bevy/crates/glsl-to-spirv/glslang/SPIRV/SpvBuilder.cpp

2635 lines
88 KiB
C++
Raw Normal View History

//
// Copyright (C) 2014-2015 LunarG, Inc.
// Copyright (C) 2015-2016 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Helper for making SPIR-V IR. Generally, this is documented in the header
// SpvBuilder.h.
//
#include <cassert>
#include <cstdlib>
#include <unordered_set>
#include <algorithm>
#include "SpvBuilder.h"
#ifdef AMD_EXTENSIONS
#include "hex_float.h"
#endif
#ifndef _WIN32
#include <cstdio>
#endif
namespace spv {
Builder::Builder(unsigned int magicNumber, SpvBuildLogger* buildLogger) :
source(SourceLanguageUnknown),
sourceVersion(0),
sourceFileStringId(NoResult),
currentLine(0),
emitOpLines(false),
addressModel(AddressingModelLogical),
memoryModel(MemoryModelGLSL450),
builderNumber(magicNumber),
buildPoint(0),
uniqueId(0),
entryPointFunction(0),
generatingOpCodeForSpecConst(false),
logger(buildLogger)
{
clearAccessChain();
}
Builder::~Builder()
{
}
Id Builder::import(const char* name)
{
Instruction* import = new Instruction(getUniqueId(), NoType, OpExtInstImport);
import->addStringOperand(name);
imports.push_back(std::unique_ptr<Instruction>(import));
return import->getResultId();
}
// Emit an OpLine if we've been asked to emit OpLines and the line number
// has changed since the last time, and is a valid line number.
void Builder::setLine(int lineNum)
{
if (lineNum != 0 && lineNum != currentLine) {
currentLine = lineNum;
if (emitOpLines)
addLine(sourceFileStringId, currentLine, 0);
}
}
void Builder::addLine(Id fileName, int lineNum, int column)
{
Instruction* line = new Instruction(OpLine);
line->addIdOperand(fileName);
line->addImmediateOperand(lineNum);
line->addImmediateOperand(column);
buildPoint->addInstruction(std::unique_ptr<Instruction>(line));
}
// For creating new groupedTypes (will return old type if the requested one was already made).
Id Builder::makeVoidType()
{
Instruction* type;
if (groupedTypes[OpTypeVoid].size() == 0) {
type = new Instruction(getUniqueId(), NoType, OpTypeVoid);
groupedTypes[OpTypeVoid].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
} else
type = groupedTypes[OpTypeVoid].back();
return type->getResultId();
}
Id Builder::makeBoolType()
{
Instruction* type;
if (groupedTypes[OpTypeBool].size() == 0) {
type = new Instruction(getUniqueId(), NoType, OpTypeBool);
groupedTypes[OpTypeBool].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
} else
type = groupedTypes[OpTypeBool].back();
return type->getResultId();
}
Id Builder::makeSamplerType()
{
Instruction* type;
if (groupedTypes[OpTypeSampler].size() == 0) {
type = new Instruction(getUniqueId(), NoType, OpTypeSampler);
groupedTypes[OpTypeSampler].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
} else
type = groupedTypes[OpTypeSampler].back();
return type->getResultId();
}
Id Builder::makePointer(StorageClass storageClass, Id pointee)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
type = groupedTypes[OpTypePointer][t];
if (type->getImmediateOperand(0) == (unsigned)storageClass &&
type->getIdOperand(1) == pointee)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypePointer);
type->addImmediateOperand(storageClass);
type->addIdOperand(pointee);
groupedTypes[OpTypePointer].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeIntegerType(int width, bool hasSign)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeInt].size(); ++t) {
type = groupedTypes[OpTypeInt][t];
if (type->getImmediateOperand(0) == (unsigned)width &&
type->getImmediateOperand(1) == (hasSign ? 1u : 0u))
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeInt);
type->addImmediateOperand(width);
type->addImmediateOperand(hasSign ? 1 : 0);
groupedTypes[OpTypeInt].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
// deal with capabilities
switch (width) {
case 16:
addCapability(CapabilityInt16);
break;
case 64:
addCapability(CapabilityInt64);
break;
default:
break;
}
return type->getResultId();
}
Id Builder::makeFloatType(int width)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeFloat].size(); ++t) {
type = groupedTypes[OpTypeFloat][t];
if (type->getImmediateOperand(0) == (unsigned)width)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeFloat);
type->addImmediateOperand(width);
groupedTypes[OpTypeFloat].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
// deal with capabilities
switch (width) {
case 16:
addCapability(CapabilityFloat16);
break;
case 64:
addCapability(CapabilityFloat64);
break;
default:
break;
}
return type->getResultId();
}
// Make a struct without checking for duplication.
// See makeStructResultType() for non-decorated structs
// needed as the result of some instructions, which does
// check for duplicates.
Id Builder::makeStructType(const std::vector<Id>& members, const char* name)
{
// Don't look for previous one, because in the general case,
// structs can be duplicated except for decorations.
// not found, make it
Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeStruct);
for (int op = 0; op < (int)members.size(); ++op)
type->addIdOperand(members[op]);
groupedTypes[OpTypeStruct].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
addName(type->getResultId(), name);
return type->getResultId();
}
// Make a struct for the simple results of several instructions,
// checking for duplication.
Id Builder::makeStructResultType(Id type0, Id type1)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeStruct].size(); ++t) {
type = groupedTypes[OpTypeStruct][t];
if (type->getNumOperands() != 2)
continue;
if (type->getIdOperand(0) != type0 ||
type->getIdOperand(1) != type1)
continue;
return type->getResultId();
}
// not found, make it
std::vector<spv::Id> members;
members.push_back(type0);
members.push_back(type1);
return makeStructType(members, "ResType");
}
Id Builder::makeVectorType(Id component, int size)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeVector].size(); ++t) {
type = groupedTypes[OpTypeVector][t];
if (type->getIdOperand(0) == component &&
type->getImmediateOperand(1) == (unsigned)size)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeVector);
type->addIdOperand(component);
type->addImmediateOperand(size);
groupedTypes[OpTypeVector].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeMatrixType(Id component, int cols, int rows)
{
assert(cols <= maxMatrixSize && rows <= maxMatrixSize);
Id column = makeVectorType(component, rows);
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeMatrix].size(); ++t) {
type = groupedTypes[OpTypeMatrix][t];
if (type->getIdOperand(0) == column &&
type->getImmediateOperand(1) == (unsigned)cols)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeMatrix);
type->addIdOperand(column);
type->addImmediateOperand(cols);
groupedTypes[OpTypeMatrix].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
return type->getResultId();
}
// TODO: performance: track arrays per stride
// If a stride is supplied (non-zero) make an array.
// If no stride (0), reuse previous array types.
// 'size' is an Id of a constant or specialization constant of the array size
Id Builder::makeArrayType(Id element, Id sizeId, int stride)
{
Instruction* type;
if (stride == 0) {
// try to find existing type
for (int t = 0; t < (int)groupedTypes[OpTypeArray].size(); ++t) {
type = groupedTypes[OpTypeArray][t];
if (type->getIdOperand(0) == element &&
type->getIdOperand(1) == sizeId)
return type->getResultId();
}
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeArray);
type->addIdOperand(element);
type->addIdOperand(sizeId);
groupedTypes[OpTypeArray].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeRuntimeArray(Id element)
{
Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeRuntimeArray);
type->addIdOperand(element);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeFunctionType(Id returnType, const std::vector<Id>& paramTypes)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeFunction].size(); ++t) {
type = groupedTypes[OpTypeFunction][t];
if (type->getIdOperand(0) != returnType || (int)paramTypes.size() != type->getNumOperands() - 1)
continue;
bool mismatch = false;
for (int p = 0; p < (int)paramTypes.size(); ++p) {
if (paramTypes[p] != type->getIdOperand(p + 1)) {
mismatch = true;
break;
}
}
if (! mismatch)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeFunction);
type->addIdOperand(returnType);
for (int p = 0; p < (int)paramTypes.size(); ++p)
type->addIdOperand(paramTypes[p]);
groupedTypes[OpTypeFunction].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeImageType(Id sampledType, Dim dim, bool depth, bool arrayed, bool ms, unsigned sampled, ImageFormat format)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeImage].size(); ++t) {
type = groupedTypes[OpTypeImage][t];
if (type->getIdOperand(0) == sampledType &&
type->getImmediateOperand(1) == (unsigned int)dim &&
type->getImmediateOperand(2) == ( depth ? 1u : 0u) &&
type->getImmediateOperand(3) == (arrayed ? 1u : 0u) &&
type->getImmediateOperand(4) == ( ms ? 1u : 0u) &&
type->getImmediateOperand(5) == sampled &&
type->getImmediateOperand(6) == (unsigned int)format)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeImage);
type->addIdOperand(sampledType);
type->addImmediateOperand( dim);
type->addImmediateOperand( depth ? 1 : 0);
type->addImmediateOperand(arrayed ? 1 : 0);
type->addImmediateOperand( ms ? 1 : 0);
type->addImmediateOperand(sampled);
type->addImmediateOperand((unsigned int)format);
groupedTypes[OpTypeImage].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
// deal with capabilities
switch (dim) {
case DimBuffer:
if (sampled)
addCapability(CapabilitySampledBuffer);
else
addCapability(CapabilityImageBuffer);
break;
case Dim1D:
if (sampled)
addCapability(CapabilitySampled1D);
else
addCapability(CapabilityImage1D);
break;
case DimCube:
if (arrayed) {
if (sampled)
addCapability(CapabilitySampledCubeArray);
else
addCapability(CapabilityImageCubeArray);
}
break;
case DimRect:
if (sampled)
addCapability(CapabilitySampledRect);
else
addCapability(CapabilityImageRect);
break;
case DimSubpassData:
addCapability(CapabilityInputAttachment);
break;
default:
break;
}
if (ms) {
if (arrayed)
addCapability(CapabilityImageMSArray);
if (! sampled)
addCapability(CapabilityStorageImageMultisample);
}
return type->getResultId();
}
Id Builder::makeSampledImageType(Id imageType)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeSampledImage].size(); ++t) {
type = groupedTypes[OpTypeSampledImage][t];
if (type->getIdOperand(0) == imageType)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeSampledImage);
type->addIdOperand(imageType);
groupedTypes[OpTypeSampledImage].push_back(type);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::getDerefTypeId(Id resultId) const
{
Id typeId = getTypeId(resultId);
assert(isPointerType(typeId));
return module.getInstruction(typeId)->getImmediateOperand(1);
}
Op Builder::getMostBasicTypeClass(Id typeId) const
{
Instruction* instr = module.getInstruction(typeId);
Op typeClass = instr->getOpCode();
switch (typeClass)
{
case OpTypeVoid:
case OpTypeBool:
case OpTypeInt:
case OpTypeFloat:
case OpTypeStruct:
return typeClass;
case OpTypeVector:
case OpTypeMatrix:
case OpTypeArray:
case OpTypeRuntimeArray:
return getMostBasicTypeClass(instr->getIdOperand(0));
case OpTypePointer:
return getMostBasicTypeClass(instr->getIdOperand(1));
default:
assert(0);
return OpTypeFloat;
}
}
int Builder::getNumTypeConstituents(Id typeId) const
{
Instruction* instr = module.getInstruction(typeId);
switch (instr->getOpCode())
{
case OpTypeBool:
case OpTypeInt:
case OpTypeFloat:
return 1;
case OpTypeVector:
case OpTypeMatrix:
return instr->getImmediateOperand(1);
case OpTypeArray:
{
Id lengthId = instr->getImmediateOperand(1);
return module.getInstruction(lengthId)->getImmediateOperand(0);
}
case OpTypeStruct:
return instr->getNumOperands();
default:
assert(0);
return 1;
}
}
// Return the lowest-level type of scalar that an homogeneous composite is made out of.
// Typically, this is just to find out if something is made out of ints or floats.
// However, it includes returning a structure, if say, it is an array of structure.
Id Builder::getScalarTypeId(Id typeId) const
{
Instruction* instr = module.getInstruction(typeId);
Op typeClass = instr->getOpCode();
switch (typeClass)
{
case OpTypeVoid:
case OpTypeBool:
case OpTypeInt:
case OpTypeFloat:
case OpTypeStruct:
return instr->getResultId();
case OpTypeVector:
case OpTypeMatrix:
case OpTypeArray:
case OpTypeRuntimeArray:
case OpTypePointer:
return getScalarTypeId(getContainedTypeId(typeId));
default:
assert(0);
return NoResult;
}
}
// Return the type of 'member' of a composite.
Id Builder::getContainedTypeId(Id typeId, int member) const
{
Instruction* instr = module.getInstruction(typeId);
Op typeClass = instr->getOpCode();
switch (typeClass)
{
case OpTypeVector:
case OpTypeMatrix:
case OpTypeArray:
case OpTypeRuntimeArray:
return instr->getIdOperand(0);
case OpTypePointer:
return instr->getIdOperand(1);
case OpTypeStruct:
return instr->getIdOperand(member);
default:
assert(0);
return NoResult;
}
}
// Return the immediately contained type of a given composite type.
Id Builder::getContainedTypeId(Id typeId) const
{
return getContainedTypeId(typeId, 0);
}
// See if a scalar constant of this type has already been created, so it
// can be reused rather than duplicated. (Required by the specification).
Id Builder::findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned value) const
{
Instruction* constant;
for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
constant = groupedConstants[typeClass][i];
if (constant->getOpCode() == opcode &&
constant->getTypeId() == typeId &&
constant->getImmediateOperand(0) == value)
return constant->getResultId();
}
return 0;
}
// Version of findScalarConstant (see above) for scalars that take two operands (e.g. a 'double' or 'int64').
Id Builder::findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned v1, unsigned v2) const
{
Instruction* constant;
for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
constant = groupedConstants[typeClass][i];
if (constant->getOpCode() == opcode &&
constant->getTypeId() == typeId &&
constant->getImmediateOperand(0) == v1 &&
constant->getImmediateOperand(1) == v2)
return constant->getResultId();
}
return 0;
}
// Return true if consuming 'opcode' means consuming a constant.
// "constant" here means after final transform to executable code,
// the value consumed will be a constant, so includes specialization.
bool Builder::isConstantOpCode(Op opcode) const
{
switch (opcode) {
case OpUndef:
case OpConstantTrue:
case OpConstantFalse:
case OpConstant:
case OpConstantComposite:
case OpConstantSampler:
case OpConstantNull:
case OpSpecConstantTrue:
case OpSpecConstantFalse:
case OpSpecConstant:
case OpSpecConstantComposite:
case OpSpecConstantOp:
return true;
default:
return false;
}
}
// Return true if consuming 'opcode' means consuming a specialization constant.
bool Builder::isSpecConstantOpCode(Op opcode) const
{
switch (opcode) {
case OpSpecConstantTrue:
case OpSpecConstantFalse:
case OpSpecConstant:
case OpSpecConstantComposite:
case OpSpecConstantOp:
return true;
default:
return false;
}
}
Id Builder::makeBoolConstant(bool b, bool specConstant)
{
Id typeId = makeBoolType();
Instruction* constant;
Op opcode = specConstant ? (b ? OpSpecConstantTrue : OpSpecConstantFalse) : (b ? OpConstantTrue : OpConstantFalse);
// See if we already made it. Applies only to regular constants, because specialization constants
// must remain distinct for the purpose of applying a SpecId decoration.
if (! specConstant) {
Id existing = 0;
for (int i = 0; i < (int)groupedConstants[OpTypeBool].size(); ++i) {
constant = groupedConstants[OpTypeBool][i];
if (constant->getTypeId() == typeId && constant->getOpCode() == opcode)
existing = constant->getResultId();
}
if (existing)
return existing;
}
// Make it
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
groupedConstants[OpTypeBool].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
Id Builder::makeIntConstant(Id typeId, unsigned value, bool specConstant)
{
Op opcode = specConstant ? OpSpecConstant : OpConstant;
// See if we already made it. Applies only to regular constants, because specialization constants
// must remain distinct for the purpose of applying a SpecId decoration.
if (! specConstant) {
Id existing = findScalarConstant(OpTypeInt, opcode, typeId, value);
if (existing)
return existing;
}
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
c->addImmediateOperand(value);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
groupedConstants[OpTypeInt].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
Id Builder::makeInt64Constant(Id typeId, unsigned long long value, bool specConstant)
{
Op opcode = specConstant ? OpSpecConstant : OpConstant;
unsigned op1 = value & 0xFFFFFFFF;
unsigned op2 = value >> 32;
// See if we already made it. Applies only to regular constants, because specialization constants
// must remain distinct for the purpose of applying a SpecId decoration.
if (! specConstant) {
Id existing = findScalarConstant(OpTypeInt, opcode, typeId, op1, op2);
if (existing)
return existing;
}
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
c->addImmediateOperand(op1);
c->addImmediateOperand(op2);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
groupedConstants[OpTypeInt].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
Id Builder::makeFloatConstant(float f, bool specConstant)
{
Op opcode = specConstant ? OpSpecConstant : OpConstant;
Id typeId = makeFloatType(32);
union { float fl; unsigned int ui; } u;
u.fl = f;
unsigned value = u.ui;
// See if we already made it. Applies only to regular constants, because specialization constants
// must remain distinct for the purpose of applying a SpecId decoration.
if (! specConstant) {
Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, value);
if (existing)
return existing;
}
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
c->addImmediateOperand(value);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
groupedConstants[OpTypeFloat].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
Id Builder::makeDoubleConstant(double d, bool specConstant)
{
Op opcode = specConstant ? OpSpecConstant : OpConstant;
Id typeId = makeFloatType(64);
union { double db; unsigned long long ull; } u;
u.db = d;
unsigned long long value = u.ull;
unsigned op1 = value & 0xFFFFFFFF;
unsigned op2 = value >> 32;
// See if we already made it. Applies only to regular constants, because specialization constants
// must remain distinct for the purpose of applying a SpecId decoration.
if (! specConstant) {
Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, op1, op2);
if (existing)
return existing;
}
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
c->addImmediateOperand(op1);
c->addImmediateOperand(op2);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
groupedConstants[OpTypeFloat].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
#ifdef AMD_EXTENSIONS
Id Builder::makeFloat16Constant(float f16, bool specConstant)
{
Op opcode = specConstant ? OpSpecConstant : OpConstant;
Id typeId = makeFloatType(16);
spvutils::HexFloat<spvutils::FloatProxy<float>> fVal(f16);
spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>> f16Val(0);
fVal.castTo(f16Val, spvutils::kRoundToZero);
unsigned value = f16Val.value().getAsFloat().get_value();
// See if we already made it. Applies only to regular constants, because specialization constants
// must remain distinct for the purpose of applying a SpecId decoration.
if (!specConstant) {
Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, value);
if (existing)
return existing;
}
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
c->addImmediateOperand(value);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
groupedConstants[OpTypeFloat].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
#endif
Id Builder::findCompositeConstant(Op typeClass, const std::vector<Id>& comps) const
{
Instruction* constant = 0;
bool found = false;
for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
constant = groupedConstants[typeClass][i];
// same shape?
if (constant->getNumOperands() != (int)comps.size())
continue;
// same contents?
bool mismatch = false;
for (int op = 0; op < constant->getNumOperands(); ++op) {
if (constant->getIdOperand(op) != comps[op]) {
mismatch = true;
break;
}
}
if (! mismatch) {
found = true;
break;
}
}
return found ? constant->getResultId() : NoResult;
}
// Comments in header
Id Builder::makeCompositeConstant(Id typeId, const std::vector<Id>& members, bool specConstant)
{
Op opcode = specConstant ? OpSpecConstantComposite : OpConstantComposite;
assert(typeId);
Op typeClass = getTypeClass(typeId);
switch (typeClass) {
case OpTypeVector:
case OpTypeArray:
case OpTypeStruct:
case OpTypeMatrix:
break;
default:
assert(0);
return makeFloatConstant(0.0);
}
if (! specConstant) {
Id existing = findCompositeConstant(typeClass, members);
if (existing)
return existing;
}
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
for (int op = 0; op < (int)members.size(); ++op)
c->addIdOperand(members[op]);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
groupedConstants[typeClass].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
Instruction* Builder::addEntryPoint(ExecutionModel model, Function* function, const char* name)
{
Instruction* entryPoint = new Instruction(OpEntryPoint);
entryPoint->addImmediateOperand(model);
entryPoint->addIdOperand(function->getId());
entryPoint->addStringOperand(name);
entryPoints.push_back(std::unique_ptr<Instruction>(entryPoint));
return entryPoint;
}
// Currently relying on the fact that all 'value' of interest are small non-negative values.
void Builder::addExecutionMode(Function* entryPoint, ExecutionMode mode, int value1, int value2, int value3)
{
Instruction* instr = new Instruction(OpExecutionMode);
instr->addIdOperand(entryPoint->getId());
instr->addImmediateOperand(mode);
if (value1 >= 0)
instr->addImmediateOperand(value1);
if (value2 >= 0)
instr->addImmediateOperand(value2);
if (value3 >= 0)
instr->addImmediateOperand(value3);
executionModes.push_back(std::unique_ptr<Instruction>(instr));
}
void Builder::addName(Id id, const char* string)
{
Instruction* name = new Instruction(OpName);
name->addIdOperand(id);
name->addStringOperand(string);
names.push_back(std::unique_ptr<Instruction>(name));
}
void Builder::addMemberName(Id id, int memberNumber, const char* string)
{
Instruction* name = new Instruction(OpMemberName);
name->addIdOperand(id);
name->addImmediateOperand(memberNumber);
name->addStringOperand(string);
names.push_back(std::unique_ptr<Instruction>(name));
}
void Builder::addDecoration(Id id, Decoration decoration, int num)
{
if (decoration == spv::DecorationMax)
return;
Instruction* dec = new Instruction(OpDecorate);
dec->addIdOperand(id);
dec->addImmediateOperand(decoration);
if (num >= 0)
dec->addImmediateOperand(num);
decorations.push_back(std::unique_ptr<Instruction>(dec));
}
void Builder::addMemberDecoration(Id id, unsigned int member, Decoration decoration, int num)
{
Instruction* dec = new Instruction(OpMemberDecorate);
dec->addIdOperand(id);
dec->addImmediateOperand(member);
dec->addImmediateOperand(decoration);
if (num >= 0)
dec->addImmediateOperand(num);
decorations.push_back(std::unique_ptr<Instruction>(dec));
}
// Comments in header
Function* Builder::makeEntryPoint(const char* entryPoint)
{
assert(! entryPointFunction);
Block* entry;
std::vector<Id> params;
std::vector<Decoration> precisions;
entryPointFunction = makeFunctionEntry(NoPrecision, makeVoidType(), entryPoint, params, precisions, &entry);
return entryPointFunction;
}
// Comments in header
Function* Builder::makeFunctionEntry(Decoration precision, Id returnType, const char* name,
const std::vector<Id>& paramTypes, const std::vector<Decoration>& precisions, Block **entry)
{
// Make the function and initial instructions in it
Id typeId = makeFunctionType(returnType, paramTypes);
Id firstParamId = paramTypes.size() == 0 ? 0 : getUniqueIds((int)paramTypes.size());
Function* function = new Function(getUniqueId(), returnType, typeId, firstParamId, module);
// Set up the precisions
setPrecision(function->getId(), precision);
for (unsigned p = 0; p < (unsigned)precisions.size(); ++p)
setPrecision(firstParamId + p, precisions[p]);
// CFG
if (entry) {
*entry = new Block(getUniqueId(), *function);
function->addBlock(*entry);
setBuildPoint(*entry);
}
if (name)
addName(function->getId(), name);
functions.push_back(std::unique_ptr<Function>(function));
return function;
}
// Comments in header
void Builder::makeReturn(bool implicit, Id retVal)
{
if (retVal) {
Instruction* inst = new Instruction(NoResult, NoType, OpReturnValue);
inst->addIdOperand(retVal);
buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
} else
buildPoint->addInstruction(std::unique_ptr<Instruction>(new Instruction(NoResult, NoType, OpReturn)));
if (! implicit)
createAndSetNoPredecessorBlock("post-return");
}
// Comments in header
void Builder::leaveFunction()
{
Block* block = buildPoint;
Function& function = buildPoint->getParent();
assert(block);
// If our function did not contain a return, add a return void now.
if (! block->isTerminated()) {
if (function.getReturnType() == makeVoidType())
makeReturn(true);
else {
makeReturn(true, createUndefined(function.getReturnType()));
}
}
}
// Comments in header
void Builder::makeDiscard()
{
buildPoint->addInstruction(std::unique_ptr<Instruction>(new Instruction(OpKill)));
createAndSetNoPredecessorBlock("post-discard");
}
// Comments in header
Id Builder::createVariable(StorageClass storageClass, Id type, const char* name)
{
Id pointerType = makePointer(storageClass, type);
Instruction* inst = new Instruction(getUniqueId(), pointerType, OpVariable);
inst->addImmediateOperand(storageClass);
switch (storageClass) {
case StorageClassFunction:
// Validation rules require the declaration in the entry block
buildPoint->getParent().addLocalVariable(std::unique_ptr<Instruction>(inst));
break;
default:
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(inst));
module.mapInstruction(inst);
break;
}
if (name)
addName(inst->getResultId(), name);
return inst->getResultId();
}
// Comments in header
Id Builder::createUndefined(Id type)
{
Instruction* inst = new Instruction(getUniqueId(), type, OpUndef);
buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
return inst->getResultId();
}
// Comments in header
void Builder::createStore(Id rValue, Id lValue)
{
Instruction* store = new Instruction(OpStore);
store->addIdOperand(lValue);
store->addIdOperand(rValue);
buildPoint->addInstruction(std::unique_ptr<Instruction>(store));
}
// Comments in header
Id Builder::createLoad(Id lValue)
{
Instruction* load = new Instruction(getUniqueId(), getDerefTypeId(lValue), OpLoad);
load->addIdOperand(lValue);
buildPoint->addInstruction(std::unique_ptr<Instruction>(load));
return load->getResultId();
}
// Comments in header
Id Builder::createAccessChain(StorageClass storageClass, Id base, const std::vector<Id>& offsets)
{
// Figure out the final resulting type.
spv::Id typeId = getTypeId(base);
assert(isPointerType(typeId) && offsets.size() > 0);
typeId = getContainedTypeId(typeId);
for (int i = 0; i < (int)offsets.size(); ++i) {
if (isStructType(typeId)) {
assert(isConstantScalar(offsets[i]));
typeId = getContainedTypeId(typeId, getConstantScalar(offsets[i]));
} else
typeId = getContainedTypeId(typeId, offsets[i]);
}
typeId = makePointer(storageClass, typeId);
// Make the instruction
Instruction* chain = new Instruction(getUniqueId(), typeId, OpAccessChain);
chain->addIdOperand(base);
for (int i = 0; i < (int)offsets.size(); ++i)
chain->addIdOperand(offsets[i]);
buildPoint->addInstruction(std::unique_ptr<Instruction>(chain));
return chain->getResultId();
}
Id Builder::createArrayLength(Id base, unsigned int member)
{
spv::Id intType = makeIntType(32);
Instruction* length = new Instruction(getUniqueId(), intType, OpArrayLength);
length->addIdOperand(base);
length->addImmediateOperand(member);
buildPoint->addInstruction(std::unique_ptr<Instruction>(length));
return length->getResultId();
}
Id Builder::createCompositeExtract(Id composite, Id typeId, unsigned index)
{
// Generate code for spec constants if in spec constant operation
// generation mode.
if (generatingOpCodeForSpecConst) {
return createSpecConstantOp(OpCompositeExtract, typeId, std::vector<Id>(1, composite), std::vector<Id>(1, index));
}
Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
extract->addIdOperand(composite);
extract->addImmediateOperand(index);
buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
return extract->getResultId();
}
Id Builder::createCompositeExtract(Id composite, Id typeId, const std::vector<unsigned>& indexes)
{
// Generate code for spec constants if in spec constant operation
// generation mode.
if (generatingOpCodeForSpecConst) {
return createSpecConstantOp(OpCompositeExtract, typeId, std::vector<Id>(1, composite), indexes);
}
Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
extract->addIdOperand(composite);
for (int i = 0; i < (int)indexes.size(); ++i)
extract->addImmediateOperand(indexes[i]);
buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
return extract->getResultId();
}
Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, unsigned index)
{
Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
insert->addIdOperand(object);
insert->addIdOperand(composite);
insert->addImmediateOperand(index);
buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
return insert->getResultId();
}
Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, const std::vector<unsigned>& indexes)
{
Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
insert->addIdOperand(object);
insert->addIdOperand(composite);
for (int i = 0; i < (int)indexes.size(); ++i)
insert->addImmediateOperand(indexes[i]);
buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
return insert->getResultId();
}
Id Builder::createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex)
{
Instruction* extract = new Instruction(getUniqueId(), typeId, OpVectorExtractDynamic);
extract->addIdOperand(vector);
extract->addIdOperand(componentIndex);
buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
return extract->getResultId();
}
Id Builder::createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex)
{
Instruction* insert = new Instruction(getUniqueId(), typeId, OpVectorInsertDynamic);
insert->addIdOperand(vector);
insert->addIdOperand(component);
insert->addIdOperand(componentIndex);
buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
return insert->getResultId();
}
// An opcode that has no operands, no result id, and no type
void Builder::createNoResultOp(Op opCode)
{
Instruction* op = new Instruction(opCode);
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
}
// An opcode that has one operand, no result id, and no type
void Builder::createNoResultOp(Op opCode, Id operand)
{
Instruction* op = new Instruction(opCode);
op->addIdOperand(operand);
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
}
// An opcode that has one operand, no result id, and no type
void Builder::createNoResultOp(Op opCode, const std::vector<Id>& operands)
{
Instruction* op = new Instruction(opCode);
for (auto it = operands.cbegin(); it != operands.cend(); ++it)
op->addIdOperand(*it);
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
}
void Builder::createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask semantics)
{
Instruction* op = new Instruction(OpControlBarrier);
op->addImmediateOperand(makeUintConstant(execution));
op->addImmediateOperand(makeUintConstant(memory));
op->addImmediateOperand(makeUintConstant(semantics));
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
}
void Builder::createMemoryBarrier(unsigned executionScope, unsigned memorySemantics)
{
Instruction* op = new Instruction(OpMemoryBarrier);
op->addImmediateOperand(makeUintConstant(executionScope));
op->addImmediateOperand(makeUintConstant(memorySemantics));
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
}
// An opcode that has one operands, a result id, and a type
Id Builder::createUnaryOp(Op opCode, Id typeId, Id operand)
{
// Generate code for spec constants if in spec constant operation
// generation mode.
if (generatingOpCodeForSpecConst) {
return createSpecConstantOp(opCode, typeId, std::vector<Id>(1, operand), std::vector<Id>());
}
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
op->addIdOperand(operand);
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
return op->getResultId();
}
Id Builder::createBinOp(Op opCode, Id typeId, Id left, Id right)
{
// Generate code for spec constants if in spec constant operation
// generation mode.
if (generatingOpCodeForSpecConst) {
std::vector<Id> operands(2);
operands[0] = left; operands[1] = right;
return createSpecConstantOp(opCode, typeId, operands, std::vector<Id>());
}
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
op->addIdOperand(left);
op->addIdOperand(right);
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
return op->getResultId();
}
Id Builder::createTriOp(Op opCode, Id typeId, Id op1, Id op2, Id op3)
{
// Generate code for spec constants if in spec constant operation
// generation mode.
if (generatingOpCodeForSpecConst) {
std::vector<Id> operands(3);
operands[0] = op1;
operands[1] = op2;
operands[2] = op3;
return createSpecConstantOp(
opCode, typeId, operands, std::vector<Id>());
}
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
op->addIdOperand(op1);
op->addIdOperand(op2);
op->addIdOperand(op3);
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
return op->getResultId();
}
Id Builder::createOp(Op opCode, Id typeId, const std::vector<Id>& operands)
{
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
for (auto it = operands.cbegin(); it != operands.cend(); ++it)
op->addIdOperand(*it);
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
return op->getResultId();
}
Id Builder::createSpecConstantOp(Op opCode, Id typeId, const std::vector<Id>& operands, const std::vector<unsigned>& literals)
{
Instruction* op = new Instruction(getUniqueId(), typeId, OpSpecConstantOp);
op->addImmediateOperand((unsigned) opCode);
for (auto it = operands.cbegin(); it != operands.cend(); ++it)
op->addIdOperand(*it);
for (auto it = literals.cbegin(); it != literals.cend(); ++it)
op->addImmediateOperand(*it);
module.mapInstruction(op);
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(op));
return op->getResultId();
}
Id Builder::createFunctionCall(spv::Function* function, const std::vector<spv::Id>& args)
{
Instruction* op = new Instruction(getUniqueId(), function->getReturnType(), OpFunctionCall);
op->addIdOperand(function->getId());
for (int a = 0; a < (int)args.size(); ++a)
op->addIdOperand(args[a]);
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
return op->getResultId();
}
// Comments in header
Id Builder::createRvalueSwizzle(Decoration precision, Id typeId, Id source, const std::vector<unsigned>& channels)
{
if (channels.size() == 1)
return setPrecision(createCompositeExtract(source, typeId, channels.front()), precision);
if (generatingOpCodeForSpecConst) {
std::vector<Id> operands(2);
operands[0] = operands[1] = source;
return setPrecision(createSpecConstantOp(OpVectorShuffle, typeId, operands, channels), precision);
}
Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
assert(isVector(source));
swizzle->addIdOperand(source);
swizzle->addIdOperand(source);
for (int i = 0; i < (int)channels.size(); ++i)
swizzle->addImmediateOperand(channels[i]);
buildPoint->addInstruction(std::unique_ptr<Instruction>(swizzle));
return setPrecision(swizzle->getResultId(), precision);
}
// Comments in header
Id Builder::createLvalueSwizzle(Id typeId, Id target, Id source, const std::vector<unsigned>& channels)
{
if (channels.size() == 1 && getNumComponents(source) == 1)
return createCompositeInsert(source, target, typeId, channels.front());
Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
assert(isVector(target));
swizzle->addIdOperand(target);
if (accessChain.component != NoResult)
// For dynamic component selection, source does not involve in l-value swizzle
swizzle->addIdOperand(target);
else {
assert(getNumComponents(source) == (int)channels.size());
assert(isVector(source));
swizzle->addIdOperand(source);
}
// Set up an identity shuffle from the base value to the result value
unsigned int components[4];
int numTargetComponents = getNumComponents(target);
for (int i = 0; i < numTargetComponents; ++i)
components[i] = i;
// Punch in the l-value swizzle
for (int i = 0; i < (int)channels.size(); ++i) {
if (accessChain.component != NoResult)
components[i] = channels[i]; // Only shuffle the base value
else
components[channels[i]] = numTargetComponents + i;
}
// finish the instruction with these components selectors
for (int i = 0; i < numTargetComponents; ++i)
swizzle->addImmediateOperand(components[i]);
buildPoint->addInstruction(std::unique_ptr<Instruction>(swizzle));
return swizzle->getResultId();
}
// Comments in header
void Builder::promoteScalar(Decoration precision, Id& left, Id& right)
{
int direction = getNumComponents(right) - getNumComponents(left);
if (direction > 0)
left = smearScalar(precision, left, makeVectorType(getTypeId(left), getNumComponents(right)));
else if (direction < 0)
right = smearScalar(precision, right, makeVectorType(getTypeId(right), getNumComponents(left)));
return;
}
// Comments in header
Id Builder::smearScalar(Decoration precision, Id scalar, Id vectorType)
{
assert(getNumComponents(scalar) == 1);
assert(getTypeId(scalar) == getScalarTypeId(vectorType));
int numComponents = getNumTypeComponents(vectorType);
if (numComponents == 1)
return scalar;
Instruction* smear = nullptr;
if (generatingOpCodeForSpecConst) {
auto members = std::vector<spv::Id>(numComponents, scalar);
// Sometime even in spec-constant-op mode, the temporary vector created by
// promoting a scalar might not be a spec constant. This should depend on
// the scalar.
// e.g.:
// const vec2 spec_const_result = a_spec_const_vec2 + a_front_end_const_scalar;
// In such cases, the temporary vector created from a_front_end_const_scalar
// is not a spec constant vector, even though the binary operation node is marked
// as 'specConstant' and we are in spec-constant-op mode.
auto result_id = makeCompositeConstant(vectorType, members, isSpecConstant(scalar));
smear = module.getInstruction(result_id);
} else {
smear = new Instruction(getUniqueId(), vectorType, OpCompositeConstruct);
for (int c = 0; c < numComponents; ++c)
smear->addIdOperand(scalar);
buildPoint->addInstruction(std::unique_ptr<Instruction>(smear));
}
return setPrecision(smear->getResultId(), precision);
}
// Comments in header
Id Builder::createBuiltinCall(Id resultType, Id builtins, int entryPoint, const std::vector<Id>& args)
{
Instruction* inst = new Instruction(getUniqueId(), resultType, OpExtInst);
inst->addIdOperand(builtins);
inst->addImmediateOperand(entryPoint);
for (int arg = 0; arg < (int)args.size(); ++arg)
inst->addIdOperand(args[arg]);
buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
return inst->getResultId();
}
// Accept all parameters needed to create a texture instruction.
// Create the correct instruction based on the inputs, and make the call.
Id Builder::createTextureCall(Decoration precision, Id resultType, bool sparse, bool fetch, bool proj, bool gather, bool noImplicitLod, const TextureParameters& parameters)
{
static const int maxTextureArgs = 10;
Id texArgs[maxTextureArgs] = {};
//
// Set up the fixed arguments
//
int numArgs = 0;
bool explicitLod = false;
texArgs[numArgs++] = parameters.sampler;
texArgs[numArgs++] = parameters.coords;
if (parameters.Dref != NoResult)
texArgs[numArgs++] = parameters.Dref;
if (parameters.component != NoResult)
texArgs[numArgs++] = parameters.component;
//
// Set up the optional arguments
//
int optArgNum = numArgs; // track which operand, if it exists, is the mask of optional arguments
++numArgs; // speculatively make room for the mask operand
ImageOperandsMask mask = ImageOperandsMaskNone; // the mask operand
if (parameters.bias) {
mask = (ImageOperandsMask)(mask | ImageOperandsBiasMask);
texArgs[numArgs++] = parameters.bias;
}
if (parameters.lod) {
mask = (ImageOperandsMask)(mask | ImageOperandsLodMask);
texArgs[numArgs++] = parameters.lod;
explicitLod = true;
} else if (parameters.gradX) {
mask = (ImageOperandsMask)(mask | ImageOperandsGradMask);
texArgs[numArgs++] = parameters.gradX;
texArgs[numArgs++] = parameters.gradY;
explicitLod = true;
} else if (noImplicitLod && ! fetch && ! gather) {
// have to explicitly use lod of 0 if not allowed to have them be implicit, and
// we would otherwise be about to issue an implicit instruction
mask = (ImageOperandsMask)(mask | ImageOperandsLodMask);
texArgs[numArgs++] = makeFloatConstant(0.0);
explicitLod = true;
}
if (parameters.offset) {
if (isConstant(parameters.offset))
mask = (ImageOperandsMask)(mask | ImageOperandsConstOffsetMask);
else {
addCapability(CapabilityImageGatherExtended);
mask = (ImageOperandsMask)(mask | ImageOperandsOffsetMask);
}
texArgs[numArgs++] = parameters.offset;
}
if (parameters.offsets) {
mask = (ImageOperandsMask)(mask | ImageOperandsConstOffsetsMask);
texArgs[numArgs++] = parameters.offsets;
}
if (parameters.sample) {
mask = (ImageOperandsMask)(mask | ImageOperandsSampleMask);
texArgs[numArgs++] = parameters.sample;
}
if (parameters.lodClamp) {
// capability if this bit is used
addCapability(CapabilityMinLod);
mask = (ImageOperandsMask)(mask | ImageOperandsMinLodMask);
texArgs[numArgs++] = parameters.lodClamp;
}
if (mask == ImageOperandsMaskNone)
--numArgs; // undo speculative reservation for the mask argument
else
texArgs[optArgNum] = mask;
//
// Set up the instruction
//
Op opCode = OpNop; // All paths below need to set this
if (fetch) {
if (sparse)
opCode = OpImageSparseFetch;
else
opCode = OpImageFetch;
} else if (gather) {
if (parameters.Dref)
if (sparse)
opCode = OpImageSparseDrefGather;
else
opCode = OpImageDrefGather;
else
if (sparse)
opCode = OpImageSparseGather;
else
opCode = OpImageGather;
} else if (explicitLod) {
if (parameters.Dref) {
if (proj)
if (sparse)
opCode = OpImageSparseSampleProjDrefExplicitLod;
else
opCode = OpImageSampleProjDrefExplicitLod;
else
if (sparse)
opCode = OpImageSparseSampleDrefExplicitLod;
else
opCode = OpImageSampleDrefExplicitLod;
} else {
if (proj)
if (sparse)
opCode = OpImageSparseSampleProjExplicitLod;
else
opCode = OpImageSampleProjExplicitLod;
else
if (sparse)
opCode = OpImageSparseSampleExplicitLod;
else
opCode = OpImageSampleExplicitLod;
}
} else {
if (parameters.Dref) {
if (proj)
if (sparse)
opCode = OpImageSparseSampleProjDrefImplicitLod;
else
opCode = OpImageSampleProjDrefImplicitLod;
else
if (sparse)
opCode = OpImageSparseSampleDrefImplicitLod;
else
opCode = OpImageSampleDrefImplicitLod;
} else {
if (proj)
if (sparse)
opCode = OpImageSparseSampleProjImplicitLod;
else
opCode = OpImageSampleProjImplicitLod;
else
if (sparse)
opCode = OpImageSparseSampleImplicitLod;
else
opCode = OpImageSampleImplicitLod;
}
}
// See if the result type is expecting a smeared result.
// This happens when a legacy shadow*() call is made, which
// gets a vec4 back instead of a float.
Id smearedType = resultType;
if (! isScalarType(resultType)) {
switch (opCode) {
case OpImageSampleDrefImplicitLod:
case OpImageSampleDrefExplicitLod:
case OpImageSampleProjDrefImplicitLod:
case OpImageSampleProjDrefExplicitLod:
resultType = getScalarTypeId(resultType);
break;
default:
break;
}
}
Id typeId0 = 0;
Id typeId1 = 0;
if (sparse) {
typeId0 = resultType;
typeId1 = getDerefTypeId(parameters.texelOut);
resultType = makeStructResultType(typeId0, typeId1);
}
// Build the SPIR-V instruction
Instruction* textureInst = new Instruction(getUniqueId(), resultType, opCode);
for (int op = 0; op < optArgNum; ++op)
textureInst->addIdOperand(texArgs[op]);
if (optArgNum < numArgs)
textureInst->addImmediateOperand(texArgs[optArgNum]);
for (int op = optArgNum + 1; op < numArgs; ++op)
textureInst->addIdOperand(texArgs[op]);
setPrecision(textureInst->getResultId(), precision);
buildPoint->addInstruction(std::unique_ptr<Instruction>(textureInst));
Id resultId = textureInst->getResultId();
if (sparse) {
// set capability
addCapability(CapabilitySparseResidency);
// Decode the return type that was a special structure
createStore(createCompositeExtract(resultId, typeId1, 1), parameters.texelOut);
resultId = createCompositeExtract(resultId, typeId0, 0);
setPrecision(resultId, precision);
} else {
// When a smear is needed, do it, as per what was computed
// above when resultType was changed to a scalar type.
if (resultType != smearedType)
resultId = smearScalar(precision, resultId, smearedType);
}
return resultId;
}
// Comments in header
Id Builder::createTextureQueryCall(Op opCode, const TextureParameters& parameters, bool isUnsignedResult)
{
// All these need a capability
addCapability(CapabilityImageQuery);
// Figure out the result type
Id resultType = 0;
switch (opCode) {
case OpImageQuerySize:
case OpImageQuerySizeLod:
{
int numComponents = 0;
switch (getTypeDimensionality(getImageType(parameters.sampler))) {
case Dim1D:
case DimBuffer:
numComponents = 1;
break;
case Dim2D:
case DimCube:
case DimRect:
case DimSubpassData:
numComponents = 2;
break;
case Dim3D:
numComponents = 3;
break;
default:
assert(0);
break;
}
if (isArrayedImageType(getImageType(parameters.sampler)))
++numComponents;
Id intType = isUnsignedResult ? makeUintType(32) : makeIntType(32);
if (numComponents == 1)
resultType = intType;
else
resultType = makeVectorType(intType, numComponents);
break;
}
case OpImageQueryLod:
resultType = makeVectorType(makeFloatType(32), 2);
break;
case OpImageQueryLevels:
case OpImageQuerySamples:
resultType = isUnsignedResult ? makeUintType(32) : makeIntType(32);
break;
default:
assert(0);
break;
}
Instruction* query = new Instruction(getUniqueId(), resultType, opCode);
query->addIdOperand(parameters.sampler);
if (parameters.coords)
query->addIdOperand(parameters.coords);
if (parameters.lod)
query->addIdOperand(parameters.lod);
buildPoint->addInstruction(std::unique_ptr<Instruction>(query));
return query->getResultId();
}
// External comments in header.
// Operates recursively to visit the composite's hierarchy.
Id Builder::createCompositeCompare(Decoration precision, Id value1, Id value2, bool equal)
{
Id boolType = makeBoolType();
Id valueType = getTypeId(value1);
Id resultId = NoResult;
int numConstituents = getNumTypeConstituents(valueType);
// Scalars and Vectors
if (isScalarType(valueType) || isVectorType(valueType)) {
assert(valueType == getTypeId(value2));
// These just need a single comparison, just have
// to figure out what it is.
Op op;
switch (getMostBasicTypeClass(valueType)) {
case OpTypeFloat:
op = equal ? OpFOrdEqual : OpFOrdNotEqual;
break;
case OpTypeInt:
default:
op = equal ? OpIEqual : OpINotEqual;
break;
case OpTypeBool:
op = equal ? OpLogicalEqual : OpLogicalNotEqual;
precision = NoPrecision;
break;
}
if (isScalarType(valueType)) {
// scalar
resultId = createBinOp(op, boolType, value1, value2);
} else {
// vector
resultId = createBinOp(op, makeVectorType(boolType, numConstituents), value1, value2);
setPrecision(resultId, precision);
// reduce vector compares...
resultId = createUnaryOp(equal ? OpAll : OpAny, boolType, resultId);
}
return setPrecision(resultId, precision);
}
// Only structs, arrays, and matrices should be left.
// They share in common the reduction operation across their constituents.
assert(isAggregateType(valueType) || isMatrixType(valueType));
// Compare each pair of constituents
for (int constituent = 0; constituent < numConstituents; ++constituent) {
std::vector<unsigned> indexes(1, constituent);
Id constituentType1 = getContainedTypeId(getTypeId(value1), constituent);
Id constituentType2 = getContainedTypeId(getTypeId(value2), constituent);
Id constituent1 = createCompositeExtract(value1, constituentType1, indexes);
Id constituent2 = createCompositeExtract(value2, constituentType2, indexes);
Id subResultId = createCompositeCompare(precision, constituent1, constituent2, equal);
if (constituent == 0)
resultId = subResultId;
else
resultId = setPrecision(createBinOp(equal ? OpLogicalAnd : OpLogicalOr, boolType, resultId, subResultId), precision);
}
return resultId;
}
// OpCompositeConstruct
Id Builder::createCompositeConstruct(Id typeId, const std::vector<Id>& constituents)
{
assert(isAggregateType(typeId) || (getNumTypeConstituents(typeId) > 1 && getNumTypeConstituents(typeId) == (int)constituents.size()));
if (generatingOpCodeForSpecConst) {
// Sometime, even in spec-constant-op mode, the constant composite to be
// constructed may not be a specialization constant.
// e.g.:
// const mat2 m2 = mat2(a_spec_const, a_front_end_const, another_front_end_const, third_front_end_const);
// The first column vector should be a spec constant one, as a_spec_const is a spec constant.
// The second column vector should NOT be spec constant, as it does not contain any spec constants.
// To handle such cases, we check the constituents of the constant vector to determine whether this
// vector should be created as a spec constant.
return makeCompositeConstant(typeId, constituents,
std::any_of(constituents.begin(), constituents.end(),
[&](spv::Id id) { return isSpecConstant(id); }));
}
Instruction* op = new Instruction(getUniqueId(), typeId, OpCompositeConstruct);
for (int c = 0; c < (int)constituents.size(); ++c)
op->addIdOperand(constituents[c]);
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
return op->getResultId();
}
// Vector or scalar constructor
Id Builder::createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
{
Id result = NoResult;
unsigned int numTargetComponents = getNumTypeComponents(resultTypeId);
unsigned int targetComponent = 0;
// Special case: when calling a vector constructor with a single scalar
// argument, smear the scalar
if (sources.size() == 1 && isScalar(sources[0]) && numTargetComponents > 1)
return smearScalar(precision, sources[0], resultTypeId);
// accumulate the arguments for OpCompositeConstruct
std::vector<Id> constituents;
Id scalarTypeId = getScalarTypeId(resultTypeId);
// lambda to store the result of visiting an argument component
const auto latchResult = [&](Id comp) {
if (numTargetComponents > 1)
constituents.push_back(comp);
else
result = comp;
++targetComponent;
};
// lambda to visit a vector argument's components
const auto accumulateVectorConstituents = [&](Id sourceArg) {
unsigned int sourceSize = getNumComponents(sourceArg);
unsigned int sourcesToUse = sourceSize;
if (sourcesToUse + targetComponent > numTargetComponents)
sourcesToUse = numTargetComponents - targetComponent;
for (unsigned int s = 0; s < sourcesToUse; ++s) {
std::vector<unsigned> swiz;
swiz.push_back(s);
latchResult(createRvalueSwizzle(precision, scalarTypeId, sourceArg, swiz));
}
};
// lambda to visit a matrix argument's components
const auto accumulateMatrixConstituents = [&](Id sourceArg) {
unsigned int sourceSize = getNumColumns(sourceArg) * getNumRows(sourceArg);
unsigned int sourcesToUse = sourceSize;
if (sourcesToUse + targetComponent > numTargetComponents)
sourcesToUse = numTargetComponents - targetComponent;
int col = 0;
int row = 0;
for (unsigned int s = 0; s < sourcesToUse; ++s) {
if (row >= getNumRows(sourceArg)) {
row = 0;
col++;
}
std::vector<Id> indexes;
indexes.push_back(col);
indexes.push_back(row);
latchResult(createCompositeExtract(sourceArg, scalarTypeId, indexes));
row++;
}
};
// Go through the source arguments, each one could have either
// a single or multiple components to contribute.
for (unsigned int i = 0; i < sources.size(); ++i) {
if (isScalar(sources[i]))
latchResult(sources[i]);
else if (isVector(sources[i]))
accumulateVectorConstituents(sources[i]);
else if (isMatrix(sources[i]))
accumulateMatrixConstituents(sources[i]);
else
assert(0);
if (targetComponent >= numTargetComponents)
break;
}
// If the result is a vector, make it from the gathered constituents.
if (constituents.size() > 0)
result = createCompositeConstruct(resultTypeId, constituents);
return setPrecision(result, precision);
}
// Comments in header
Id Builder::createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
{
Id componentTypeId = getScalarTypeId(resultTypeId);
int numCols = getTypeNumColumns(resultTypeId);
int numRows = getTypeNumRows(resultTypeId);
Instruction* instr = module.getInstruction(componentTypeId);
Id bitCount = instr->getIdOperand(0);
// Will use a two step process
// 1. make a compile-time 2D array of values
// 2. construct a matrix from that array
// Step 1.
// initialize the array to the identity matrix
Id ids[maxMatrixSize][maxMatrixSize];
Id one = (bitCount == 64 ? makeDoubleConstant(1.0) : makeFloatConstant(1.0));
Id zero = (bitCount == 64 ? makeDoubleConstant(0.0) : makeFloatConstant(0.0));
for (int col = 0; col < 4; ++col) {
for (int row = 0; row < 4; ++row) {
if (col == row)
ids[col][row] = one;
else
ids[col][row] = zero;
}
}
// modify components as dictated by the arguments
if (sources.size() == 1 && isScalar(sources[0])) {
// a single scalar; resets the diagonals
for (int col = 0; col < 4; ++col)
ids[col][col] = sources[0];
} else if (isMatrix(sources[0])) {
// constructing from another matrix; copy over the parts that exist in both the argument and constructee
Id matrix = sources[0];
int minCols = std::min(numCols, getNumColumns(matrix));
int minRows = std::min(numRows, getNumRows(matrix));
for (int col = 0; col < minCols; ++col) {
std::vector<unsigned> indexes;
indexes.push_back(col);
for (int row = 0; row < minRows; ++row) {
indexes.push_back(row);
ids[col][row] = createCompositeExtract(matrix, componentTypeId, indexes);
indexes.pop_back();
setPrecision(ids[col][row], precision);
}
}
} else {
// fill in the matrix in column-major order with whatever argument components are available
int row = 0;
int col = 0;
for (int arg = 0; arg < (int)sources.size(); ++arg) {
Id argComp = sources[arg];
for (int comp = 0; comp < getNumComponents(sources[arg]); ++comp) {
if (getNumComponents(sources[arg]) > 1) {
argComp = createCompositeExtract(sources[arg], componentTypeId, comp);
setPrecision(argComp, precision);
}
ids[col][row++] = argComp;
if (row == numRows) {
row = 0;
col++;
}
}
}
}
// Step 2: Construct a matrix from that array.
// First make the column vectors, then make the matrix.
// make the column vectors
Id columnTypeId = getContainedTypeId(resultTypeId);
std::vector<Id> matrixColumns;
for (int col = 0; col < numCols; ++col) {
std::vector<Id> vectorComponents;
for (int row = 0; row < numRows; ++row)
vectorComponents.push_back(ids[col][row]);
Id column = createCompositeConstruct(columnTypeId, vectorComponents);
setPrecision(column, precision);
matrixColumns.push_back(column);
}
// make the matrix
return setPrecision(createCompositeConstruct(resultTypeId, matrixColumns), precision);
}
// Comments in header
Builder::If::If(Id cond, Builder& gb) :
builder(gb),
condition(cond),
elseBlock(0)
{
function = &builder.getBuildPoint()->getParent();
// make the blocks, but only put the then-block into the function,
// the else-block and merge-block will be added later, in order, after
// earlier code is emitted
thenBlock = new Block(builder.getUniqueId(), *function);
mergeBlock = new Block(builder.getUniqueId(), *function);
// Save the current block, so that we can add in the flow control split when
// makeEndIf is called.
headerBlock = builder.getBuildPoint();
function->addBlock(thenBlock);
builder.setBuildPoint(thenBlock);
}
// Comments in header
void Builder::If::makeBeginElse()
{
// Close out the "then" by having it jump to the mergeBlock
builder.createBranch(mergeBlock);
// Make the first else block and add it to the function
elseBlock = new Block(builder.getUniqueId(), *function);
function->addBlock(elseBlock);
// Start building the else block
builder.setBuildPoint(elseBlock);
}
// Comments in header
void Builder::If::makeEndIf()
{
// jump to the merge block
builder.createBranch(mergeBlock);
// Go back to the headerBlock and make the flow control split
builder.setBuildPoint(headerBlock);
builder.createSelectionMerge(mergeBlock, SelectionControlMaskNone);
if (elseBlock)
builder.createConditionalBranch(condition, thenBlock, elseBlock);
else
builder.createConditionalBranch(condition, thenBlock, mergeBlock);
// add the merge block to the function
function->addBlock(mergeBlock);
builder.setBuildPoint(mergeBlock);
}
// Comments in header
void Builder::makeSwitch(Id selector, int numSegments, const std::vector<int>& caseValues,
const std::vector<int>& valueIndexToSegment, int defaultSegment,
std::vector<Block*>& segmentBlocks)
{
Function& function = buildPoint->getParent();
// make all the blocks
for (int s = 0; s < numSegments; ++s)
segmentBlocks.push_back(new Block(getUniqueId(), function));
Block* mergeBlock = new Block(getUniqueId(), function);
// make and insert the switch's selection-merge instruction
createSelectionMerge(mergeBlock, SelectionControlMaskNone);
// make the switch instruction
Instruction* switchInst = new Instruction(NoResult, NoType, OpSwitch);
switchInst->addIdOperand(selector);
auto defaultOrMerge = (defaultSegment >= 0) ? segmentBlocks[defaultSegment] : mergeBlock;
switchInst->addIdOperand(defaultOrMerge->getId());
defaultOrMerge->addPredecessor(buildPoint);
for (int i = 0; i < (int)caseValues.size(); ++i) {
switchInst->addImmediateOperand(caseValues[i]);
switchInst->addIdOperand(segmentBlocks[valueIndexToSegment[i]]->getId());
segmentBlocks[valueIndexToSegment[i]]->addPredecessor(buildPoint);
}
buildPoint->addInstruction(std::unique_ptr<Instruction>(switchInst));
// push the merge block
switchMerges.push(mergeBlock);
}
// Comments in header
void Builder::addSwitchBreak()
{
// branch to the top of the merge block stack
createBranch(switchMerges.top());
createAndSetNoPredecessorBlock("post-switch-break");
}
// Comments in header
void Builder::nextSwitchSegment(std::vector<Block*>& segmentBlock, int nextSegment)
{
int lastSegment = nextSegment - 1;
if (lastSegment >= 0) {
// Close out previous segment by jumping, if necessary, to next segment
if (! buildPoint->isTerminated())
createBranch(segmentBlock[nextSegment]);
}
Block* block = segmentBlock[nextSegment];
block->getParent().addBlock(block);
setBuildPoint(block);
}
// Comments in header
void Builder::endSwitch(std::vector<Block*>& /*segmentBlock*/)
{
// Close out previous segment by jumping, if necessary, to next segment
if (! buildPoint->isTerminated())
addSwitchBreak();
switchMerges.top()->getParent().addBlock(switchMerges.top());
setBuildPoint(switchMerges.top());
switchMerges.pop();
}
Block& Builder::makeNewBlock()
{
Function& function = buildPoint->getParent();
auto block = new Block(getUniqueId(), function);
function.addBlock(block);
return *block;
}
Builder::LoopBlocks& Builder::makeNewLoop()
{
// This verbosity is needed to simultaneously get the same behavior
// everywhere (id's in the same order), have a syntax that works
// across lots of versions of C++, have no warnings from pedantic
// compilation modes, and leave the rest of the code alone.
Block& head = makeNewBlock();
Block& body = makeNewBlock();
Block& merge = makeNewBlock();
Block& continue_target = makeNewBlock();
LoopBlocks blocks(head, body, merge, continue_target);
loops.push(blocks);
return loops.top();
}
void Builder::createLoopContinue()
{
createBranch(&loops.top().continue_target);
// Set up a block for dead code.
createAndSetNoPredecessorBlock("post-loop-continue");
}
void Builder::createLoopExit()
{
createBranch(&loops.top().merge);
// Set up a block for dead code.
createAndSetNoPredecessorBlock("post-loop-break");
}
void Builder::closeLoop()
{
loops.pop();
}
void Builder::clearAccessChain()
{
accessChain.base = NoResult;
accessChain.indexChain.clear();
accessChain.instr = NoResult;
accessChain.swizzle.clear();
accessChain.component = NoResult;
accessChain.preSwizzleBaseType = NoType;
accessChain.isRValue = false;
}
// Comments in header
void Builder::accessChainPushSwizzle(std::vector<unsigned>& swizzle, Id preSwizzleBaseType)
{
// swizzles can be stacked in GLSL, but simplified to a single
// one here; the base type doesn't change
if (accessChain.preSwizzleBaseType == NoType)
accessChain.preSwizzleBaseType = preSwizzleBaseType;
// if needed, propagate the swizzle for the current access chain
if (accessChain.swizzle.size()) {
std::vector<unsigned> oldSwizzle = accessChain.swizzle;
accessChain.swizzle.resize(0);
for (unsigned int i = 0; i < swizzle.size(); ++i) {
assert(swizzle[i] < oldSwizzle.size());
accessChain.swizzle.push_back(oldSwizzle[swizzle[i]]);
}
} else
accessChain.swizzle = swizzle;
// determine if we need to track this swizzle anymore
simplifyAccessChainSwizzle();
}
// Comments in header
void Builder::accessChainStore(Id rvalue)
{
assert(accessChain.isRValue == false);
transferAccessChainSwizzle(true);
Id base = collapseAccessChain();
// If swizzle still exists, it is out-of-order or not full, we must load the target vector,
// extract and insert elements to perform writeMask and/or swizzle.
Id source = NoResult;
if (accessChain.swizzle.size()) {
Id tempBaseId = createLoad(base);
source = createLvalueSwizzle(getTypeId(tempBaseId), tempBaseId, rvalue, accessChain.swizzle);
}
// dynamic component selection
if (accessChain.component != NoResult) {
Id tempBaseId = (source == NoResult) ? createLoad(base) : source;
source = createVectorInsertDynamic(tempBaseId, getTypeId(tempBaseId), rvalue, accessChain.component);
}
if (source == NoResult)
source = rvalue;
createStore(source, base);
}
// Comments in header
Id Builder::accessChainLoad(Decoration precision, Id resultType)
{
Id id;
if (accessChain.isRValue) {
// transfer access chain, but keep it static, so we can stay in registers
transferAccessChainSwizzle(false);
if (accessChain.indexChain.size() > 0) {
Id swizzleBase = accessChain.preSwizzleBaseType != NoType ? accessChain.preSwizzleBaseType : resultType;
// if all the accesses are constants, we can use OpCompositeExtract
std::vector<unsigned> indexes;
bool constant = true;
for (int i = 0; i < (int)accessChain.indexChain.size(); ++i) {
if (isConstantScalar(accessChain.indexChain[i]))
indexes.push_back(getConstantScalar(accessChain.indexChain[i]));
else {
constant = false;
break;
}
}
if (constant)
id = createCompositeExtract(accessChain.base, swizzleBase, indexes);
else {
// make a new function variable for this r-value
Id lValue = createVariable(StorageClassFunction, getTypeId(accessChain.base), "indexable");
// store into it
createStore(accessChain.base, lValue);
// move base to the new variable
accessChain.base = lValue;
accessChain.isRValue = false;
// load through the access chain
id = createLoad(collapseAccessChain());
}
setPrecision(id, precision);
} else
id = accessChain.base; // no precision, it was set when this was defined
} else {
transferAccessChainSwizzle(true);
// load through the access chain
id = createLoad(collapseAccessChain());
setPrecision(id, precision);
}
// Done, unless there are swizzles to do
if (accessChain.swizzle.size() == 0 && accessChain.component == NoResult)
return id;
// Do remaining swizzling
// First, static swizzling
if (accessChain.swizzle.size()) {
// static swizzle
Id swizzledType = getScalarTypeId(getTypeId(id));
if (accessChain.swizzle.size() > 1)
swizzledType = makeVectorType(swizzledType, (int)accessChain.swizzle.size());
id = createRvalueSwizzle(precision, swizzledType, id, accessChain.swizzle);
}
// dynamic single-component selection
if (accessChain.component != NoResult)
id = setPrecision(createVectorExtractDynamic(id, resultType, accessChain.component), precision);
return id;
}
Id Builder::accessChainGetLValue()
{
assert(accessChain.isRValue == false);
transferAccessChainSwizzle(true);
Id lvalue = collapseAccessChain();
// If swizzle exists, it is out-of-order or not full, we must load the target vector,
// extract and insert elements to perform writeMask and/or swizzle. This does not
// go with getting a direct l-value pointer.
assert(accessChain.swizzle.size() == 0);
assert(accessChain.component == NoResult);
return lvalue;
}
// comment in header
Id Builder::accessChainGetInferredType()
{
// anything to operate on?
if (accessChain.base == NoResult)
return NoType;
Id type = getTypeId(accessChain.base);
// do initial dereference
if (! accessChain.isRValue)
type = getContainedTypeId(type);
// dereference each index
for (auto it = accessChain.indexChain.cbegin(); it != accessChain.indexChain.cend(); ++it) {
if (isStructType(type))
type = getContainedTypeId(type, getConstantScalar(*it));
else
type = getContainedTypeId(type);
}
// dereference swizzle
if (accessChain.swizzle.size() == 1)
type = getContainedTypeId(type);
else if (accessChain.swizzle.size() > 1)
type = makeVectorType(getContainedTypeId(type), (int)accessChain.swizzle.size());
// dereference component selection
if (accessChain.component)
type = getContainedTypeId(type);
return type;
}
// comment in header
void Builder::eliminateDeadDecorations() {
std::unordered_set<const Block*> reachable_blocks;
std::unordered_set<Id> unreachable_definitions;
// Collect IDs defined in unreachable blocks. For each function, label the
// reachable blocks first. Then for each unreachable block, collect the
// result IDs of the instructions in it.
for (std::vector<Function*>::const_iterator fi = module.getFunctions().cbegin();
fi != module.getFunctions().cend(); fi++) {
Function* f = *fi;
Block* entry = f->getEntryBlock();
inReadableOrder(entry, [&reachable_blocks](const Block* b) {
reachable_blocks.insert(b);
});
for (std::vector<Block*>::const_iterator bi = f->getBlocks().cbegin();
bi != f->getBlocks().cend(); bi++) {
Block* b = *bi;
if (!reachable_blocks.count(b)) {
for (std::vector<std::unique_ptr<Instruction> >::const_iterator
ii = b->getInstructions().cbegin();
ii != b->getInstructions().cend(); ii++) {
Instruction* i = ii->get();
unreachable_definitions.insert(i->getResultId());
}
}
}
}
decorations.erase(std::remove_if(decorations.begin(), decorations.end(),
[&unreachable_definitions](std::unique_ptr<Instruction>& I) -> bool {
Instruction* inst = I.get();
Id decoration_id = inst->getIdOperand(0);
return unreachable_definitions.count(decoration_id) != 0;
}),
decorations.end());
}
void Builder::dump(std::vector<unsigned int>& out) const
{
// Header, before first instructions:
out.push_back(MagicNumber);
out.push_back(Version);
out.push_back(builderNumber);
out.push_back(uniqueId + 1);
out.push_back(0);
// Capabilities
for (auto it = capabilities.cbegin(); it != capabilities.cend(); ++it) {
Instruction capInst(0, 0, OpCapability);
capInst.addImmediateOperand(*it);
capInst.dump(out);
}
for (auto it = extensions.cbegin(); it != extensions.cend(); ++it) {
Instruction extInst(0, 0, OpExtension);
extInst.addStringOperand(it->c_str());
extInst.dump(out);
}
dumpInstructions(out, imports);
Instruction memInst(0, 0, OpMemoryModel);
memInst.addImmediateOperand(addressModel);
memInst.addImmediateOperand(memoryModel);
memInst.dump(out);
// Instructions saved up while building:
dumpInstructions(out, entryPoints);
dumpInstructions(out, executionModes);
// Debug instructions
dumpInstructions(out, strings);
dumpSourceInstructions(out);
for (int e = 0; e < (int)sourceExtensions.size(); ++e) {
Instruction sourceExtInst(0, 0, OpSourceExtension);
sourceExtInst.addStringOperand(sourceExtensions[e]);
sourceExtInst.dump(out);
}
dumpInstructions(out, names);
dumpInstructions(out, lines);
// Annotation instructions
dumpInstructions(out, decorations);
dumpInstructions(out, constantsTypesGlobals);
dumpInstructions(out, externals);
// The functions
module.dump(out);
}
//
// Protected methods.
//
// Turn the described access chain in 'accessChain' into an instruction
// computing its address. This *cannot* include complex swizzles, which must
// be handled after this is called, but it does include swizzles that select
// an individual element, as a single address of a scalar type can be
// computed by an OpAccessChain instruction.
Id Builder::collapseAccessChain()
{
assert(accessChain.isRValue == false);
if (accessChain.indexChain.size() > 0) {
if (accessChain.instr == 0) {
StorageClass storageClass = (StorageClass)module.getStorageClass(getTypeId(accessChain.base));
accessChain.instr = createAccessChain(storageClass, accessChain.base, accessChain.indexChain);
}
return accessChain.instr;
} else
return accessChain.base;
// note that non-trivial swizzling is left pending...
}
// clear out swizzle if it is redundant, that is reselecting the same components
// that would be present without the swizzle.
void Builder::simplifyAccessChainSwizzle()
{
// If the swizzle has fewer components than the vector, it is subsetting, and must stay
// to preserve that fact.
if (getNumTypeComponents(accessChain.preSwizzleBaseType) > (int)accessChain.swizzle.size())
return;
// if components are out of order, it is a swizzle
for (unsigned int i = 0; i < accessChain.swizzle.size(); ++i) {
if (i != accessChain.swizzle[i])
return;
}
// otherwise, there is no need to track this swizzle
accessChain.swizzle.clear();
if (accessChain.component == NoResult)
accessChain.preSwizzleBaseType = NoType;
}
// To the extent any swizzling can become part of the chain
// of accesses instead of a post operation, make it so.
// If 'dynamic' is true, include transferring a non-static component index,
// otherwise, only transfer static indexes.
//
// Also, Boolean vectors are likely to be special. While
// for external storage, they should only be integer types,
// function-local bool vectors could use sub-word indexing,
// so keep that as a separate Insert/Extract on a loaded vector.
void Builder::transferAccessChainSwizzle(bool dynamic)
{
// too complex?
if (accessChain.swizzle.size() > 1)
return;
// non existent?
if (accessChain.swizzle.size() == 0 && accessChain.component == NoResult)
return;
// single component...
// skip doing it for Boolean vectors
if (isBoolType(getContainedTypeId(accessChain.preSwizzleBaseType)))
return;
if (accessChain.swizzle.size() == 1) {
// handle static component
accessChain.indexChain.push_back(makeUintConstant(accessChain.swizzle.front()));
accessChain.swizzle.clear();
// note, the only valid remaining dynamic access would be to this one
// component, so don't bother even looking at accessChain.component
accessChain.preSwizzleBaseType = NoType;
accessChain.component = NoResult;
} else if (dynamic && accessChain.component != NoResult) {
// handle dynamic component
accessChain.indexChain.push_back(accessChain.component);
accessChain.preSwizzleBaseType = NoType;
accessChain.component = NoResult;
}
}
// Utility method for creating a new block and setting the insert point to
// be in it. This is useful for flow-control operations that need a "dummy"
// block proceeding them (e.g. instructions after a discard, etc).
void Builder::createAndSetNoPredecessorBlock(const char* /*name*/)
{
Block* block = new Block(getUniqueId(), buildPoint->getParent());
block->setUnreachable();
buildPoint->getParent().addBlock(block);
setBuildPoint(block);
// if (name)
// addName(block->getId(), name);
}
// Comments in header
void Builder::createBranch(Block* block)
{
Instruction* branch = new Instruction(OpBranch);
branch->addIdOperand(block->getId());
buildPoint->addInstruction(std::unique_ptr<Instruction>(branch));
block->addPredecessor(buildPoint);
}
void Builder::createSelectionMerge(Block* mergeBlock, unsigned int control)
{
Instruction* merge = new Instruction(OpSelectionMerge);
merge->addIdOperand(mergeBlock->getId());
merge->addImmediateOperand(control);
buildPoint->addInstruction(std::unique_ptr<Instruction>(merge));
}
void Builder::createLoopMerge(Block* mergeBlock, Block* continueBlock, unsigned int control)
{
Instruction* merge = new Instruction(OpLoopMerge);
merge->addIdOperand(mergeBlock->getId());
merge->addIdOperand(continueBlock->getId());
merge->addImmediateOperand(control);
buildPoint->addInstruction(std::unique_ptr<Instruction>(merge));
}
void Builder::createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock)
{
Instruction* branch = new Instruction(OpBranchConditional);
branch->addIdOperand(condition);
branch->addIdOperand(thenBlock->getId());
branch->addIdOperand(elseBlock->getId());
buildPoint->addInstruction(std::unique_ptr<Instruction>(branch));
thenBlock->addPredecessor(buildPoint);
elseBlock->addPredecessor(buildPoint);
}
// OpSource
// [OpSourceContinued]
// ...
void Builder::dumpSourceInstructions(std::vector<unsigned int>& out) const
{
const int maxWordCount = 0xFFFF;
const int opSourceWordCount = 4;
const int nonNullBytesPerInstruction = 4 * (maxWordCount - opSourceWordCount) - 1;
if (source != SourceLanguageUnknown) {
// OpSource Language Version File Source
Instruction sourceInst(NoResult, NoType, OpSource);
sourceInst.addImmediateOperand(source);
sourceInst.addImmediateOperand(sourceVersion);
// File operand
if (sourceFileStringId != NoResult) {
sourceInst.addIdOperand(sourceFileStringId);
// Source operand
if (sourceText.size() > 0) {
int nextByte = 0;
std::string subString;
while ((int)sourceText.size() - nextByte > 0) {
subString = sourceText.substr(nextByte, nonNullBytesPerInstruction);
if (nextByte == 0) {
// OpSource
sourceInst.addStringOperand(subString.c_str());
sourceInst.dump(out);
} else {
// OpSourcContinued
Instruction sourceContinuedInst(OpSourceContinued);
sourceContinuedInst.addStringOperand(subString.c_str());
sourceContinuedInst.dump(out);
}
nextByte += nonNullBytesPerInstruction;
}
} else
sourceInst.dump(out);
} else
sourceInst.dump(out);
}
}
void Builder::dumpInstructions(std::vector<unsigned int>& out, const std::vector<std::unique_ptr<Instruction> >& instructions) const
{
for (int i = 0; i < (int)instructions.size(); ++i) {
instructions[i]->dump(out);
}
}
}; // end spv namespace