - Removed `ScanCode`, as it was [replaced by KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292). - `ReceivedCharacter.char` is now a `SmolStr`, [relevant doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text). - Changed most `KeyCode` values, and added more. KeyCode has changed meaning. With this PR, it refers to physical position on keyboard rather than the printed letter on keyboard keys. In practice this means: - On QWERTY keyboard layouts, nothing changes - On any other keyboard layout, `KeyCode` no longer reflects the label on key. - This is "good". In bevy 0.12, when you used WASD for movement, users with non-QWERTY keyboards couldn't play your game! This was especially bad for non-latin keyboards. Now, WASD represents the physical keys. A French player will press the ZQSD keys, which are near each other, Kyrgyz players will use "Цфыв". - This is "bad" as well. You can't know in advance what the label of the key for input is. Your UI says "press WASD to move", even if in reality, they should be pressing "ZQSD" or "Цфыв". You also no longer can use `KeyCode` for text inputs. In any case, it was a pretty bad API for text input. You should use `ReceivedCharacter` now instead. ### Other changes - Use `web-time` rather than `instant` crate. (https://github.com/rust-windowing/winit/pull/2836) - winit did split `run_return` in `run_onDemand` and `pump_events`, I did the same change in bevy_winit and used `pump_events`. - Removed `return_from_run` from `WinitSettings` as `winit::run` now returns on supported platforms. - I left the example "return_after_run" as I think it's still useful. - This winit change is done partly to allow to create a new window after quitting all windows: https://github.com/emilk/egui/issues/1918 ; this PR doesn't address. - added `width` and `height` properties in the `canvas` from wasm example (https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168) ## Known regressions (important follow ups?) - Provide an API for reacting when a specific key from current layout was released. - possible solutions: use winit::Key from winit::KeyEvent ; mapping between KeyCode and Key ; or . - We don't receive characters through alt+numpad (e.g. alt + 151 = "ù") anymore ; reproduced on winit example "ime". maybe related to https://github.com/rust-windowing/winit/issues/2945 - (windows) Window content doesn't refresh at all when resizing. By reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect we should just fire a `window.request_redraw();` from `AboutToWait`, and handle actual redrawing within `RedrawRequested`. I'm not sure how to move all that code so I'd appreciate it to be a follow up. - (windows) unreleased winit fix for using set_control_flow in AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm not sure what the implications are, but that feels bad 🤔 ## Follow up I'd like to avoid bloating this PR, here are a few follow up tasks worthy of a separate PR, or new issue to track them once this PR is closed, as they would either complicate reviews, or at risk of being controversial: - remove CanvasParentResizePlugin (https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856) - avoid mentionning explicitly winit in docs from bevy_window ? - NamedKey integration on bevy_input: https://github.com/rust-windowing/winit/pull/3143 introduced a new NamedKey variant. I implemented it only on the converters but we'd benefit making the same changes to bevy_input. - Add more info in KeyboardInput https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313 - https://github.com/bevyengine/bevy/pull/9905 added a workaround on a bug allegedly fixed by winit 0.29. We should check if it's still necessary. - update to raw_window_handle 0.6 - blocked by wgpu - Rename `KeyCode` to `PhysicalKeyCode` https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015 - remove `instant` dependency, [replaced by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd need to update to : - fastrand >= 2.0 - [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7 - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0 - Verify license, see [discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800) - we might be missing a short notice or description of changes made - Consider using https://github.com/rust-windowing/cursor-icon directly rather than vendoring it in bevy. - investigate [this unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986) (`winit_window.canvas().unwrap();`) - Use more good things about winit's update - https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428 ## Migration Guide This PR should have one.
2023-12-21 07:40:47 +00:00
if keyboard_input.pressed(KeyCode::ArrowRight) {
rotation_factor -= 1.0;
}
Update winit dependency to 0.29 (#10702) # Objective - Update winit dependency to 0.29 ## Changelog ### KeyCode changes - Removed `ScanCode`, as it was [replaced by KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292). - `ReceivedCharacter.char` is now a `SmolStr`, [relevant doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text). - Changed most `KeyCode` values, and added more. KeyCode has changed meaning. With this PR, it refers to physical position on keyboard rather than the printed letter on keyboard keys. In practice this means: - On QWERTY keyboard layouts, nothing changes - On any other keyboard layout, `KeyCode` no longer reflects the label on key. - This is "good". In bevy 0.12, when you used WASD for movement, users with non-QWERTY keyboards couldn't play your game! This was especially bad for non-latin keyboards. Now, WASD represents the physical keys. A French player will press the ZQSD keys, which are near each other, Kyrgyz players will use "Цфыв". - This is "bad" as well. You can't know in advance what the label of the key for input is. Your UI says "press WASD to move", even if in reality, they should be pressing "ZQSD" or "Цфыв". You also no longer can use `KeyCode` for text inputs. In any case, it was a pretty bad API for text input. You should use `ReceivedCharacter` now instead. ### Other changes - Use `web-time` rather than `instant` crate. (https://github.com/rust-windowing/winit/pull/2836) - winit did split `run_return` in `run_onDemand` and `pump_events`, I did the same change in bevy_winit and used `pump_events`. - Removed `return_from_run` from `WinitSettings` as `winit::run` now returns on supported platforms. - I left the example "return_after_run" as I think it's still useful. - This winit change is done partly to allow to create a new window after quitting all windows: https://github.com/emilk/egui/issues/1918 ; this PR doesn't address. - added `width` and `height` properties in the `canvas` from wasm example (https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168) ## Known regressions (important follow ups?) - Provide an API for reacting when a specific key from current layout was released. - possible solutions: use winit::Key from winit::KeyEvent ; mapping between KeyCode and Key ; or . - We don't receive characters through alt+numpad (e.g. alt + 151 = "ù") anymore ; reproduced on winit example "ime". maybe related to https://github.com/rust-windowing/winit/issues/2945 - (windows) Window content doesn't refresh at all when resizing. By reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect we should just fire a `window.request_redraw();` from `AboutToWait`, and handle actual redrawing within `RedrawRequested`. I'm not sure how to move all that code so I'd appreciate it to be a follow up. - (windows) unreleased winit fix for using set_control_flow in AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm not sure what the implications are, but that feels bad 🤔 ## Follow up I'd like to avoid bloating this PR, here are a few follow up tasks worthy of a separate PR, or new issue to track them once this PR is closed, as they would either complicate reviews, or at risk of being controversial: - remove CanvasParentResizePlugin (https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856) - avoid mentionning explicitly winit in docs from bevy_window ? - NamedKey integration on bevy_input: https://github.com/rust-windowing/winit/pull/3143 introduced a new NamedKey variant. I implemented it only on the converters but we'd benefit making the same changes to bevy_input. - Add more info in KeyboardInput https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313 - https://github.com/bevyengine/bevy/pull/9905 added a workaround on a bug allegedly fixed by winit 0.29. We should check if it's still necessary. - update to raw_window_handle 0.6 - blocked by wgpu - Rename `KeyCode` to `PhysicalKeyCode` https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015 - remove `instant` dependency, [replaced by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd need to update to : - fastrand >= 2.0 - [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7 - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0 - Verify license, see [discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800) - we might be missing a short notice or description of changes made - Consider using https://github.com/rust-windowing/cursor-icon directly rather than vendoring it in bevy. - investigate [this unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986) (`winit_window.canvas().unwrap();`) - Use more good things about winit's update - https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428 ## Migration Guide This PR should have one.
2023-12-21 07:40:47 +00:00
if keyboard_input.pressed(KeyCode::ArrowUp) {
movement_factor += 1.0;
}
// update the ship rotation around the Z axis (perpendicular to the 2D plane of the screen)
transform.rotate_z(rotation_factor * ship.rotation_speed * time.delta_secs());
Unify `FixedTime` and `Time` while fixing several problems (#8964) # Objective Current `FixedTime` and `Time` have several problems. This pull aims to fix many of them at once. - If there is a longer pause between app updates, time will jump forward a lot at once and fixed time will iterate on `FixedUpdate` for a large number of steps. If the pause is merely seconds, then this will just mean jerkiness and possible unexpected behaviour in gameplay. If the pause is hours/days as with OS suspend, the game will appear to freeze until it has caught up with real time. - If calculating a fixed step takes longer than specified fixed step period, the game will enter a death spiral where rendering each frame takes longer and longer due to more and more fixed step updates being run per frame and the game appears to freeze. - There is no way to see current fixed step elapsed time inside fixed steps. In order to track this, the game designer needs to add a custom system inside `FixedUpdate` that calculates elapsed or step count in a resource. - Access to delta time inside fixed step is `FixedStep::period` rather than `Time::delta`. This, coupled with the issue that `Time::elapsed` isn't available at all for fixed steps, makes it that time requiring systems are either implemented to be run in `FixedUpdate` or `Update`, but rarely work in both. - Fixes #8800 - Fixes #8543 - Fixes #7439 - Fixes #5692 ## Solution - Create a generic `Time<T>` clock that has no processing logic but which can be instantiated for multiple usages. This is also exposed for users to add custom clocks. - Create three standard clocks, `Time<Real>`, `Time<Virtual>` and `Time<Fixed>`, all of which contain their individual logic. - Create one "default" clock, which is just `Time` (or `Time<()>`), which will be overwritten from `Time<Virtual>` on each update, and `Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do not care specifically which time they track can work both in `Update` and `FixedUpdate` without changes and the behaviour is intuitive. - Add `max_delta` to virtual time update, which limits how much can be added to virtual time by a single update. This fixes both the behaviour after a long freeze, and also the death spiral by limiting how many fixed timestep iterations there can be per update. Possible future work could be adding `max_accumulator` to add a sort of "leaky bucket" time processing to possibly smooth out jumps in time while keeping frame rate stable. - Many minor tweaks and clarifications to the time functions and their documentation. ## Changelog - `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match `Time` API - `FixedTime` is now `Time<Fixed>` and matches `Time` API. - `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds. - `Time` inside `FixedUpdate` now reflects fixed timestep time, making systems portable between `Update ` and `FixedUpdate`. - `Time::pause()`, `Time::set_relative_speed()` and related methods must now be called as `Time<Virtual>::pause()` etc. - There is a new `max_delta` setting in `Time<Virtual>` that limits how much the clock can jump by a single update. The default value is 0.25 seconds. - Removed `on_fixed_timer()` condition as `on_timer()` does the right thing inside `FixedUpdate` now. ## Migration Guide - Change all `Res<Time>` instances that access `raw_delta()`, `raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`, `elapsed()`, etc. - Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>` and use `delta()`. - The default timestep has been changed from 60 Hz to 64 Hz. If you wish to restore the old behaviour, use `app.insert_resource(Time::<Fixed>::from_hz(60.0))`. - Change `app.insert_resource(FixedTime::new(duration))` to `app.insert_resource(Time::<Fixed>::from_duration(duration))` - Change `app.insert_resource(FixedTime::new_from_secs(secs))` to `app.insert_resource(Time::<Fixed>::from_seconds(secs))` - Change `system.on_fixed_timer(duration)` to `system.on_timer(duration)`. Timers in systems placed in `FixedUpdate` schedule automatically use the fixed time clock. - Change `ResMut<Time>` calls to `pause()`, `is_paused()`, `set_relative_speed()` and related methods to `ResMut<Time<Virtual>>` calls. The API is the same, with the exception that `relative_speed()` will return the actual last ste relative speed, while `effective_relative_speed()` returns 0.0 if the time is paused and corresponds to the speed that was set when the update for the current frame started. ## Todo - [x] Update pull name and description - [x] Top level documentation on usage - [x] Fix examples - [x] Decide on default `max_delta` value - [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed` good? - [x] Decide if the three clock inner structures should be in prelude - [x] Decide on best way to configure values at startup: is manually inserting a new clock instance okay, or should there be config struct separately? - [x] Fix links in docs - [x] Decide what should be public and what not - [x] Decide how `wrap_period` should be handled when it is changed - [x] ~~Add toggles to disable setting the clock as default?~~ No, separate pull if needed. - [x] Add tests - [x] Reformat, ensure adheres to conventions etc. - [x] Build documentation and see that it looks correct ## Contributors Huge thanks to @alice-i-cecile and @maniwani while building this pull. It was a shared effort! --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com> Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
// get the ship's forward vector by applying the current rotation to the ships initial facing
// vector
let movement_direction = transform.rotation * Vec3::Y;
Unify `FixedTime` and `Time` while fixing several problems (#8964) # Objective Current `FixedTime` and `Time` have several problems. This pull aims to fix many of them at once. - If there is a longer pause between app updates, time will jump forward a lot at once and fixed time will iterate on `FixedUpdate` for a large number of steps. If the pause is merely seconds, then this will just mean jerkiness and possible unexpected behaviour in gameplay. If the pause is hours/days as with OS suspend, the game will appear to freeze until it has caught up with real time. - If calculating a fixed step takes longer than specified fixed step period, the game will enter a death spiral where rendering each frame takes longer and longer due to more and more fixed step updates being run per frame and the game appears to freeze. - There is no way to see current fixed step elapsed time inside fixed steps. In order to track this, the game designer needs to add a custom system inside `FixedUpdate` that calculates elapsed or step count in a resource. - Access to delta time inside fixed step is `FixedStep::period` rather than `Time::delta`. This, coupled with the issue that `Time::elapsed` isn't available at all for fixed steps, makes it that time requiring systems are either implemented to be run in `FixedUpdate` or `Update`, but rarely work in both. - Fixes #8800 - Fixes #8543 - Fixes #7439 - Fixes #5692 ## Solution - Create a generic `Time<T>` clock that has no processing logic but which can be instantiated for multiple usages. This is also exposed for users to add custom clocks. - Create three standard clocks, `Time<Real>`, `Time<Virtual>` and `Time<Fixed>`, all of which contain their individual logic. - Create one "default" clock, which is just `Time` (or `Time<()>`), which will be overwritten from `Time<Virtual>` on each update, and `Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do not care specifically which time they track can work both in `Update` and `FixedUpdate` without changes and the behaviour is intuitive. - Add `max_delta` to virtual time update, which limits how much can be added to virtual time by a single update. This fixes both the behaviour after a long freeze, and also the death spiral by limiting how many fixed timestep iterations there can be per update. Possible future work could be adding `max_accumulator` to add a sort of "leaky bucket" time processing to possibly smooth out jumps in time while keeping frame rate stable. - Many minor tweaks and clarifications to the time functions and their documentation. ## Changelog - `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match `Time` API - `FixedTime` is now `Time<Fixed>` and matches `Time` API. - `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds. - `Time` inside `FixedUpdate` now reflects fixed timestep time, making systems portable between `Update ` and `FixedUpdate`. - `Time::pause()`, `Time::set_relative_speed()` and related methods must now be called as `Time<Virtual>::pause()` etc. - There is a new `max_delta` setting in `Time<Virtual>` that limits how much the clock can jump by a single update. The default value is 0.25 seconds. - Removed `on_fixed_timer()` condition as `on_timer()` does the right thing inside `FixedUpdate` now. ## Migration Guide - Change all `Res<Time>` instances that access `raw_delta()`, `raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`, `elapsed()`, etc. - Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>` and use `delta()`. - The default timestep has been changed from 60 Hz to 64 Hz. If you wish to restore the old behaviour, use `app.insert_resource(Time::<Fixed>::from_hz(60.0))`. - Change `app.insert_resource(FixedTime::new(duration))` to `app.insert_resource(Time::<Fixed>::from_duration(duration))` - Change `app.insert_resource(FixedTime::new_from_secs(secs))` to `app.insert_resource(Time::<Fixed>::from_seconds(secs))` - Change `system.on_fixed_timer(duration)` to `system.on_timer(duration)`. Timers in systems placed in `FixedUpdate` schedule automatically use the fixed time clock. - Change `ResMut<Time>` calls to `pause()`, `is_paused()`, `set_relative_speed()` and related methods to `ResMut<Time<Virtual>>` calls. The API is the same, with the exception that `relative_speed()` will return the actual last ste relative speed, while `effective_relative_speed()` returns 0.0 if the time is paused and corresponds to the speed that was set when the update for the current frame started. ## Todo - [x] Update pull name and description - [x] Top level documentation on usage - [x] Fix examples - [x] Decide on default `max_delta` value - [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed` good? - [x] Decide if the three clock inner structures should be in prelude - [x] Decide on best way to configure values at startup: is manually inserting a new clock instance okay, or should there be config struct separately? - [x] Fix links in docs - [x] Decide what should be public and what not - [x] Decide how `wrap_period` should be handled when it is changed - [x] ~~Add toggles to disable setting the clock as default?~~ No, separate pull if needed. - [x] Add tests - [x] Reformat, ensure adheres to conventions etc. - [x] Build documentation and see that it looks correct ## Contributors Huge thanks to @alice-i-cecile and @maniwani while building this pull. It was a shared effort! --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com> Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
// get the distance the ship will move based on direction, the ship's movement speed and delta
// time
let movement_distance = movement_factor * ship.movement_speed * time.delta_secs();
// create the change in translation using the new movement direction and distance
let translation_delta = movement_direction * movement_distance;
// update the ship translation with our new translation delta
transform.translation += translation_delta;
// bound the ship within the invisible level bounds
let extents = Vec3::from((BOUNDS / 2.0, 0.0));
transform.translation = transform.translation.min(extents).max(-extents);
}
/// Demonstrates snapping the enemy ship to face the player ship immediately.
fn snap_to_player_system(
mut query: Query<&mut Transform, (With<SnapToPlayer>, Without<Player>)>,
player_transform: Single<&Transform, With<Player>>,
) {
// get the player translation in 2D
let player_translation = player_transform.translation.xy();
for mut enemy_transform in &mut query {
// get the vector from the enemy ship to the player ship in 2D and normalize it.
let to_player = (player_translation - enemy_transform.translation.xy()).normalize();
// get the quaternion to rotate from the initial enemy facing direction to the direction
// facing the player
let rotate_to_player = Quat::from_rotation_arc(Vec3::Y, to_player.extend(0.));
// rotate the enemy to face the player
enemy_transform.rotation = rotate_to_player;
}
}
/// Demonstrates rotating an enemy ship to face the player ship at a given rotation speed.
///
/// This method uses the vector dot product to determine if the enemy is facing the player and
/// if not, which way to rotate to face the player. The dot product on two unit length vectors
/// will return a value between -1.0 and +1.0 which tells us the following about the two vectors:
///
Unify `FixedTime` and `Time` while fixing several problems (#8964) # Objective Current `FixedTime` and `Time` have several problems. This pull aims to fix many of them at once. - If there is a longer pause between app updates, time will jump forward a lot at once and fixed time will iterate on `FixedUpdate` for a large number of steps. If the pause is merely seconds, then this will just mean jerkiness and possible unexpected behaviour in gameplay. If the pause is hours/days as with OS suspend, the game will appear to freeze until it has caught up with real time. - If calculating a fixed step takes longer than specified fixed step period, the game will enter a death spiral where rendering each frame takes longer and longer due to more and more fixed step updates being run per frame and the game appears to freeze. - There is no way to see current fixed step elapsed time inside fixed steps. In order to track this, the game designer needs to add a custom system inside `FixedUpdate` that calculates elapsed or step count in a resource. - Access to delta time inside fixed step is `FixedStep::period` rather than `Time::delta`. This, coupled with the issue that `Time::elapsed` isn't available at all for fixed steps, makes it that time requiring systems are either implemented to be run in `FixedUpdate` or `Update`, but rarely work in both. - Fixes #8800 - Fixes #8543 - Fixes #7439 - Fixes #5692 ## Solution - Create a generic `Time<T>` clock that has no processing logic but which can be instantiated for multiple usages. This is also exposed for users to add custom clocks. - Create three standard clocks, `Time<Real>`, `Time<Virtual>` and `Time<Fixed>`, all of which contain their individual logic. - Create one "default" clock, which is just `Time` (or `Time<()>`), which will be overwritten from `Time<Virtual>` on each update, and `Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do not care specifically which time they track can work both in `Update` and `FixedUpdate` without changes and the behaviour is intuitive. - Add `max_delta` to virtual time update, which limits how much can be added to virtual time by a single update. This fixes both the behaviour after a long freeze, and also the death spiral by limiting how many fixed timestep iterations there can be per update. Possible future work could be adding `max_accumulator` to add a sort of "leaky bucket" time processing to possibly smooth out jumps in time while keeping frame rate stable. - Many minor tweaks and clarifications to the time functions and their documentation. ## Changelog - `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match `Time` API - `FixedTime` is now `Time<Fixed>` and matches `Time` API. - `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds. - `Time` inside `FixedUpdate` now reflects fixed timestep time, making systems portable between `Update ` and `FixedUpdate`. - `Time::pause()`, `Time::set_relative_speed()` and related methods must now be called as `Time<Virtual>::pause()` etc. - There is a new `max_delta` setting in `Time<Virtual>` that limits how much the clock can jump by a single update. The default value is 0.25 seconds. - Removed `on_fixed_timer()` condition as `on_timer()` does the right thing inside `FixedUpdate` now. ## Migration Guide - Change all `Res<Time>` instances that access `raw_delta()`, `raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`, `elapsed()`, etc. - Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>` and use `delta()`. - The default timestep has been changed from 60 Hz to 64 Hz. If you wish to restore the old behaviour, use `app.insert_resource(Time::<Fixed>::from_hz(60.0))`. - Change `app.insert_resource(FixedTime::new(duration))` to `app.insert_resource(Time::<Fixed>::from_duration(duration))` - Change `app.insert_resource(FixedTime::new_from_secs(secs))` to `app.insert_resource(Time::<Fixed>::from_seconds(secs))` - Change `system.on_fixed_timer(duration)` to `system.on_timer(duration)`. Timers in systems placed in `FixedUpdate` schedule automatically use the fixed time clock. - Change `ResMut<Time>` calls to `pause()`, `is_paused()`, `set_relative_speed()` and related methods to `ResMut<Time<Virtual>>` calls. The API is the same, with the exception that `relative_speed()` will return the actual last ste relative speed, while `effective_relative_speed()` returns 0.0 if the time is paused and corresponds to the speed that was set when the update for the current frame started. ## Todo - [x] Update pull name and description - [x] Top level documentation on usage - [x] Fix examples - [x] Decide on default `max_delta` value - [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed` good? - [x] Decide if the three clock inner structures should be in prelude - [x] Decide on best way to configure values at startup: is manually inserting a new clock instance okay, or should there be config struct separately? - [x] Fix links in docs - [x] Decide what should be public and what not - [x] Decide how `wrap_period` should be handled when it is changed - [x] ~~Add toggles to disable setting the clock as default?~~ No, separate pull if needed. - [x] Add tests - [x] Reformat, ensure adheres to conventions etc. - [x] Build documentation and see that it looks correct ## Contributors Huge thanks to @alice-i-cecile and @maniwani while building this pull. It was a shared effort! --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com> Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
/// * If the result is 1.0 the vectors are pointing in the same direction, the angle between them is
/// 0 degrees.
/// * If the result is 0.0 the vectors are perpendicular, the angle between them is 90 degrees.
/// * If the result is -1.0 the vectors are parallel but pointing in opposite directions, the angle
/// between them is 180 degrees.
/// * If the result is positive the vectors are pointing in roughly the same direction, the angle
/// between them is greater than 0 and less than 90 degrees.
/// * If the result is negative the vectors are pointing in roughly opposite directions, the angle
/// between them is greater than 90 and less than 180 degrees.
///
/// It is possible to get the angle by taking the arc cosine (`acos`) of the dot product. It is
/// often unnecessary to do this though. Beware than `acos` will return `NaN` if the input is less
/// than -1.0 or greater than 1.0. This can happen even when working with unit vectors due to
/// floating point precision loss, so it pays to clamp your dot product value before calling
/// `acos`.
fn rotate_to_player_system(
Unify `FixedTime` and `Time` while fixing several problems (#8964) # Objective Current `FixedTime` and `Time` have several problems. This pull aims to fix many of them at once. - If there is a longer pause between app updates, time will jump forward a lot at once and fixed time will iterate on `FixedUpdate` for a large number of steps. If the pause is merely seconds, then this will just mean jerkiness and possible unexpected behaviour in gameplay. If the pause is hours/days as with OS suspend, the game will appear to freeze until it has caught up with real time. - If calculating a fixed step takes longer than specified fixed step period, the game will enter a death spiral where rendering each frame takes longer and longer due to more and more fixed step updates being run per frame and the game appears to freeze. - There is no way to see current fixed step elapsed time inside fixed steps. In order to track this, the game designer needs to add a custom system inside `FixedUpdate` that calculates elapsed or step count in a resource. - Access to delta time inside fixed step is `FixedStep::period` rather than `Time::delta`. This, coupled with the issue that `Time::elapsed` isn't available at all for fixed steps, makes it that time requiring systems are either implemented to be run in `FixedUpdate` or `Update`, but rarely work in both. - Fixes #8800 - Fixes #8543 - Fixes #7439 - Fixes #5692 ## Solution - Create a generic `Time<T>` clock that has no processing logic but which can be instantiated for multiple usages. This is also exposed for users to add custom clocks. - Create three standard clocks, `Time<Real>`, `Time<Virtual>` and `Time<Fixed>`, all of which contain their individual logic. - Create one "default" clock, which is just `Time` (or `Time<()>`), which will be overwritten from `Time<Virtual>` on each update, and `Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do not care specifically which time they track can work both in `Update` and `FixedUpdate` without changes and the behaviour is intuitive. - Add `max_delta` to virtual time update, which limits how much can be added to virtual time by a single update. This fixes both the behaviour after a long freeze, and also the death spiral by limiting how many fixed timestep iterations there can be per update. Possible future work could be adding `max_accumulator` to add a sort of "leaky bucket" time processing to possibly smooth out jumps in time while keeping frame rate stable. - Many minor tweaks and clarifications to the time functions and their documentation. ## Changelog - `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match `Time` API - `FixedTime` is now `Time<Fixed>` and matches `Time` API. - `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds. - `Time` inside `FixedUpdate` now reflects fixed timestep time, making systems portable between `Update ` and `FixedUpdate`. - `Time::pause()`, `Time::set_relative_speed()` and related methods must now be called as `Time<Virtual>::pause()` etc. - There is a new `max_delta` setting in `Time<Virtual>` that limits how much the clock can jump by a single update. The default value is 0.25 seconds. - Removed `on_fixed_timer()` condition as `on_timer()` does the right thing inside `FixedUpdate` now. ## Migration Guide - Change all `Res<Time>` instances that access `raw_delta()`, `raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`, `elapsed()`, etc. - Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>` and use `delta()`. - The default timestep has been changed from 60 Hz to 64 Hz. If you wish to restore the old behaviour, use `app.insert_resource(Time::<Fixed>::from_hz(60.0))`. - Change `app.insert_resource(FixedTime::new(duration))` to `app.insert_resource(Time::<Fixed>::from_duration(duration))` - Change `app.insert_resource(FixedTime::new_from_secs(secs))` to `app.insert_resource(Time::<Fixed>::from_seconds(secs))` - Change `system.on_fixed_timer(duration)` to `system.on_timer(duration)`. Timers in systems placed in `FixedUpdate` schedule automatically use the fixed time clock. - Change `ResMut<Time>` calls to `pause()`, `is_paused()`, `set_relative_speed()` and related methods to `ResMut<Time<Virtual>>` calls. The API is the same, with the exception that `relative_speed()` will return the actual last ste relative speed, while `effective_relative_speed()` returns 0.0 if the time is paused and corresponds to the speed that was set when the update for the current frame started. ## Todo - [x] Update pull name and description - [x] Top level documentation on usage - [x] Fix examples - [x] Decide on default `max_delta` value - [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed` good? - [x] Decide if the three clock inner structures should be in prelude - [x] Decide on best way to configure values at startup: is manually inserting a new clock instance okay, or should there be config struct separately? - [x] Fix links in docs - [x] Decide what should be public and what not - [x] Decide how `wrap_period` should be handled when it is changed - [x] ~~Add toggles to disable setting the clock as default?~~ No, separate pull if needed. - [x] Add tests - [x] Reformat, ensure adheres to conventions etc. - [x] Build documentation and see that it looks correct ## Contributors Huge thanks to @alice-i-cecile and @maniwani while building this pull. It was a shared effort! --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com> Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
time: Res<Time>,
mut query: Query<(&RotateToPlayer, &mut Transform), Without<Player>>,
player_transform: Single<&Transform, With<Player>>,
) {
// get the player translation in 2D
let player_translation = player_transform.translation.xy();
for (config, mut enemy_transform) in &mut query {
// get the enemy ship forward vector in 2D (already unit length)
let enemy_forward = (enemy_transform.rotation * Vec3::Y).xy();
// get the vector from the enemy ship to the player ship in 2D and normalize it.
let to_player = (player_translation - enemy_transform.translation.xy()).normalize();
// get the dot product between the enemy forward vector and the direction to the player.
let forward_dot_player = enemy_forward.dot(to_player);
// if the dot product is approximately 1.0 then the enemy is already facing the player and
// we can early out.
if (forward_dot_player - 1.0).abs() < f32::EPSILON {
continue;
}
// get the right vector of the enemy ship in 2D (already unit length)
let enemy_right = (enemy_transform.rotation * Vec3::X).xy();
// get the dot product of the enemy right vector and the direction to the player ship.
// if the dot product is negative them we need to rotate counter clockwise, if it is
// positive we need to rotate clockwise. Note that `copysign` will still return 1.0 if the
// dot product is 0.0 (because the player is directly behind the enemy, so perpendicular
// with the right vector).
let right_dot_player = enemy_right.dot(to_player);
// determine the sign of rotation from the right dot player. We need to negate the sign
// here as the 2D bevy co-ordinate system rotates around +Z, which is pointing out of the
// screen. Due to the right hand rule, positive rotation around +Z is counter clockwise and
// negative is clockwise.
let rotation_sign = -f32::copysign(1.0, right_dot_player);
// limit rotation so we don't overshoot the target. We need to convert our dot product to
// an angle here so we can get an angle of rotation to clamp against.
let max_angle = ops::acos(forward_dot_player.clamp(-1.0, 1.0)); // clamp acos for safety
// calculate angle of rotation with limit
Unify `FixedTime` and `Time` while fixing several problems (#8964) # Objective Current `FixedTime` and `Time` have several problems. This pull aims to fix many of them at once. - If there is a longer pause between app updates, time will jump forward a lot at once and fixed time will iterate on `FixedUpdate` for a large number of steps. If the pause is merely seconds, then this will just mean jerkiness and possible unexpected behaviour in gameplay. If the pause is hours/days as with OS suspend, the game will appear to freeze until it has caught up with real time. - If calculating a fixed step takes longer than specified fixed step period, the game will enter a death spiral where rendering each frame takes longer and longer due to more and more fixed step updates being run per frame and the game appears to freeze. - There is no way to see current fixed step elapsed time inside fixed steps. In order to track this, the game designer needs to add a custom system inside `FixedUpdate` that calculates elapsed or step count in a resource. - Access to delta time inside fixed step is `FixedStep::period` rather than `Time::delta`. This, coupled with the issue that `Time::elapsed` isn't available at all for fixed steps, makes it that time requiring systems are either implemented to be run in `FixedUpdate` or `Update`, but rarely work in both. - Fixes #8800 - Fixes #8543 - Fixes #7439 - Fixes #5692 ## Solution - Create a generic `Time<T>` clock that has no processing logic but which can be instantiated for multiple usages. This is also exposed for users to add custom clocks. - Create three standard clocks, `Time<Real>`, `Time<Virtual>` and `Time<Fixed>`, all of which contain their individual logic. - Create one "default" clock, which is just `Time` (or `Time<()>`), which will be overwritten from `Time<Virtual>` on each update, and `Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do not care specifically which time they track can work both in `Update` and `FixedUpdate` without changes and the behaviour is intuitive. - Add `max_delta` to virtual time update, which limits how much can be added to virtual time by a single update. This fixes both the behaviour after a long freeze, and also the death spiral by limiting how many fixed timestep iterations there can be per update. Possible future work could be adding `max_accumulator` to add a sort of "leaky bucket" time processing to possibly smooth out jumps in time while keeping frame rate stable. - Many minor tweaks and clarifications to the time functions and their documentation. ## Changelog - `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match `Time` API - `FixedTime` is now `Time<Fixed>` and matches `Time` API. - `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds. - `Time` inside `FixedUpdate` now reflects fixed timestep time, making systems portable between `Update ` and `FixedUpdate`. - `Time::pause()`, `Time::set_relative_speed()` and related methods must now be called as `Time<Virtual>::pause()` etc. - There is a new `max_delta` setting in `Time<Virtual>` that limits how much the clock can jump by a single update. The default value is 0.25 seconds. - Removed `on_fixed_timer()` condition as `on_timer()` does the right thing inside `FixedUpdate` now. ## Migration Guide - Change all `Res<Time>` instances that access `raw_delta()`, `raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`, `elapsed()`, etc. - Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>` and use `delta()`. - The default timestep has been changed from 60 Hz to 64 Hz. If you wish to restore the old behaviour, use `app.insert_resource(Time::<Fixed>::from_hz(60.0))`. - Change `app.insert_resource(FixedTime::new(duration))` to `app.insert_resource(Time::<Fixed>::from_duration(duration))` - Change `app.insert_resource(FixedTime::new_from_secs(secs))` to `app.insert_resource(Time::<Fixed>::from_seconds(secs))` - Change `system.on_fixed_timer(duration)` to `system.on_timer(duration)`. Timers in systems placed in `FixedUpdate` schedule automatically use the fixed time clock. - Change `ResMut<Time>` calls to `pause()`, `is_paused()`, `set_relative_speed()` and related methods to `ResMut<Time<Virtual>>` calls. The API is the same, with the exception that `relative_speed()` will return the actual last ste relative speed, while `effective_relative_speed()` returns 0.0 if the time is paused and corresponds to the speed that was set when the update for the current frame started. ## Todo - [x] Update pull name and description - [x] Top level documentation on usage - [x] Fix examples - [x] Decide on default `max_delta` value - [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed` good? - [x] Decide if the three clock inner structures should be in prelude - [x] Decide on best way to configure values at startup: is manually inserting a new clock instance okay, or should there be config struct separately? - [x] Fix links in docs - [x] Decide what should be public and what not - [x] Decide how `wrap_period` should be handled when it is changed - [x] ~~Add toggles to disable setting the clock as default?~~ No, separate pull if needed. - [x] Add tests - [x] Reformat, ensure adheres to conventions etc. - [x] Build documentation and see that it looks correct ## Contributors Huge thanks to @alice-i-cecile and @maniwani while building this pull. It was a shared effort! --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com> Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
let rotation_angle =
rotation_sign * (config.rotation_speed * time.delta_secs()).min(max_angle);
// rotate the enemy to face the player
enemy_transform.rotate_z(rotation_angle);
}
}