bevy/examples/3d/3d_viewport_to_world.rs

76 lines
2 KiB
Rust
Raw Normal View History

//! This example demonstrates how to use the `Camera::viewport_to_world` method.
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, draw_cursor)
.run();
}
fn draw_cursor(
camera_query: Single<(&Camera, &GlobalTransform)>,
ground: Single<&GlobalTransform, With<Ground>>,
windows: Single<&Window>,
mut gizmos: Gizmos,
) {
let (camera, camera_transform) = *camera_query;
let Some(cursor_position) = windows.cursor_position() else {
return;
};
// Calculate a ray pointing from the camera into the world based on the cursor's position.
let Ok(ray) = camera.viewport_to_world(camera_transform, cursor_position) else {
return;
};
// Calculate if and where the ray is hitting the ground plane.
let Some(distance) =
ray.intersect_plane(ground.translation(), InfinitePlane3d::new(ground.up()))
Split `Ray` into `Ray2d` and `Ray3d` and simplify plane construction (#10856) # Objective A better alternative version of #10843. Currently, Bevy has a single `Ray` struct for 3D. To allow better interoperability with Bevy's primitive shapes (#10572) and some third party crates (that handle e.g. spatial queries), it would be very useful to have separate versions for 2D and 3D respectively. ## Solution Separate `Ray` into `Ray2d` and `Ray3d`. These new structs also take advantage of the new primitives by using `Direction2d`/`Direction3d` for the direction: ```rust pub struct Ray2d { pub origin: Vec2, pub direction: Direction2d, } pub struct Ray3d { pub origin: Vec3, pub direction: Direction3d, } ``` and by using `Plane2d`/`Plane3d` in `intersect_plane`: ```rust impl Ray2d { // ... pub fn intersect_plane(&self, plane_origin: Vec2, plane: Plane2d) -> Option<f32> { // ... } } ``` --- ## Changelog ### Added - `Ray2d` and `Ray3d` - `Ray2d::new` and `Ray3d::new` constructors - `Plane2d::new` and `Plane3d::new` constructors ### Removed - Removed `Ray` in favor of `Ray3d` ### Changed - `direction` is now a `Direction2d`/`Direction3d` instead of a vector, which provides guaranteed normalization - `intersect_plane` now takes a `Plane2d`/`Plane3d` instead of just a vector for the plane normal - `Direction2d` and `Direction3d` now derive `Serialize` and `Deserialize` to preserve ray (de)serialization ## Migration Guide `Ray` has been renamed to `Ray3d`. ### Ray creation Before: ```rust Ray { origin: Vec3::ZERO, direction: Vec3::new(0.5, 0.6, 0.2).normalize(), } ``` After: ```rust // Option 1: Ray3d { origin: Vec3::ZERO, direction: Direction3d::new(Vec3::new(0.5, 0.6, 0.2)).unwrap(), } // Option 2: Ray3d::new(Vec3::ZERO, Vec3::new(0.5, 0.6, 0.2)) ``` ### Plane intersections Before: ```rust let result = ray.intersect_plane(Vec2::X, Vec2::Y); ``` After: ```rust let result = ray.intersect_plane(Vec2::X, Plane2d::new(Vec2::Y)); ```
2023-12-06 14:09:04 +00:00
else {
return;
};
let point = ray.get_point(distance);
// Draw a circle just above the ground plane at that position.
gizmos.circle(
Isometry3d::new(
point + ground.up() * 0.01,
Quat::from_rotation_arc(Vec3::Z, ground.up().as_vec3()),
),
0.2,
Color::WHITE,
);
}
#[derive(Component)]
struct Ground;
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// plane
commands.spawn((
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
Mesh3d(meshes.add(Plane3d::default().mesh().size(20., 20.))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
Ground,
));
// light
commands.spawn((
DirectionalLight::default(),
Transform::from_translation(Vec3::ONE).looking_at(Vec3::ZERO, Vec3::Y),
));
// camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(15.0, 5.0, 15.0).looking_at(Vec3::ZERO, Vec3::Y),
));
}