bevy/crates/bevy_render/src/maths.wgsl

30 lines
648 B
WebGPU Shading Language
Raw Normal View History

#define_import_path bevy_render::maths
Add support for KHR_texture_transform (#11904) Adopted #8266, so copy-pasting the description from there: # Objective Support the KHR_texture_transform extension for the glTF loader. - Fixes #6335 - Fixes #11869 - Implements part of #11350 - Implements the GLTF part of #399 ## Solution As is, this only supports a single transform. Looking at Godot's source, they support one transform with an optional second one for detail, AO, and emission. glTF specifies one per texture. The public domain materials I looked at seem to share the same transform. So maybe having just one is acceptable for now. I tried to include a warning if multiple different transforms exist for the same material. Note the gltf crate doesn't expose the texture transform for the normal and occlusion textures, which it should, so I just ignored those for now. (note by @janhohenheim: this is still the case) Via `cargo run --release --example scene_viewer ~/src/clone/glTF-Sample-Models/2.0/TextureTransformTest/glTF/TextureTransformTest.gltf`: ![texture_transform](https://user-images.githubusercontent.com/283864/228938298-aa2ef524-555b-411d-9637-fd0dac226fb0.png) ## Changelog Support for the [KHR_texture_transform](https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_texture_transform) extension added. Texture UVs that were scaled, rotated, or offset in a GLTF are now properly handled. --------- Co-authored-by: Al McElrath <hello@yrns.org> Co-authored-by: Kanabenki <lucien.menassol@gmail.com>
2024-02-21 01:11:28 +00:00
fn affine2_to_square(affine: mat3x2<f32>) -> mat3x3<f32> {
return mat3x3<f32>(
vec3<f32>(affine[0].xy, 0.0),
vec3<f32>(affine[1].xy, 0.0),
vec3<f32>(affine[2].xy, 1.0),
);
}
fn affine3_to_square(affine: mat3x4<f32>) -> mat4x4<f32> {
return transpose(mat4x4<f32>(
affine[0],
affine[1],
affine[2],
vec4<f32>(0.0, 0.0, 0.0, 1.0),
));
}
fn mat2x4_f32_to_mat3x3_unpack(
a: mat2x4<f32>,
b: f32,
) -> mat3x3<f32> {
return mat3x3<f32>(
a[0].xyz,
vec3<f32>(a[0].w, a[1].xy),
vec3<f32>(a[1].zw, b),
);
}