2
0
Fork 0
mirror of https://github.com/bevyengine/bevy synced 2025-01-04 17:28:56 +00:00
bevy/crates/bevy_reflect/src/tuple.rs

577 lines
16 KiB
Rust
Raw Normal View History

bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
use crate::utility::NonGenericTypeInfoCell;
use crate::{
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
DynamicInfo, FromReflect, FromType, GetTypeRegistration, Reflect, ReflectDeserialize,
ReflectMut, ReflectRef, TypeInfo, TypeRegistration, Typed, UnnamedField,
};
use serde::Deserialize;
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
use std::any::{Any, TypeId};
bevy_reflect: Improve debug formatting for reflected types (#4218) # Objective Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`. It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation. ## Solution Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered. To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits. ### Example Using the following structs: ```rust #[derive(Reflect)] pub struct Foo { a: usize, nested: Bar, #[reflect(ignore)] _ignored: NonReflectedValue, } #[derive(Reflect)] pub struct Bar { value: Vec2, tuple_value: (i32, String), list_value: Vec<usize>, // We can't determine debug formatting for Option<T> yet unknown_value: Option<String>, custom_debug: CustomDebug } #[derive(Reflect)] #[reflect(Debug)] struct CustomDebug; impl Debug for CustomDebug { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "This is a custom debug!") } } pub struct NonReflectedValue { _a: usize, } ``` We can do: ```rust let value = Foo { a: 1, _ignored: NonReflectedValue { _a: 10 }, nested: Bar { value: Vec2::new(1.23, 3.21), tuple_value: (123, String::from("Hello")), list_value: vec![1, 2, 3], unknown_value: Some(String::from("World")), custom_debug: CustomDebug }, }; let reflected_value: &dyn Reflect = &value; println!("{:#?}", reflected_value) ``` Which results in: ```rust Foo { a: 2, nested: Bar { value: Vec2( 1.23, 3.21, ), tuple_value: ( 123, "Hello", ), list_value: [ 1, 2, 3, ], unknown_value: Reflect(core::option::Option<alloc::string::String>), custom_debug: This is a custom debug!, }, } ``` Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits). Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
use std::fmt::{Debug, Formatter};
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
use std::slice::Iter;
/// A reflected Rust tuple.
///
/// This trait is automatically implemented for arbitrary tuples of up to 12
/// elements, provided that each element implements [`Reflect`].
///
/// # Example
///
/// ```
/// use bevy_reflect::Tuple;
///
/// # fn main() {
/// let foo = ("blue".to_string(), 42_i32);
/// assert_eq!(foo.field_len(), 2);
///
/// let first = foo.field(0).unwrap();
/// assert_eq!(first.downcast_ref::<String>(), Some(&"blue".to_string()));
/// # }
/// ```
pub trait Tuple: Reflect {
/// Returns a reference to the value of the field with index `index` as a
/// `&dyn Reflect`.
fn field(&self, index: usize) -> Option<&dyn Reflect>;
/// Returns a mutable reference to the value of the field with index `index`
/// as a `&mut dyn Reflect`.
fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect>;
/// Returns the number of fields in the tuple.
fn field_len(&self) -> usize;
/// Returns an iterator over the values of the tuple's fields.
fn iter_fields(&self) -> TupleFieldIter;
/// Clones the struct into a [`DynamicTuple`].
fn clone_dynamic(&self) -> DynamicTuple;
}
/// An iterator over the field values of a tuple.
pub struct TupleFieldIter<'a> {
pub(crate) tuple: &'a dyn Tuple,
pub(crate) index: usize,
}
impl<'a> TupleFieldIter<'a> {
pub fn new(value: &'a dyn Tuple) -> Self {
TupleFieldIter {
tuple: value,
index: 0,
}
}
}
impl<'a> Iterator for TupleFieldIter<'a> {
type Item = &'a dyn Reflect;
fn next(&mut self) -> Option<Self::Item> {
let value = self.tuple.field(self.index);
self.index += 1;
value
}
fn size_hint(&self) -> (usize, Option<usize>) {
let size = self.tuple.field_len();
(size, Some(size))
}
}
impl<'a> ExactSizeIterator for TupleFieldIter<'a> {}
/// A convenience trait which combines fetching and downcasting of tuple
/// fields.
///
/// # Example
///
/// ```
/// use bevy_reflect::GetTupleField;
///
/// # fn main() {
/// let foo = ("blue".to_string(), 42_i32);
///
/// assert_eq!(foo.get_field::<String>(0), Some(&"blue".to_string()));
/// assert_eq!(foo.get_field::<i32>(1), Some(&42));
/// # }
/// ```
pub trait GetTupleField {
/// Returns a reference to the value of the field with index `index`,
/// downcast to `T`.
fn get_field<T: Reflect>(&self, index: usize) -> Option<&T>;
/// Returns a mutable reference to the value of the field with index
/// `index`, downcast to `T`.
fn get_field_mut<T: Reflect>(&mut self, index: usize) -> Option<&mut T>;
}
impl<S: Tuple> GetTupleField for S {
fn get_field<T: Reflect>(&self, index: usize) -> Option<&T> {
self.field(index)
.and_then(|value| value.downcast_ref::<T>())
}
fn get_field_mut<T: Reflect>(&mut self, index: usize) -> Option<&mut T> {
self.field_mut(index)
.and_then(|value| value.downcast_mut::<T>())
}
}
impl GetTupleField for dyn Tuple {
fn get_field<T: Reflect>(&self, index: usize) -> Option<&T> {
self.field(index)
.and_then(|value| value.downcast_ref::<T>())
}
fn get_field_mut<T: Reflect>(&mut self, index: usize) -> Option<&mut T> {
self.field_mut(index)
.and_then(|value| value.downcast_mut::<T>())
}
}
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
/// A container for compile-time tuple info.
#[derive(Clone, Debug)]
pub struct TupleInfo {
type_name: &'static str,
type_id: TypeId,
fields: Box<[UnnamedField]>,
}
impl TupleInfo {
/// Create a new [`TupleInfo`].
///
/// # Arguments
///
/// * `fields`: The fields of this tuple in the order they are defined
///
pub fn new<T: Reflect>(fields: &[UnnamedField]) -> Self {
Self {
type_name: std::any::type_name::<T>(),
type_id: TypeId::of::<T>(),
fields: fields.to_vec().into_boxed_slice(),
}
}
/// Get the field at the given index.
pub fn field_at(&self, index: usize) -> Option<&UnnamedField> {
self.fields.get(index)
}
/// Iterate over the fields of this tuple.
pub fn iter(&self) -> Iter<'_, UnnamedField> {
self.fields.iter()
}
/// The total number of fields in this tuple.
pub fn field_len(&self) -> usize {
self.fields.len()
}
/// The [type name] of the tuple.
///
/// [type name]: std::any::type_name
pub fn type_name(&self) -> &'static str {
self.type_name
}
/// The [`TypeId`] of the tuple.
pub fn type_id(&self) -> TypeId {
self.type_id
}
/// Check if the given type matches the tuple type.
pub fn is<T: Any>(&self) -> bool {
TypeId::of::<T>() == self.type_id
}
}
/// A tuple which allows fields to be added at runtime.
#[derive(Default)]
pub struct DynamicTuple {
name: String,
fields: Vec<Box<dyn Reflect>>,
}
impl DynamicTuple {
/// Returns the type name of the tuple.
///
/// The tuple's name is automatically generated from its element types.
pub fn name(&self) -> &str {
&self.name
}
/// Manually sets the type name of the tuple.
///
/// Note that the tuple name will be overwritten when elements are added.
pub fn set_name(&mut self, name: String) {
self.name = name;
}
/// Appends an element with value `value` to the tuple.
pub fn insert_boxed(&mut self, value: Box<dyn Reflect>) {
self.fields.push(value);
self.generate_name();
}
/// Appends a typed element with value `value` to the tuple.
pub fn insert<T: Reflect>(&mut self, value: T) {
self.insert_boxed(Box::new(value));
self.generate_name();
}
fn generate_name(&mut self) {
let name = &mut self.name;
name.clear();
name.push('(');
for (i, field) in self.fields.iter().enumerate() {
if i > 0 {
name.push_str(", ");
}
name.push_str(field.type_name());
}
name.push(')');
}
}
impl Tuple for DynamicTuple {
#[inline]
fn field(&self, index: usize) -> Option<&dyn Reflect> {
self.fields.get(index).map(|field| &**field)
}
#[inline]
fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> {
self.fields.get_mut(index).map(|field| &mut **field)
}
#[inline]
fn field_len(&self) -> usize {
self.fields.len()
}
#[inline]
fn iter_fields(&self) -> TupleFieldIter {
TupleFieldIter {
tuple: self,
index: 0,
}
}
#[inline]
fn clone_dynamic(&self) -> DynamicTuple {
DynamicTuple {
name: self.name.clone(),
fields: self
.fields
.iter()
.map(|value| value.clone_value())
.collect(),
}
}
}
impl Reflect for DynamicTuple {
#[inline]
fn type_name(&self) -> &str {
self.name()
}
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
#[inline]
fn get_type_info(&self) -> &'static TypeInfo {
<Self as Typed>::type_info()
}
#[inline]
fn into_any(self: Box<Self>) -> Box<dyn Any> {
self
}
#[inline]
fn as_any(&self) -> &dyn Any {
self
}
#[inline]
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
bevy_reflect: Add `as_reflect` and `as_reflect_mut` (#4350) # Objective Trait objects that have `Reflect` as a supertrait cannot be upcast to a `dyn Reflect`. Attempting something like: ```rust trait MyTrait: Reflect { // ... } fn foo(value: &dyn MyTrait) { let reflected = value as &dyn Reflect; // Error! // ... } ``` Results in `error[E0658]: trait upcasting coercion is experimental`. The reason this is important is that a lot of `bevy_reflect` methods require a `&dyn Reflect`. This is trivial with concrete types, but if we don't know the concrete type (we only have the trait object), we can't use these methods. For example, we couldn't create a `ReflectSerializer` for the type since it expects a `&dyn Reflect` value— even though we should be able to. ## Solution Add `as_reflect` and `as_reflect_mut` to `Reflect` to allow upcasting to a `dyn Reflect`: ```rust trait MyTrait: Reflect { // ... } fn foo(value: &dyn MyTrait) { let reflected = value.as_reflect(); // ... } ``` ## Alternatives We could defer this type of logic to the crate/user. They can add these methods to their trait in the same exact way we do here. The main benefit of doing it ourselves is it makes things convenient for them (especially when using the derive macro). We could also create an `AsReflect` trait with a blanket impl over all reflected types, however, I could not get that to work for trait objects since they aren't sized. --- ## Changelog - Added trait method `Reflect::as_reflect(&self)` - Added trait method `Reflect::as_reflect_mut(&mut self)` ## Migration Guide - Manual implementors of `Reflect` will need to add implementations for the methods above (this should be pretty easy as most cases just need to return `self`)
2022-04-25 13:54:48 +00:00
#[inline]
fn as_reflect(&self) -> &dyn Reflect {
self
}
#[inline]
fn as_reflect_mut(&mut self) -> &mut dyn Reflect {
self
}
#[inline]
fn clone_value(&self) -> Box<dyn Reflect> {
Box::new(self.clone_dynamic())
}
#[inline]
fn reflect_ref(&self) -> ReflectRef {
ReflectRef::Tuple(self)
}
#[inline]
fn reflect_mut(&mut self) -> ReflectMut {
ReflectMut::Tuple(self)
}
fn apply(&mut self, value: &dyn Reflect) {
tuple_apply(self, value);
}
fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> {
*self = value.take()?;
Ok(())
}
fn reflect_partial_eq(&self, value: &dyn Reflect) -> Option<bool> {
tuple_partial_eq(self, value)
}
bevy_reflect: Improve debug formatting for reflected types (#4218) # Objective Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`. It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation. ## Solution Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered. To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits. ### Example Using the following structs: ```rust #[derive(Reflect)] pub struct Foo { a: usize, nested: Bar, #[reflect(ignore)] _ignored: NonReflectedValue, } #[derive(Reflect)] pub struct Bar { value: Vec2, tuple_value: (i32, String), list_value: Vec<usize>, // We can't determine debug formatting for Option<T> yet unknown_value: Option<String>, custom_debug: CustomDebug } #[derive(Reflect)] #[reflect(Debug)] struct CustomDebug; impl Debug for CustomDebug { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "This is a custom debug!") } } pub struct NonReflectedValue { _a: usize, } ``` We can do: ```rust let value = Foo { a: 1, _ignored: NonReflectedValue { _a: 10 }, nested: Bar { value: Vec2::new(1.23, 3.21), tuple_value: (123, String::from("Hello")), list_value: vec![1, 2, 3], unknown_value: Some(String::from("World")), custom_debug: CustomDebug }, }; let reflected_value: &dyn Reflect = &value; println!("{:#?}", reflected_value) ``` Which results in: ```rust Foo { a: 2, nested: Bar { value: Vec2( 1.23, 3.21, ), tuple_value: ( 123, "Hello", ), list_value: [ 1, 2, 3, ], unknown_value: Reflect(core::option::Option<alloc::string::String>), custom_debug: This is a custom debug!, }, } ``` Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits). Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
fn debug(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "DynamicTuple(")?;
tuple_debug(self, f)?;
write!(f, ")")
}
}
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
impl Typed for DynamicTuple {
fn type_info() -> &'static TypeInfo {
static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
CELL.get_or_set(|| TypeInfo::Dynamic(DynamicInfo::new::<Self>()))
}
}
/// Applies the elements of `b` to the corresponding elements of `a`.
///
/// # Panics
///
/// This function panics if `b` is not a tuple.
#[inline]
pub fn tuple_apply<T: Tuple>(a: &mut T, b: &dyn Reflect) {
if let ReflectRef::Tuple(tuple) = b.reflect_ref() {
for (i, value) in tuple.iter_fields().enumerate() {
if let Some(v) = a.field_mut(i) {
v.apply(value);
}
}
} else {
panic!("Attempted to apply non-Tuple type to Tuple type.");
}
}
/// Compares a [`Tuple`] with a [`Reflect`] value.
///
/// Returns true if and only if all of the following are true:
/// - `b` is a tuple;
/// - `b` has the same number of elements as `a`;
/// - [`Reflect::reflect_partial_eq`] returns `Some(true)` for pairwise elements of `a` and `b`.
///
/// Returns [`None`] if the comparison couldn't even be performed.
#[inline]
pub fn tuple_partial_eq<T: Tuple>(a: &T, b: &dyn Reflect) -> Option<bool> {
let b = if let ReflectRef::Tuple(tuple) = b.reflect_ref() {
tuple
} else {
return Some(false);
};
if a.field_len() != b.field_len() {
return Some(false);
}
for (a_field, b_field) in a.iter_fields().zip(b.iter_fields()) {
let eq_result = a_field.reflect_partial_eq(b_field);
if let failed @ (Some(false) | None) = eq_result {
return failed;
}
}
Some(true)
}
bevy_reflect: Improve debug formatting for reflected types (#4218) # Objective Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`. It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation. ## Solution Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered. To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits. ### Example Using the following structs: ```rust #[derive(Reflect)] pub struct Foo { a: usize, nested: Bar, #[reflect(ignore)] _ignored: NonReflectedValue, } #[derive(Reflect)] pub struct Bar { value: Vec2, tuple_value: (i32, String), list_value: Vec<usize>, // We can't determine debug formatting for Option<T> yet unknown_value: Option<String>, custom_debug: CustomDebug } #[derive(Reflect)] #[reflect(Debug)] struct CustomDebug; impl Debug for CustomDebug { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "This is a custom debug!") } } pub struct NonReflectedValue { _a: usize, } ``` We can do: ```rust let value = Foo { a: 1, _ignored: NonReflectedValue { _a: 10 }, nested: Bar { value: Vec2::new(1.23, 3.21), tuple_value: (123, String::from("Hello")), list_value: vec![1, 2, 3], unknown_value: Some(String::from("World")), custom_debug: CustomDebug }, }; let reflected_value: &dyn Reflect = &value; println!("{:#?}", reflected_value) ``` Which results in: ```rust Foo { a: 2, nested: Bar { value: Vec2( 1.23, 3.21, ), tuple_value: ( 123, "Hello", ), list_value: [ 1, 2, 3, ], unknown_value: Reflect(core::option::Option<alloc::string::String>), custom_debug: This is a custom debug!, }, } ``` Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits). Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
/// The default debug formatter for [`Tuple`] types.
///
/// # Example
/// ```
/// use bevy_reflect::Reflect;
///
/// let my_tuple: &dyn Reflect = &(1, 2, 3);
/// println!("{:#?}", my_tuple);
///
/// // Output:
///
/// // (
/// // 1,
/// // 2,
/// // 3,
/// // )
/// ```
#[inline]
pub fn tuple_debug(dyn_tuple: &dyn Tuple, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut debug = f.debug_tuple("");
for field in dyn_tuple.iter_fields() {
debug.field(&field as &dyn Debug);
}
debug.finish()
}
macro_rules! impl_reflect_tuple {
{$($index:tt : $name:tt),*} => {
impl<$($name: Reflect),*> Tuple for ($($name,)*) {
#[inline]
fn field(&self, index: usize) -> Option<&dyn Reflect> {
match index {
$($index => Some(&self.$index as &dyn Reflect),)*
_ => None,
}
}
#[inline]
fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> {
match index {
$($index => Some(&mut self.$index as &mut dyn Reflect),)*
_ => None,
}
}
#[inline]
fn field_len(&self) -> usize {
let indices: &[usize] = &[$($index as usize),*];
indices.len()
}
#[inline]
fn iter_fields(&self) -> TupleFieldIter {
TupleFieldIter {
tuple: self,
index: 0,
}
}
#[inline]
fn clone_dynamic(&self) -> DynamicTuple {
let mut dyn_tuple = DynamicTuple {
name: String::default(),
fields: self
.iter_fields()
.map(|value| value.clone_value())
.collect(),
};
dyn_tuple.generate_name();
dyn_tuple
}
}
impl<$($name: Reflect),*> Reflect for ($($name,)*) {
fn type_name(&self) -> &str {
std::any::type_name::<Self>()
}
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
fn get_type_info(&self) -> &'static TypeInfo {
<Self as Typed>::type_info()
}
fn into_any(self: Box<Self>) -> Box<dyn Any> {
self
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
bevy_reflect: Add `as_reflect` and `as_reflect_mut` (#4350) # Objective Trait objects that have `Reflect` as a supertrait cannot be upcast to a `dyn Reflect`. Attempting something like: ```rust trait MyTrait: Reflect { // ... } fn foo(value: &dyn MyTrait) { let reflected = value as &dyn Reflect; // Error! // ... } ``` Results in `error[E0658]: trait upcasting coercion is experimental`. The reason this is important is that a lot of `bevy_reflect` methods require a `&dyn Reflect`. This is trivial with concrete types, but if we don't know the concrete type (we only have the trait object), we can't use these methods. For example, we couldn't create a `ReflectSerializer` for the type since it expects a `&dyn Reflect` value— even though we should be able to. ## Solution Add `as_reflect` and `as_reflect_mut` to `Reflect` to allow upcasting to a `dyn Reflect`: ```rust trait MyTrait: Reflect { // ... } fn foo(value: &dyn MyTrait) { let reflected = value.as_reflect(); // ... } ``` ## Alternatives We could defer this type of logic to the crate/user. They can add these methods to their trait in the same exact way we do here. The main benefit of doing it ourselves is it makes things convenient for them (especially when using the derive macro). We could also create an `AsReflect` trait with a blanket impl over all reflected types, however, I could not get that to work for trait objects since they aren't sized. --- ## Changelog - Added trait method `Reflect::as_reflect(&self)` - Added trait method `Reflect::as_reflect_mut(&mut self)` ## Migration Guide - Manual implementors of `Reflect` will need to add implementations for the methods above (this should be pretty easy as most cases just need to return `self`)
2022-04-25 13:54:48 +00:00
fn as_reflect(&self) -> &dyn Reflect {
self
}
fn as_reflect_mut(&mut self) -> &mut dyn Reflect {
self
}
fn apply(&mut self, value: &dyn Reflect) {
crate::tuple_apply(self, value);
}
fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> {
*self = value.take()?;
Ok(())
}
fn reflect_ref(&self) -> ReflectRef {
ReflectRef::Tuple(self)
}
fn reflect_mut(&mut self) -> ReflectMut {
ReflectMut::Tuple(self)
}
fn clone_value(&self) -> Box<dyn Reflect> {
Box::new(self.clone_dynamic())
}
fn reflect_partial_eq(&self, value: &dyn Reflect) -> Option<bool> {
crate::tuple_partial_eq(self, value)
}
}
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
impl <$($name: Reflect),*> Typed for ($($name,)*) {
fn type_info() -> &'static TypeInfo {
static CELL: $crate::utility::GenericTypeInfoCell = $crate::utility::GenericTypeInfoCell::new();
CELL.get_or_insert::<Self, _>(|| {
let fields = [
$(UnnamedField::new::<$name>($index),)*
];
let info = TupleInfo::new::<Self>(&fields);
TypeInfo::Tuple(info)
})
}
}
impl<$($name: Reflect + Typed + for<'de> Deserialize<'de>),*> GetTypeRegistration for ($($name,)*) {
fn get_type_registration() -> TypeRegistration {
let mut registration = TypeRegistration::of::<($($name,)*)>();
registration.insert::<ReflectDeserialize>(FromType::<($($name,)*)>::from_type());
registration
}
}
impl<$($name: FromReflect),*> FromReflect for ($($name,)*)
{
fn from_reflect(reflect: &dyn Reflect) -> Option<Self> {
if let ReflectRef::Tuple(_ref_tuple) = reflect.reflect_ref() {
Some(
(
$(
<$name as FromReflect>::from_reflect(_ref_tuple.field($index)?)?,
)*
)
)
} else {
None
}
}
}
}
}
impl_reflect_tuple! {}
impl_reflect_tuple! {0: A}
impl_reflect_tuple! {0: A, 1: B}
impl_reflect_tuple! {0: A, 1: B, 2: C}
impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D}
impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E}
impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F}
impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G}
impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H}
impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I}
impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I, 9: J}
impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I, 9: J, 10: K}
impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I, 9: J, 10: K, 11: L}