2
0
Fork 0
mirror of https://github.com/bevyengine/bevy synced 2025-01-03 16:58:56 +00:00
bevy/crates/bevy_math/src/cubic_splines.rs

1412 lines
54 KiB
Rust
Raw Normal View History

Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
//! Provides types for building cubic splines for rendering curves and use with animation easing.
use std::{
fmt::Debug,
Make cardinal splines include endpoints (#12574) # Objective - Fixes #12570 ## Solution Previously, cardinal splines constructed by `CubicCardinalSpline` would leave out their endpoints when constructing the cubic curve segments connecting their points. (See the linked issue for details.) Now, cardinal splines include the endpoints. For instance, the provided usage example ```rust let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let cardinal = CubicCardinalSpline::new(0.3, points).to_curve(); let positions: Vec<_> = cardinal.iter_positions(100).collect(); ``` will actually produce a spline that connects all four of these points instead of just the middle two "interior" points. Internally, this is achieved by duplicating the endpoints of the vector of control points before performing the construction of the associated `CubicCurve`. This amounts to specifying that the tangents at the endpoints `P_0` and `P_n` (say) should be parallel to `P_1 - P_0` and `P_n - P_{n-1}`. --- ## Migration Guide Any users relying on the old behavior of `CubicCardinalSpline` will have to truncate any parametrizations they used in order to access a curve identical to the one they had previously. This would be done by chopping off a unit-distance segment from each end of the parametrizing interval. For instance, if a user's existing code looks as follows ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t) } ``` then in order to obtain similar behavior, `t` will need to be shifted up by 1, since the output of `CubicCardinalSpline::to_curve` has introduced a new segment in the interval [0,1], displacing the old segment from [0,1] to [1,2]: ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t+1) } ``` (Note that this does not provide identical output for values of `t` outside of the interval [0,1].) On the other hand, any user who was specifying additional endpoint tangents simply to get the curve to pass through the right points (i.e. not requiring exactly the same output) can simply omit the endpoints that were being supplied only for control purposes. --- ## Discussion ### Design considerations This is one of the two approaches outlined in #12570 — in this PR, we are basically declaring that the docs are right and the implementation was flawed. One semi-interesting question is how the endpoint tangents actually ought to be defined when we include them, and another option considered was mirroring the control points adjacent to the endpoints instead of duplicating them, which would have had the advantage that the expected length of the corresponding difference should be more similar to that of the other difference-tangents, provided that the points are equally spaced. In this PR, the duplication method (which produces smaller tangents) was chosen for a couple reasons: - It seems to be more standard - It is exceptionally simple to implement - I was a little concerned that the aforementioned alternative would result in some over-extrapolation ### An annoyance If you look at the code, you'll see I was unable to find a satisfactory way of doing this without allocating a new vector. This doesn't seem like a big problem given the context, but it does bother me. In particular, if there is some easy parallel to `slice::windows` for iterators that doesn't pull in an external dependency, I would love to know about it.
2024-03-21 18:58:51 +00:00
iter::once,
ops::{Add, Div, Mul, Sub},
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
};
use glam::{Quat, Vec2, Vec3, Vec3A, Vec4};
use thiserror::Error;
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// A point in space of any dimension that supports the math ops needed for cubic spline
/// interpolation.
pub trait Point:
Mul<f32, Output = Self>
+ Div<f32, Output = Self>
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
+ Add<Self, Output = Self>
+ Sub<Self, Output = Self>
+ Default
+ Debug
+ Clone
+ Copy
{
}
impl Point for Quat {}
impl Point for Vec4 {}
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
impl Point for Vec3 {}
impl Point for Vec3A {}
impl Point for Vec2 {}
impl Point for f32 {}
/// A spline composed of a single cubic Bezier curve.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// Useful for user-drawn curves with local control, or animation easing. See
/// [`CubicSegment::new_bezier`] for use in easing.
///
/// ### Interpolation
/// The curve only passes through the first and last control point in each set of four points. The curve
/// is divided into "segments" by every fourth control point.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// ### Tangency
/// Tangents are manually defined by the two intermediate control points within each set of four points.
/// You can think of the control points the curve passes through as "anchors", and as the intermediate
/// control points as the anchors displaced along their tangent vectors
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// ### Continuity
/// A Bezier curve is at minimum C0 continuous, meaning it has no holes or jumps. Each curve segment is
/// C2, meaning the tangent vector changes smoothly between each set of four control points, but this
/// doesn't hold at the control points between segments. Making the whole curve C1 or C2 requires moving
/// the intermediate control points to align the tangent vectors between segments, and can result in a
/// loss of local control.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [[
/// vec2(-1.0, -20.0),
/// vec2(3.0, 2.0),
/// vec2(5.0, 3.0),
/// vec2(9.0, 8.0),
/// ]];
/// let bezier = CubicBezier::new(points).to_curve();
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// let positions: Vec<_> = bezier.iter_positions(100).collect();
/// ```
pub struct CubicBezier<P: Point> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
control_points: Vec<[P; 4]>,
}
impl<P: Point> CubicBezier<P> {
/// Create a new cubic Bezier curve from sets of control points.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
pub fn new(control_points: impl Into<Vec<[P; 4]>>) -> Self {
Self {
control_points: control_points.into(),
}
}
}
impl<P: Point> CubicGenerator<P> for CubicBezier<P> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
#[inline]
fn to_curve(&self) -> CubicCurve<P> {
// A derivation for this matrix can be found in "General Matrix Representations for B-splines" by Kaihuai Qin.
// <https://xiaoxingchen.github.io/2020/03/02/bspline_in_so3/general_matrix_representation_for_bsplines.pdf>
// See section 4.2 and equation 11.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
let char_matrix = [
[1., 0., 0., 0.],
[-3., 3., 0., 0.],
[3., -6., 3., 0.],
[-1., 3., -3., 1.],
];
let segments = self
.control_points
.iter()
.map(|p| CubicSegment::coefficients(*p, char_matrix))
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
.collect();
CubicCurve { segments }
}
}
/// A spline interpolated continuously between the nearest two control points, with the position and
/// velocity of the curve specified at both control points. This curve passes through all control
/// points, with the specified velocity which includes direction and parametric speed.
///
/// Useful for smooth interpolation when you know the position and velocity at two points in time,
/// such as network prediction.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// Tangents are explicitly defined at each control point.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// ### Continuity
/// The curve is at minimum C0 continuous, meaning it has no holes or jumps. It is also C1, meaning the
/// tangent vector has no sudden jumps.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
/// vec2(-1.0, -20.0),
/// vec2(3.0, 2.0),
/// vec2(5.0, 3.0),
/// vec2(9.0, 8.0),
/// ];
/// let tangents = [
/// vec2(0.0, 1.0),
/// vec2(0.0, 1.0),
/// vec2(0.0, 1.0),
/// vec2(0.0, 1.0),
/// ];
/// let hermite = CubicHermite::new(points, tangents).to_curve();
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// let positions: Vec<_> = hermite.iter_positions(100).collect();
/// ```
pub struct CubicHermite<P: Point> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
control_points: Vec<(P, P)>,
}
impl<P: Point> CubicHermite<P> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// Create a new Hermite curve from sets of control points.
pub fn new(
control_points: impl IntoIterator<Item = P>,
tangents: impl IntoIterator<Item = P>,
) -> Self {
Self {
control_points: control_points.into_iter().zip(tangents).collect(),
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
}
}
}
impl<P: Point> CubicGenerator<P> for CubicHermite<P> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
#[inline]
fn to_curve(&self) -> CubicCurve<P> {
let char_matrix = [
[1., 0., 0., 0.],
[0., 1., 0., 0.],
[-3., -2., 3., -1.],
[2., 1., -2., 1.],
];
let segments = self
.control_points
.windows(2)
.map(|p| {
let (p0, v0, p1, v1) = (p[0].0, p[0].1, p[1].0, p[1].1);
CubicSegment::coefficients([p0, v0, p1, v1], char_matrix)
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
})
.collect();
CubicCurve { segments }
}
}
/// A spline interpolated continuously across the nearest four control points, with the position of
Make cardinal splines include endpoints (#12574) # Objective - Fixes #12570 ## Solution Previously, cardinal splines constructed by `CubicCardinalSpline` would leave out their endpoints when constructing the cubic curve segments connecting their points. (See the linked issue for details.) Now, cardinal splines include the endpoints. For instance, the provided usage example ```rust let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let cardinal = CubicCardinalSpline::new(0.3, points).to_curve(); let positions: Vec<_> = cardinal.iter_positions(100).collect(); ``` will actually produce a spline that connects all four of these points instead of just the middle two "interior" points. Internally, this is achieved by duplicating the endpoints of the vector of control points before performing the construction of the associated `CubicCurve`. This amounts to specifying that the tangents at the endpoints `P_0` and `P_n` (say) should be parallel to `P_1 - P_0` and `P_n - P_{n-1}`. --- ## Migration Guide Any users relying on the old behavior of `CubicCardinalSpline` will have to truncate any parametrizations they used in order to access a curve identical to the one they had previously. This would be done by chopping off a unit-distance segment from each end of the parametrizing interval. For instance, if a user's existing code looks as follows ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t) } ``` then in order to obtain similar behavior, `t` will need to be shifted up by 1, since the output of `CubicCardinalSpline::to_curve` has introduced a new segment in the interval [0,1], displacing the old segment from [0,1] to [1,2]: ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t+1) } ``` (Note that this does not provide identical output for values of `t` outside of the interval [0,1].) On the other hand, any user who was specifying additional endpoint tangents simply to get the curve to pass through the right points (i.e. not requiring exactly the same output) can simply omit the endpoints that were being supplied only for control purposes. --- ## Discussion ### Design considerations This is one of the two approaches outlined in #12570 — in this PR, we are basically declaring that the docs are right and the implementation was flawed. One semi-interesting question is how the endpoint tangents actually ought to be defined when we include them, and another option considered was mirroring the control points adjacent to the endpoints instead of duplicating them, which would have had the advantage that the expected length of the corresponding difference should be more similar to that of the other difference-tangents, provided that the points are equally spaced. In this PR, the duplication method (which produces smaller tangents) was chosen for a couple reasons: - It seems to be more standard - It is exceptionally simple to implement - I was a little concerned that the aforementioned alternative would result in some over-extrapolation ### An annoyance If you look at the code, you'll see I was unable to find a satisfactory way of doing this without allocating a new vector. This doesn't seem like a big problem given the context, but it does bother me. In particular, if there is some easy parallel to `slice::windows` for iterators that doesn't pull in an external dependency, I would love to know about it.
2024-03-21 18:58:51 +00:00
/// the curve specified at every control point and the tangents computed automatically. The associated [`CubicCurve`]
/// has one segment between each pair of adjacent control points.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// **Note** the Catmull-Rom spline is a special case of Cardinal spline where the tension is 0.5.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// Tangents are automatically computed based on the positions of control points.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// ### Continuity
Make cardinal splines include endpoints (#12574) # Objective - Fixes #12570 ## Solution Previously, cardinal splines constructed by `CubicCardinalSpline` would leave out their endpoints when constructing the cubic curve segments connecting their points. (See the linked issue for details.) Now, cardinal splines include the endpoints. For instance, the provided usage example ```rust let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let cardinal = CubicCardinalSpline::new(0.3, points).to_curve(); let positions: Vec<_> = cardinal.iter_positions(100).collect(); ``` will actually produce a spline that connects all four of these points instead of just the middle two "interior" points. Internally, this is achieved by duplicating the endpoints of the vector of control points before performing the construction of the associated `CubicCurve`. This amounts to specifying that the tangents at the endpoints `P_0` and `P_n` (say) should be parallel to `P_1 - P_0` and `P_n - P_{n-1}`. --- ## Migration Guide Any users relying on the old behavior of `CubicCardinalSpline` will have to truncate any parametrizations they used in order to access a curve identical to the one they had previously. This would be done by chopping off a unit-distance segment from each end of the parametrizing interval. For instance, if a user's existing code looks as follows ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t) } ``` then in order to obtain similar behavior, `t` will need to be shifted up by 1, since the output of `CubicCardinalSpline::to_curve` has introduced a new segment in the interval [0,1], displacing the old segment from [0,1] to [1,2]: ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t+1) } ``` (Note that this does not provide identical output for values of `t` outside of the interval [0,1].) On the other hand, any user who was specifying additional endpoint tangents simply to get the curve to pass through the right points (i.e. not requiring exactly the same output) can simply omit the endpoints that were being supplied only for control purposes. --- ## Discussion ### Design considerations This is one of the two approaches outlined in #12570 — in this PR, we are basically declaring that the docs are right and the implementation was flawed. One semi-interesting question is how the endpoint tangents actually ought to be defined when we include them, and another option considered was mirroring the control points adjacent to the endpoints instead of duplicating them, which would have had the advantage that the expected length of the corresponding difference should be more similar to that of the other difference-tangents, provided that the points are equally spaced. In this PR, the duplication method (which produces smaller tangents) was chosen for a couple reasons: - It seems to be more standard - It is exceptionally simple to implement - I was a little concerned that the aforementioned alternative would result in some over-extrapolation ### An annoyance If you look at the code, you'll see I was unable to find a satisfactory way of doing this without allocating a new vector. This doesn't seem like a big problem given the context, but it does bother me. In particular, if there is some easy parallel to `slice::windows` for iterators that doesn't pull in an external dependency, I would love to know about it.
2024-03-21 18:58:51 +00:00
/// The curve is at minimum C1, meaning that it is continuous (it has no holes or jumps), and its tangent
/// vector is also well-defined everywhere, without sudden jumps.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
/// vec2(-1.0, -20.0),
/// vec2(3.0, 2.0),
/// vec2(5.0, 3.0),
/// vec2(9.0, 8.0),
/// ];
/// let cardinal = CubicCardinalSpline::new(0.3, points).to_curve();
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// let positions: Vec<_> = cardinal.iter_positions(100).collect();
/// ```
pub struct CubicCardinalSpline<P: Point> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
tension: f32,
control_points: Vec<P>,
}
impl<P: Point> CubicCardinalSpline<P> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// Build a new Cardinal spline.
pub fn new(tension: f32, control_points: impl Into<Vec<P>>) -> Self {
Self {
tension,
control_points: control_points.into(),
}
}
/// Build a new Catmull-Rom spline, the special case of a Cardinal spline where tension = 1/2.
pub fn new_catmull_rom(control_points: impl Into<Vec<P>>) -> Self {
Self {
tension: 0.5,
control_points: control_points.into(),
}
}
}
impl<P: Point> CubicGenerator<P> for CubicCardinalSpline<P> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
#[inline]
fn to_curve(&self) -> CubicCurve<P> {
let s = self.tension;
let char_matrix = [
[0., 1., 0., 0.],
[-s, 0., s, 0.],
[2. * s, s - 3., 3. - 2. * s, -s],
[-s, 2. - s, s - 2., s],
];
Make cardinal splines include endpoints (#12574) # Objective - Fixes #12570 ## Solution Previously, cardinal splines constructed by `CubicCardinalSpline` would leave out their endpoints when constructing the cubic curve segments connecting their points. (See the linked issue for details.) Now, cardinal splines include the endpoints. For instance, the provided usage example ```rust let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let cardinal = CubicCardinalSpline::new(0.3, points).to_curve(); let positions: Vec<_> = cardinal.iter_positions(100).collect(); ``` will actually produce a spline that connects all four of these points instead of just the middle two "interior" points. Internally, this is achieved by duplicating the endpoints of the vector of control points before performing the construction of the associated `CubicCurve`. This amounts to specifying that the tangents at the endpoints `P_0` and `P_n` (say) should be parallel to `P_1 - P_0` and `P_n - P_{n-1}`. --- ## Migration Guide Any users relying on the old behavior of `CubicCardinalSpline` will have to truncate any parametrizations they used in order to access a curve identical to the one they had previously. This would be done by chopping off a unit-distance segment from each end of the parametrizing interval. For instance, if a user's existing code looks as follows ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t) } ``` then in order to obtain similar behavior, `t` will need to be shifted up by 1, since the output of `CubicCardinalSpline::to_curve` has introduced a new segment in the interval [0,1], displacing the old segment from [0,1] to [1,2]: ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t+1) } ``` (Note that this does not provide identical output for values of `t` outside of the interval [0,1].) On the other hand, any user who was specifying additional endpoint tangents simply to get the curve to pass through the right points (i.e. not requiring exactly the same output) can simply omit the endpoints that were being supplied only for control purposes. --- ## Discussion ### Design considerations This is one of the two approaches outlined in #12570 — in this PR, we are basically declaring that the docs are right and the implementation was flawed. One semi-interesting question is how the endpoint tangents actually ought to be defined when we include them, and another option considered was mirroring the control points adjacent to the endpoints instead of duplicating them, which would have had the advantage that the expected length of the corresponding difference should be more similar to that of the other difference-tangents, provided that the points are equally spaced. In this PR, the duplication method (which produces smaller tangents) was chosen for a couple reasons: - It seems to be more standard - It is exceptionally simple to implement - I was a little concerned that the aforementioned alternative would result in some over-extrapolation ### An annoyance If you look at the code, you'll see I was unable to find a satisfactory way of doing this without allocating a new vector. This doesn't seem like a big problem given the context, but it does bother me. In particular, if there is some easy parallel to `slice::windows` for iterators that doesn't pull in an external dependency, I would love to know about it.
2024-03-21 18:58:51 +00:00
let length = self.control_points.len();
// Early return to avoid accessing an invalid index
if length < 2 {
return CubicCurve { segments: vec![] };
}
// Extend the list of control points by mirroring the last second-to-last control points on each end;
// this allows tangents for the endpoints to be provided, and the overall effect is that the tangent
// at an endpoint is proportional to twice the vector between it and its adjacent control point.
//
// The expression used here is P_{-1} := P_0 - (P_1 - P_0) = 2P_0 - P_1. (Analogously at the other end.)
let mirrored_first = self.control_points[0] * 2. - self.control_points[1];
let mirrored_last = self.control_points[length - 1] * 2. - self.control_points[length - 2];
let extended_control_points = once(&mirrored_first)
.chain(self.control_points.iter())
.chain(once(&mirrored_last))
.collect::<Vec<_>>();
let segments = extended_control_points
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
.windows(4)
Make cardinal splines include endpoints (#12574) # Objective - Fixes #12570 ## Solution Previously, cardinal splines constructed by `CubicCardinalSpline` would leave out their endpoints when constructing the cubic curve segments connecting their points. (See the linked issue for details.) Now, cardinal splines include the endpoints. For instance, the provided usage example ```rust let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let cardinal = CubicCardinalSpline::new(0.3, points).to_curve(); let positions: Vec<_> = cardinal.iter_positions(100).collect(); ``` will actually produce a spline that connects all four of these points instead of just the middle two "interior" points. Internally, this is achieved by duplicating the endpoints of the vector of control points before performing the construction of the associated `CubicCurve`. This amounts to specifying that the tangents at the endpoints `P_0` and `P_n` (say) should be parallel to `P_1 - P_0` and `P_n - P_{n-1}`. --- ## Migration Guide Any users relying on the old behavior of `CubicCardinalSpline` will have to truncate any parametrizations they used in order to access a curve identical to the one they had previously. This would be done by chopping off a unit-distance segment from each end of the parametrizing interval. For instance, if a user's existing code looks as follows ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t) } ``` then in order to obtain similar behavior, `t` will need to be shifted up by 1, since the output of `CubicCardinalSpline::to_curve` has introduced a new segment in the interval [0,1], displacing the old segment from [0,1] to [1,2]: ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t+1) } ``` (Note that this does not provide identical output for values of `t` outside of the interval [0,1].) On the other hand, any user who was specifying additional endpoint tangents simply to get the curve to pass through the right points (i.e. not requiring exactly the same output) can simply omit the endpoints that were being supplied only for control purposes. --- ## Discussion ### Design considerations This is one of the two approaches outlined in #12570 — in this PR, we are basically declaring that the docs are right and the implementation was flawed. One semi-interesting question is how the endpoint tangents actually ought to be defined when we include them, and another option considered was mirroring the control points adjacent to the endpoints instead of duplicating them, which would have had the advantage that the expected length of the corresponding difference should be more similar to that of the other difference-tangents, provided that the points are equally spaced. In this PR, the duplication method (which produces smaller tangents) was chosen for a couple reasons: - It seems to be more standard - It is exceptionally simple to implement - I was a little concerned that the aforementioned alternative would result in some over-extrapolation ### An annoyance If you look at the code, you'll see I was unable to find a satisfactory way of doing this without allocating a new vector. This doesn't seem like a big problem given the context, but it does bother me. In particular, if there is some easy parallel to `slice::windows` for iterators that doesn't pull in an external dependency, I would love to know about it.
2024-03-21 18:58:51 +00:00
.map(|p| CubicSegment::coefficients([*p[0], *p[1], *p[2], *p[3]], char_matrix))
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
.collect();
CubicCurve { segments }
}
}
/// A spline interpolated continuously across the nearest four control points. The curve does not
/// pass through any of the control points.
///
/// ### Interpolation
/// The curve does not pass through control points.
///
/// ### Tangency
/// Tangents are automatically computed based on the position of control points.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// ### Continuity
/// The curve is C2 continuous, meaning it has no holes or jumps, and the tangent vector changes smoothly along
/// the entire curve length. The acceleration continuity of this spline makes it useful for camera paths.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
/// vec2(-1.0, -20.0),
/// vec2(3.0, 2.0),
/// vec2(5.0, 3.0),
/// vec2(9.0, 8.0),
/// ];
/// let b_spline = CubicBSpline::new(points).to_curve();
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// let positions: Vec<_> = b_spline.iter_positions(100).collect();
/// ```
pub struct CubicBSpline<P: Point> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
control_points: Vec<P>,
}
impl<P: Point> CubicBSpline<P> {
/// Build a new B-Spline.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
pub fn new(control_points: impl Into<Vec<P>>) -> Self {
Self {
control_points: control_points.into(),
}
}
}
impl<P: Point> CubicGenerator<P> for CubicBSpline<P> {
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
#[inline]
fn to_curve(&self) -> CubicCurve<P> {
// A derivation for this matrix can be found in "General Matrix Representations for B-splines" by Kaihuai Qin.
// <https://xiaoxingchen.github.io/2020/03/02/bspline_in_so3/general_matrix_representation_for_bsplines.pdf>
// See section 4.1 and equations 7 and 8.
let mut char_matrix = [
[1.0, 4.0, 1.0, 0.0],
[-3.0, 0.0, 3.0, 0.0],
[3.0, -6.0, 3.0, 0.0],
[-1.0, 3.0, -3.0, 1.0],
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
];
char_matrix
.iter_mut()
.for_each(|r| r.iter_mut().for_each(|c| *c /= 6.0));
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
let segments = self
.control_points
.windows(4)
.map(|p| CubicSegment::coefficients([p[0], p[1], p[2], p[3]], char_matrix))
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
.collect();
CubicCurve { segments }
}
}
/// Error during construction of [`CubicNurbs`]
#[derive(Debug, Error)]
pub enum CubicNurbsError {
/// Provided the wrong number of knots.
#[error("Wrong number of knots: expected {expected}, provided {provided}")]
KnotsNumberMismatch {
/// Expected number of knots
expected: usize,
/// Provided number of knots
provided: usize,
},
/// The provided knots had a descending knot pair. Subsequent knots must
/// either increase or stay the same.
#[error("Invalid knots: contains descending knot pair")]
DescendingKnots,
/// The provided knots were all equal. Knots must contain at least one increasing pair.
#[error("Invalid knots: all knots are equal")]
ConstantKnots,
/// Provided a different number of weights and control points.
#[error("Incorrect number of weights: expected {expected}, provided {provided}")]
WeightsNumberMismatch {
/// Expected number of weights
expected: usize,
/// Provided number of weights
provided: usize,
},
/// The number of control points provided is less than 4.
#[error("Not enough control points, at least 4 are required, {provided} were provided")]
NotEnoughControlPoints {
/// The number of control points provided
provided: usize,
},
}
/// Non-uniform Rational B-Splines (NURBS) are a powerful generalization of the [`CubicBSpline`] which can
/// represent a much more diverse class of curves (like perfect circles and ellipses).
///
/// ### Non-uniformity
/// The 'NU' part of NURBS stands for "Non-Uniform". This has to do with a parameter called 'knots'.
/// The knots are a non-decreasing sequence of floating point numbers. The first and last three pairs of
/// knots control the behavior of the curve as it approaches its endpoints. The intermediate pairs
/// each control the length of one segment of the curve. Multiple repeated knot values are called
/// "knot multiplicity". Knot multiplicity in the intermediate knots causes a "zero-length" segment,
/// and can create sharp corners.
///
/// ### Rationality
/// The 'R' part of NURBS stands for "Rational". This has to do with NURBS allowing each control point to
/// be assigned a weighting, which controls how much it affects the curve compared to the other points.
///
/// ### Interpolation
/// The curve will not pass through the control points except where a knot has multiplicity four.
///
/// ### Tangency
/// Tangents are automatically computed based on the position of control points.
///
/// ### Continuity
/// When there is no knot multiplicity, the curve is C2 continuous, meaning it has no holes or jumps and the
/// tangent vector changes smoothly along the entire curve length. Like the [`CubicBSpline`], the acceleration
/// continuity makes it useful for camera paths. Knot multiplicity of 2 in intermediate knots reduces the
/// continuity to C2, and knot multiplicity of 3 reduces the continuity to C0. The curve is always at least
/// C0, meaning it has no jumps or holes.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
/// vec2(-1.0, -20.0),
/// vec2(3.0, 2.0),
/// vec2(5.0, 3.0),
/// vec2(9.0, 8.0),
/// ];
/// let weights = [1.0, 1.0, 2.0, 1.0];
/// let knots = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0];
/// let nurbs = CubicNurbs::new(points, Some(weights), Some(knots))
/// .expect("NURBS construction failed!")
/// .to_curve();
/// let positions: Vec<_> = nurbs.iter_positions(100).collect();
/// ```
pub struct CubicNurbs<P: Point> {
control_points: Vec<P>,
weights: Vec<f32>,
knots: Vec<f32>,
}
impl<P: Point> CubicNurbs<P> {
/// Build a Non-Uniform Rational B-Spline.
///
/// If provided, weights must be the same length as the control points. Defaults to equal weights.
///
/// If provided, the number of knots must be n + 4 elements, where n is the amount of control
/// points. Defaults to open uniform knots: [`Self::open_uniform_knots`]. Knots cannot
/// all be equal.
///
/// At least 4 points must be provided, otherwise an error will be returned.
pub fn new(
control_points: impl Into<Vec<P>>,
weights: Option<impl Into<Vec<f32>>>,
knots: Option<impl Into<Vec<f32>>>,
) -> Result<Self, CubicNurbsError> {
let mut control_points: Vec<P> = control_points.into();
let control_points_len = control_points.len();
if control_points_len < 4 {
return Err(CubicNurbsError::NotEnoughControlPoints {
provided: control_points_len,
});
}
let weights = weights
.map(Into::into)
.unwrap_or_else(|| vec![1.0; control_points_len]);
let mut knots: Vec<f32> = knots.map(Into::into).unwrap_or_else(|| {
Self::open_uniform_knots(control_points_len)
.expect("The amount of control points was checked")
});
let expected_knots_len = Self::knots_len(control_points_len);
// Check the number of knots is correct
if knots.len() != expected_knots_len {
return Err(CubicNurbsError::KnotsNumberMismatch {
expected: expected_knots_len,
provided: knots.len(),
});
}
// Ensure the knots are non-descending (previous element is less than or equal
// to the next)
if knots.windows(2).any(|win| win[0] > win[1]) {
return Err(CubicNurbsError::DescendingKnots);
}
// Ensure the knots are non-constant
if knots.windows(2).all(|win| win[0] == win[1]) {
return Err(CubicNurbsError::ConstantKnots);
}
// Check that the number of weights equals the number of control points
if weights.len() != control_points_len {
return Err(CubicNurbsError::WeightsNumberMismatch {
expected: control_points_len,
provided: weights.len(),
});
}
// To align the evaluation behavior of nurbs with the other splines,
// make the intervals between knots form an exact cover of [0, N], where N is
// the number of segments of the final curve.
let curve_length = (control_points.len() - 3) as f32;
let min = *knots.first().unwrap();
let max = *knots.last().unwrap();
let knot_delta = max - min;
knots = knots
.into_iter()
.map(|k| k - min)
.map(|k| k * curve_length / knot_delta)
.collect();
control_points
.iter_mut()
.zip(weights.iter())
.for_each(|(p, w)| *p = *p * *w);
Ok(Self {
control_points,
weights,
knots,
})
}
/// Generates uniform knots that will generate the same curve as [`CubicBSpline`].
///
/// "Uniform" means that the difference between two subsequent knots is the same.
///
/// Will return `None` if there are less than 4 control points.
pub fn uniform_knots(control_points: usize) -> Option<Vec<f32>> {
if control_points < 4 {
return None;
}
Some(
(0..Self::knots_len(control_points))
.map(|v| v as f32)
.collect(),
)
}
/// Generates open uniform knots, which makes the ends of the curve pass through the
/// start and end points.
///
/// The start and end knots have multiplicity 4, and intermediate knots have multiplicity 0 and
/// difference of 1.
///
/// Will return `None` if there are less than 4 control points.
pub fn open_uniform_knots(control_points: usize) -> Option<Vec<f32>> {
if control_points < 4 {
return None;
}
let last_knots_value = control_points - 3;
Some(
std::iter::repeat(0.0)
.take(4)
.chain((1..last_knots_value).map(|v| v as f32))
.chain(std::iter::repeat(last_knots_value as f32).take(4))
.collect(),
)
}
#[inline(always)]
const fn knots_len(control_points_len: usize) -> usize {
control_points_len + 4
}
/// Generates a non-uniform B-spline characteristic matrix from a sequence of six knots. Each six
/// knots describe the relationship between four successive control points. For padding reasons,
/// this takes a vector of 8 knots, but only six are actually used.
fn generate_matrix(knots: &[f32; 8]) -> [[f32; 4]; 4] {
// A derivation for this matrix can be found in "General Matrix Representations for B-splines" by Kaihuai Qin.
// <https://xiaoxingchen.github.io/2020/03/02/bspline_in_so3/general_matrix_representation_for_bsplines.pdf>
// See section 3.1.
let t = knots;
// In the notation of the paper:
// t[1] := t_i-2
// t[2] := t_i-1
// t[3] := t_i (the lower extent of the current knot span)
// t[4] := t_i+1 (the upper extent of the current knot span)
// t[5] := t_i+2
// t[6] := t_i+3
let m00 = (t[4] - t[3]).powi(2) / ((t[4] - t[2]) * (t[4] - t[1]));
let m02 = (t[3] - t[2]).powi(2) / ((t[5] - t[2]) * (t[4] - t[2]));
let m12 = (3.0 * (t[4] - t[3]) * (t[3] - t[2])) / ((t[5] - t[2]) * (t[4] - t[2]));
let m22 = 3.0 * (t[4] - t[3]).powi(2) / ((t[5] - t[2]) * (t[4] - t[2]));
let m33 = (t[4] - t[3]).powi(2) / ((t[6] - t[3]) * (t[5] - t[3]));
let m32 = -m22 / 3.0 - m33 - (t[4] - t[3]).powi(2) / ((t[5] - t[3]) * (t[5] - t[2]));
[
[m00, 1.0 - m00 - m02, m02, 0.0],
[-3.0 * m00, 3.0 * m00 - m12, m12, 0.0],
[3.0 * m00, -3.0 * m00 - m22, m22, 0.0],
[-m00, m00 - m32 - m33, m32, m33],
]
}
}
impl<P: Point> RationalGenerator<P> for CubicNurbs<P> {
#[inline]
fn to_curve(&self) -> RationalCurve<P> {
let segments = self
.control_points
.windows(4)
.zip(self.weights.windows(4))
.zip(self.knots.windows(8))
.filter(|(_, knots)| knots[4] - knots[3] > 0.0)
.map(|((points, weights), knots)| {
// This is curve segment i. It uses control points P_i, P_i+2, P_i+2 and P_i+3,
// It is associated with knot span i+3 (which is the interval between knots i+3
// and i+4) and it's characteristic matrix uses knots i+1 through i+6 (because
// those define the two knot spans on either side).
let span = knots[4] - knots[3];
let coefficient_knots = knots.try_into().expect("Knot windows are of length 6");
let matrix = Self::generate_matrix(coefficient_knots);
RationalSegment::coefficients(
points.try_into().expect("Point windows are of length 4"),
weights.try_into().expect("Weight windows are of length 4"),
span,
matrix,
)
})
.collect();
RationalCurve { segments }
}
}
/// A spline interpolated linearly between the nearest 2 points.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// The curve is not generally differentiable at control points.
///
/// ### Continuity
/// The curve is C0 continuous, meaning it has no holes or jumps.
pub struct LinearSpline<P: Point> {
points: Vec<P>,
}
impl<P: Point> LinearSpline<P> {
/// Create a new linear spline
pub fn new(points: impl Into<Vec<P>>) -> Self {
Self {
points: points.into(),
}
}
}
impl<P: Point> CubicGenerator<P> for LinearSpline<P> {
#[inline]
fn to_curve(&self) -> CubicCurve<P> {
let segments = self
.points
.windows(2)
.map(|points| {
let a = points[0];
let b = points[1];
CubicSegment {
coeff: [a, b - a, P::default(), P::default()],
}
})
.collect();
CubicCurve { segments }
}
}
/// Implement this on cubic splines that can generate a cubic curve from their spline parameters.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
pub trait CubicGenerator<P: Point> {
/// Build a [`CubicCurve`] by computing the interpolation coefficients for each curve segment.
fn to_curve(&self) -> CubicCurve<P>;
}
/// A segment of a cubic curve, used to hold precomputed coefficients for fast interpolation.
/// Can be evaluated as a parametric curve over the domain `[0, 1)`.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// Segments can be chained together to form a longer compound curve.
#[derive(Clone, Debug, Default, PartialEq)]
pub struct CubicSegment<P: Point> {
coeff: [P; 4],
}
impl<P: Point> CubicSegment<P> {
/// Instantaneous position of a point at parametric value `t`.
#[inline]
pub fn position(&self, t: f32) -> P {
let [a, b, c, d] = self.coeff;
// Evaluate `a + bt + ct^2 + dt^3`, avoiding exponentiation
a + (b + (c + d * t) * t) * t
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
}
/// Instantaneous velocity of a point at parametric value `t`.
#[inline]
pub fn velocity(&self, t: f32) -> P {
let [_, b, c, d] = self.coeff;
// Evaluate the derivative, which is `b + 2ct + 3dt^2`, avoiding exponentiation
b + (c * 2.0 + d * 3.0 * t) * t
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
}
/// Instantaneous acceleration of a point at parametric value `t`.
#[inline]
pub fn acceleration(&self, t: f32) -> P {
let [_, _, c, d] = self.coeff;
// Evaluate the second derivative, which is `2c + 6dt`
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
c * 2.0 + d * 6.0 * t
}
/// Calculate polynomial coefficients for the cubic curve using a characteristic matrix.
#[inline]
fn coefficients(p: [P; 4], char_matrix: [[f32; 4]; 4]) -> Self {
let [c0, c1, c2, c3] = char_matrix;
// These are the polynomial coefficients, computed by multiplying the characteristic
// matrix by the point matrix.
let coeff = [
p[0] * c0[0] + p[1] * c0[1] + p[2] * c0[2] + p[3] * c0[3],
p[0] * c1[0] + p[1] * c1[1] + p[2] * c1[2] + p[3] * c1[3],
p[0] * c2[0] + p[1] * c2[1] + p[2] * c2[2] + p[3] * c2[3],
p[0] * c3[0] + p[1] * c3[1] + p[2] * c3[2] + p[3] * c3[3],
];
Self { coeff }
}
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
}
/// The `CubicSegment<Vec2>` can be used as a 2-dimensional easing curve for animation.
///
/// The x-axis of the curve is time, and the y-axis is the output value. This struct provides
/// methods for extremely fast solves for y given x.
impl CubicSegment<Vec2> {
/// Construct a cubic Bezier curve for animation easing, with control points `p1` and `p2`. A
/// cubic Bezier easing curve has control point `p0` at (0, 0) and `p3` at (1, 1), leaving only
/// `p1` and `p2` as the remaining degrees of freedom. The first and last control points are
/// fixed to ensure the animation begins at 0, and ends at 1.
///
/// This is a very common tool for UI animations that accelerate and decelerate smoothly. For
/// example, the ubiquitous "ease-in-out" is defined as `(0.25, 0.1), (0.25, 1.0)`.
pub fn new_bezier(p1: impl Into<Vec2>, p2: impl Into<Vec2>) -> Self {
let (p0, p3) = (Vec2::ZERO, Vec2::ONE);
let bezier = CubicBezier::new([[p0, p1.into(), p2.into(), p3]]).to_curve();
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
bezier.segments[0].clone()
}
/// Maximum allowable error for iterative Bezier solve
const MAX_ERROR: f32 = 1e-5;
/// Maximum number of iterations during Bezier solve
const MAX_ITERS: u8 = 8;
/// Given a `time` within `0..=1`, returns an eased value that follows the cubic curve instead
/// of a straight line. This eased result may be outside the range `0..=1`, however it will
/// always start at 0 and end at 1: `ease(0) = 0` and `ease(1) = 1`.
///
/// ```
/// # use bevy_math::prelude::*;
/// let cubic_bezier = CubicSegment::new_bezier((0.25, 0.1), (0.25, 1.0));
/// assert_eq!(cubic_bezier.ease(0.0), 0.0);
/// assert_eq!(cubic_bezier.ease(1.0), 1.0);
/// ```
///
/// # How cubic easing works
///
/// Easing is generally accomplished with the help of "shaping functions". These are curves that
/// start at (0,0) and end at (1,1). The x-axis of this plot is the current `time` of the
/// animation, from 0 to 1. The y-axis is how far along the animation is, also from 0 to 1. You
/// can imagine that if the shaping function is a straight line, there is a 1:1 mapping between
/// the `time` and how far along your animation is. If the `time` = 0.5, the animation is
/// halfway through. This is known as linear interpolation, and results in objects animating
/// with a constant velocity, and no smooth acceleration or deceleration at the start or end.
///
/// ```text
/// y
/// │ ●
/// │ ⬈
/// │ ⬈
/// │ ⬈
/// │ ⬈
/// ●─────────── x (time)
/// ```
///
/// Using cubic Beziers, we have a curve that starts at (0,0), ends at (1,1), and follows a path
/// determined by the two remaining control points (handles). These handles allow us to define a
/// smooth curve. As `time` (x-axis) progresses, we now follow the curve, and use the `y` value
/// to determine how far along the animation is.
///
/// ```text
/// y
/// ⬈➔●
/// │ ⬈
/// │ ↑
/// │ ↑
/// │ ⬈
/// ●➔⬈───────── x (time)
/// ```
///
/// To accomplish this, we need to be able to find the position `y` on a curve, given the `x`
/// value. Cubic curves are implicit parametric functions like B(t) = (x,y). To find `y`, we
/// first solve for `t` that corresponds to the given `x` (`time`). We use the Newton-Raphson
/// root-finding method to quickly find a value of `t` that is very near the desired value of
/// `x`. Once we have this we can easily plug that `t` into our curve's `position` function, to
/// find the `y` component, which is how far along our animation should be. In other words:
///
/// > Given `time` in `0..=1`
///
/// > Use Newton's method to find a value of `t` that results in B(t) = (x,y) where `x == time`
///
/// > Once a solution is found, use the resulting `y` value as the final result
#[inline]
pub fn ease(&self, time: f32) -> f32 {
let x = time.clamp(0.0, 1.0);
self.find_y_given_x(x)
}
/// Find the `y` value of the curve at the given `x` value using the Newton-Raphson method.
#[inline]
fn find_y_given_x(&self, x: f32) -> f32 {
let mut t_guess = x;
let mut pos_guess = Vec2::ZERO;
for _ in 0..Self::MAX_ITERS {
pos_guess = self.position(t_guess);
let error = pos_guess.x - x;
if error.abs() <= Self::MAX_ERROR {
break;
}
// Using Newton's method, use the tangent line to estimate a better guess value.
let slope = self.velocity(t_guess).x; // dx/dt
t_guess -= error / slope;
}
pos_guess.y
}
}
/// A collection of [`CubicSegment`]s chained into a single parametric curve. Has domain `[0, N)`
/// where `N` is the number of attached segments.
///
/// Use any struct that implements the [`CubicGenerator`] trait to create a new curve, such as
/// [`CubicBezier`].
#[derive(Clone, Debug, PartialEq)]
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
pub struct CubicCurve<P: Point> {
segments: Vec<CubicSegment<P>>,
}
impl<P: Point> CubicCurve<P> {
/// Compute the position of a point on the cubic curve at the parametric value `t`.
///
/// Note that `t` varies from `0..=(n_points - 3)`.
#[inline]
pub fn position(&self, t: f32) -> P {
let (segment, t) = self.segment(t);
segment.position(t)
}
/// Compute the first derivative with respect to t at `t`. This is the instantaneous velocity of
/// a point on the cubic curve at `t`.
///
/// Note that `t` varies from `0..=(n_points - 3)`.
#[inline]
pub fn velocity(&self, t: f32) -> P {
let (segment, t) = self.segment(t);
segment.velocity(t)
}
/// Compute the second derivative with respect to t at `t`. This is the instantaneous
/// acceleration of a point on the cubic curve at `t`.
///
/// Note that `t` varies from `0..=(n_points - 3)`.
#[inline]
pub fn acceleration(&self, t: f32) -> P {
let (segment, t) = self.segment(t);
segment.acceleration(t)
}
/// A flexible iterator used to sample curves with arbitrary functions.
///
/// This splits the curve into `subdivisions` of evenly spaced `t` values across the
/// length of the curve from start (t = 0) to end (t = n), where `n = self.segment_count()`,
/// returning an iterator evaluating the curve with the supplied `sample_function` at each `t`.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
///
/// For `subdivisions = 2`, this will split the curve into two lines, or three points, and
/// return an iterator with 3 items, the three points, one at the start, middle, and end.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
#[inline]
pub fn iter_samples<'a, 'b: 'a>(
&'b self,
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
subdivisions: usize,
mut sample_function: impl FnMut(&Self, f32) -> P + 'a,
) -> impl Iterator<Item = P> + 'a {
self.iter_uniformly(subdivisions)
.map(move |t| sample_function(self, t))
}
/// An iterator that returns values of `t` uniformly spaced over `0..=subdivisions`.
#[inline]
fn iter_uniformly(&self, subdivisions: usize) -> impl Iterator<Item = f32> {
let segments = self.segments.len() as f32;
let step = segments / subdivisions as f32;
(0..=subdivisions).map(move |i| i as f32 * step)
}
/// The list of segments contained in this `CubicCurve`.
///
/// This spline's global `t` value is equal to how many segments it has.
///
/// All method accepting `t` on `CubicCurve` depends on the global `t`.
/// When sampling over the entire curve, you should either use one of the
/// `iter_*` methods or account for the segment count using `curve.segments().len()`.
#[inline]
pub fn segments(&self) -> &[CubicSegment<P>] {
&self.segments
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
}
/// Iterate over the curve split into `subdivisions`, sampling the position at each step.
pub fn iter_positions(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
self.iter_samples(subdivisions, Self::position)
}
/// Iterate over the curve split into `subdivisions`, sampling the velocity at each step.
pub fn iter_velocities(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
self.iter_samples(subdivisions, Self::velocity)
}
/// Iterate over the curve split into `subdivisions`, sampling the acceleration at each step.
pub fn iter_accelerations(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
self.iter_samples(subdivisions, Self::acceleration)
}
#[inline]
/// Adds a segment to the curve
pub fn push_segment(&mut self, segment: CubicSegment<P>) {
self.segments.push(segment);
}
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// Returns the [`CubicSegment`] and local `t` value given a spline's global `t` value.
#[inline]
fn segment(&self, t: f32) -> (&CubicSegment<P>, f32) {
if self.segments.len() == 1 {
(&self.segments[0], t)
} else {
let i = (t.floor() as usize).clamp(0, self.segments.len() - 1);
(&self.segments[i], t - i as f32)
}
}
}
impl<P: Point> Extend<CubicSegment<P>> for CubicCurve<P> {
fn extend<T: IntoIterator<Item = CubicSegment<P>>>(&mut self, iter: T) {
self.segments.extend(iter);
}
}
impl<P: Point> IntoIterator for CubicCurve<P> {
type IntoIter = <Vec<CubicSegment<P>> as IntoIterator>::IntoIter;
type Item = CubicSegment<P>;
fn into_iter(self) -> Self::IntoIter {
self.segments.into_iter()
}
}
/// Implement this on cubic splines that can generate a rational cubic curve from their spline parameters.
pub trait RationalGenerator<P: Point> {
/// Build a [`RationalCurve`] by computing the interpolation coefficients for each curve segment.
fn to_curve(&self) -> RationalCurve<P>;
}
/// A segment of a rational cubic curve, used to hold precomputed coefficients for fast interpolation.
/// Can be evaluated as a parametric curve over the domain `[0, knot_span)`.
///
/// Segments can be chained together to form a longer compound curve.
#[derive(Clone, Debug, Default, PartialEq)]
pub struct RationalSegment<P: Point> {
/// The coefficients matrix of the cubic curve.
coeff: [P; 4],
/// The homogeneous weight coefficients.
weight_coeff: [f32; 4],
/// The width of the domain of this segment.
knot_span: f32,
}
impl<P: Point> RationalSegment<P> {
/// Instantaneous position of a point at parametric value `t` in `[0, knot_span)`.
#[inline]
pub fn position(&self, t: f32) -> P {
let [a, b, c, d] = self.coeff;
let [x, y, z, w] = self.weight_coeff;
// Compute a cubic polynomial for the control points
let numerator = a + (b + (c + d * t) * t) * t;
// Compute a cubic polynomial for the weights
let denominator = x + (y + (z + w * t) * t) * t;
numerator / denominator
}
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// Instantaneous velocity of a point at parametric value `t` in `[0, knot_span)`.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
#[inline]
pub fn velocity(&self, t: f32) -> P {
// A derivation for the following equations can be found in "Matrix representation for NURBS
// curves and surfaces" by Choi et al. See equation 19.
let [a, b, c, d] = self.coeff;
let [x, y, z, w] = self.weight_coeff;
// Compute a cubic polynomial for the control points
let numerator = a + (b + (c + d * t) * t) * t;
// Compute a cubic polynomial for the weights
let denominator = x + (y + (z + w * t) * t) * t;
// Compute the derivative of the control point polynomial
let numerator_derivative = b + (c * 2.0 + d * 3.0 * t) * t;
// Compute the derivative of the weight polynomial
let denominator_derivative = y + (z * 2.0 + w * 3.0 * t) * t;
// Velocity is the first derivative (wrt to the parameter `t`)
// Position = N/D therefore
// Velocity = (N/D)' = N'/D - N * D'/D^2 = (N' * D - N * D')/D^2
numerator_derivative / denominator
- numerator * (denominator_derivative / denominator.powi(2))
}
/// Instantaneous acceleration of a point at parametric value `t` in `[0, knot_span)`.
#[inline]
pub fn acceleration(&self, t: f32) -> P {
// A derivation for the following equations can be found in "Matrix representation for NURBS
// curves and surfaces" by Choi et al. See equation 20. Note: In come copies of this paper, equation 20
// is printed with the following two errors:
// + The first term has incorrect sign.
// + The second term uses R when it should use the first derivative.
let [a, b, c, d] = self.coeff;
let [x, y, z, w] = self.weight_coeff;
// Compute a cubic polynomial for the control points
let numerator = a + (b + (c + d * t) * t) * t;
// Compute a cubic polynomial for the weights
let denominator = x + (y + (z + w * t) * t) * t;
// Compute the derivative of the control point polynomial
let numerator_derivative = b + (c * 2.0 + d * 3.0 * t) * t;
// Compute the derivative of the weight polynomial
let denominator_derivative = y + (z * 2.0 + w * 3.0 * t) * t;
// Compute the second derivative of the control point polynomial
let numerator_second_derivative = c * 2.0 + d * 6.0 * t;
// Compute the second derivative of the weight polynomial
let denominator_second_derivative = z * 2.0 + w * 6.0 * t;
// Velocity is the first derivative (wrt to the parameter `t`)
// Position = N/D therefore
// Velocity = (N/D)' = N'/D - N * D'/D^2 = (N' * D - N * D')/D^2
// Acceleration = (N/D)'' = ((N' * D - N * D')/D^2)' = N''/D + N' * (-2D'/D^2) + N * (-D''/D^2 + 2D'^2/D^3)
numerator_second_derivative / denominator
+ numerator_derivative * (-2.0 * denominator_derivative / denominator.powi(2))
+ numerator
* (-denominator_second_derivative / denominator.powi(2)
+ 2.0 * denominator_derivative.powi(2) / denominator.powi(3))
}
/// Calculate polynomial coefficients for the cubic polynomials using a characteristic matrix.
#[inline]
fn coefficients(
control_points: [P; 4],
weights: [f32; 4],
knot_span: f32,
char_matrix: [[f32; 4]; 4],
) -> Self {
// An explanation of this use can be found in "Matrix representation for NURBS curves and surfaces"
// by Choi et al. See section "Evaluation of NURB Curves and Surfaces", and equation 16.
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
let [c0, c1, c2, c3] = char_matrix;
let p = control_points;
let w = weights;
// These are the control point polynomial coefficients, computed by multiplying the characteristic
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
// matrix by the point matrix.
let coeff = [
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
p[0] * c0[0] + p[1] * c0[1] + p[2] * c0[2] + p[3] * c0[3],
p[0] * c1[0] + p[1] * c1[1] + p[2] * c1[2] + p[3] * c1[3],
p[0] * c2[0] + p[1] * c2[1] + p[2] * c2[2] + p[3] * c2[3],
p[0] * c3[0] + p[1] * c3[1] + p[2] * c3[2] + p[3] * c3[3],
];
// These are the weight polynomial coefficients, computed by multiplying the characteristic
// matrix by the weight matrix.
let weight_coeff = [
w[0] * c0[0] + w[1] * c0[1] + w[2] * c0[2] + w[3] * c0[3],
w[0] * c1[0] + w[1] * c1[1] + w[2] * c1[2] + w[3] * c1[3],
w[0] * c2[0] + w[1] * c2[1] + w[2] * c2[2] + w[3] * c2[3],
w[0] * c3[0] + w[1] * c3[1] + w[2] * c3[2] + w[3] * c3[3],
];
Self {
coeff,
weight_coeff,
knot_span,
}
}
}
/// A collection of [`RationalSegment`]s chained into a single parametric curve.
///
/// Use any struct that implements the [`RationalGenerator`] trait to create a new curve, such as
/// [`CubicNurbs`], or convert [`CubicCurve`] using `into/from`.
#[derive(Clone, Debug, PartialEq)]
pub struct RationalCurve<P: Point> {
segments: Vec<RationalSegment<P>>,
}
impl<P: Point> RationalCurve<P> {
/// Compute the position of a point on the curve at the parametric value `t`.
///
/// Note that `t` varies from `0..=(n_points - 3)`.
#[inline]
pub fn position(&self, t: f32) -> P {
let (segment, t) = self.segment(t);
segment.position(t)
}
/// Compute the first derivative with respect to t at `t`. This is the instantaneous velocity of
/// a point on the curve at `t`.
///
/// Note that `t` varies from `0..=(n_points - 3)`.
#[inline]
pub fn velocity(&self, t: f32) -> P {
let (segment, t) = self.segment(t);
segment.velocity(t)
}
/// Compute the second derivative with respect to t at `t`. This is the instantaneous
/// acceleration of a point on the curve at `t`.
///
/// Note that `t` varies from `0..=(n_points - 3)`.
#[inline]
pub fn acceleration(&self, t: f32) -> P {
let (segment, t) = self.segment(t);
segment.acceleration(t)
}
/// A flexible iterator used to sample curves with arbitrary functions.
///
/// This splits the curve into `subdivisions` of evenly spaced `t` values across the
/// length of the curve from start (t = 0) to end (t = n), where `n = self.segment_count()`,
/// returning an iterator evaluating the curve with the supplied `sample_function` at each `t`.
///
/// For `subdivisions = 2`, this will split the curve into two lines, or three points, and
/// return an iterator with 3 items, the three points, one at the start, middle, and end.
#[inline]
pub fn iter_samples<'a, 'b: 'a>(
&'b self,
subdivisions: usize,
mut sample_function: impl FnMut(&Self, f32) -> P + 'a,
) -> impl Iterator<Item = P> + 'a {
self.iter_uniformly(subdivisions)
.map(move |t| sample_function(self, t))
}
/// An iterator that returns values of `t` uniformly spaced over `0..=subdivisions`.
#[inline]
fn iter_uniformly(&self, subdivisions: usize) -> impl Iterator<Item = f32> {
let domain = self.domain();
let step = domain / subdivisions as f32;
(0..=subdivisions).map(move |i| i as f32 * step)
}
/// The list of segments contained in this `RationalCurve`.
///
/// This spline's global `t` value is equal to how many segments it has.
///
/// All method accepting `t` on `RationalCurve` depends on the global `t`.
/// When sampling over the entire curve, you should either use one of the
/// `iter_*` methods or account for the segment count using `curve.segments().len()`.
#[inline]
pub fn segments(&self) -> &[RationalSegment<P>] {
&self.segments
}
/// Iterate over the curve split into `subdivisions`, sampling the position at each step.
pub fn iter_positions(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
self.iter_samples(subdivisions, Self::position)
}
/// Iterate over the curve split into `subdivisions`, sampling the velocity at each step.
pub fn iter_velocities(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
self.iter_samples(subdivisions, Self::velocity)
}
/// Iterate over the curve split into `subdivisions`, sampling the acceleration at each step.
pub fn iter_accelerations(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
self.iter_samples(subdivisions, Self::acceleration)
}
/// Adds a segment to the curve.
#[inline]
pub fn push_segment(&mut self, segment: RationalSegment<P>) {
self.segments.push(segment);
}
/// Returns the [`RationalSegment`] and local `t` value given a spline's global `t` value.
/// Input `t` will be clamped to the domain of the curve. Returned value will be in `[0, 1]`.
#[inline]
fn segment(&self, mut t: f32) -> (&RationalSegment<P>, f32) {
if t <= 0.0 {
(&self.segments[0], 0.0)
} else if self.segments.len() == 1 {
(&self.segments[0], t / self.segments[0].knot_span)
} else {
// Try to fit t into each segment domain
for segment in self.segments.iter() {
if t < segment.knot_span {
// The division here makes t a normalized parameter in [0, 1] that can be properly
// evaluated against a cubic curve segment. See equations 6 & 16 from "Matrix representation
// of NURBS curves and surfaces" by Choi et al. or equation 3 from "General Matrix
// Representations for B-Splines" by Qin.
return (segment, t / segment.knot_span);
}
t -= segment.knot_span;
}
return (self.segments.last().unwrap(), 1.0);
}
}
/// Returns the length of of the domain of the parametric curve.
#[inline]
pub fn domain(&self) -> f32 {
self.segments.iter().map(|segment| segment.knot_span).sum()
}
}
impl<P: Point> Extend<RationalSegment<P>> for RationalCurve<P> {
fn extend<T: IntoIterator<Item = RationalSegment<P>>>(&mut self, iter: T) {
self.segments.extend(iter);
}
}
impl<P: Point> IntoIterator for RationalCurve<P> {
type IntoIter = <Vec<RationalSegment<P>> as IntoIterator>::IntoIter;
type Item = RationalSegment<P>;
fn into_iter(self) -> Self::IntoIter {
self.segments.into_iter()
}
}
impl<P: Point> From<CubicSegment<P>> for RationalSegment<P> {
fn from(value: CubicSegment<P>) -> Self {
Self {
coeff: value.coeff,
weight_coeff: [1.0, 0.0, 0.0, 0.0],
knot_span: 1.0, // Cubic curves are uniform, so every segment has domain [0, 1).
}
}
}
impl<P: Point> From<CubicCurve<P>> for RationalCurve<P> {
fn from(value: CubicCurve<P>) -> Self {
Self {
segments: value.segments.into_iter().map(Into::into).collect(),
}
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
}
}
#[cfg(test)]
mod tests {
use glam::{vec2, Vec2};
use crate::cubic_splines::{
CubicBSpline, CubicBezier, CubicGenerator, CubicNurbs, CubicSegment, RationalCurve,
RationalGenerator,
};
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
/// How close two floats can be and still be considered equal
const FLOAT_EQ: f32 = 1e-5;
/// Sweep along the full length of a 3D cubic Bezier, and manually check the position.
#[test]
fn cubic() {
const N_SAMPLES: usize = 1000;
let points = [[
vec2(-1.0, -20.0),
vec2(3.0, 2.0),
vec2(5.0, 3.0),
vec2(9.0, 8.0),
]];
let bezier = CubicBezier::new(points).to_curve();
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
for i in 0..=N_SAMPLES {
let t = i as f32 / N_SAMPLES as f32; // Check along entire length
assert!(bezier.position(t).distance(cubic_manual(t, points[0])) <= FLOAT_EQ);
}
}
/// Manual, hardcoded function for computing the position along a cubic bezier.
fn cubic_manual(t: f32, points: [Vec2; 4]) -> Vec2 {
let p = points;
p[0] * (1.0 - t).powi(3)
+ 3.0 * p[1] * t * (1.0 - t).powi(2)
+ 3.0 * p[2] * t.powi(2) * (1.0 - t)
+ p[3] * t.powi(3)
}
/// Basic cubic Bezier easing test to verify the shape of the curve.
#[test]
fn easing_simple() {
// A curve similar to ease-in-out, but symmetric
let bezier = CubicSegment::new_bezier([1.0, 0.0], [0.0, 1.0]);
assert_eq!(bezier.ease(0.0), 0.0);
assert!(bezier.ease(0.2) < 0.2); // tests curve
assert_eq!(bezier.ease(0.5), 0.5); // true due to symmetry
assert!(bezier.ease(0.8) > 0.8); // tests curve
assert_eq!(bezier.ease(1.0), 1.0);
}
/// A curve that forms an upside-down "U", that should extend below 0.0. Useful for animations
/// that go beyond the start and end positions, e.g. bouncing.
#[test]
fn easing_overshoot() {
// A curve that forms an upside-down "U", that should extend above 1.0
let bezier = CubicSegment::new_bezier([0.0, 2.0], [1.0, 2.0]);
assert_eq!(bezier.ease(0.0), 0.0);
assert!(bezier.ease(0.5) > 1.5);
assert_eq!(bezier.ease(1.0), 1.0);
}
/// A curve that forms a "U", that should extend below 0.0. Useful for animations that go beyond
/// the start and end positions, e.g. bouncing.
#[test]
fn easing_undershoot() {
let bezier = CubicSegment::new_bezier([0.0, -2.0], [1.0, -2.0]);
assert_eq!(bezier.ease(0.0), 0.0);
assert!(bezier.ease(0.5) < -0.5);
assert_eq!(bezier.ease(1.0), 1.0);
}
Make cardinal splines include endpoints (#12574) # Objective - Fixes #12570 ## Solution Previously, cardinal splines constructed by `CubicCardinalSpline` would leave out their endpoints when constructing the cubic curve segments connecting their points. (See the linked issue for details.) Now, cardinal splines include the endpoints. For instance, the provided usage example ```rust let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let cardinal = CubicCardinalSpline::new(0.3, points).to_curve(); let positions: Vec<_> = cardinal.iter_positions(100).collect(); ``` will actually produce a spline that connects all four of these points instead of just the middle two "interior" points. Internally, this is achieved by duplicating the endpoints of the vector of control points before performing the construction of the associated `CubicCurve`. This amounts to specifying that the tangents at the endpoints `P_0` and `P_n` (say) should be parallel to `P_1 - P_0` and `P_n - P_{n-1}`. --- ## Migration Guide Any users relying on the old behavior of `CubicCardinalSpline` will have to truncate any parametrizations they used in order to access a curve identical to the one they had previously. This would be done by chopping off a unit-distance segment from each end of the parametrizing interval. For instance, if a user's existing code looks as follows ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t) } ``` then in order to obtain similar behavior, `t` will need to be shifted up by 1, since the output of `CubicCardinalSpline::to_curve` has introduced a new segment in the interval [0,1], displacing the old segment from [0,1] to [1,2]: ```rust fn interpolate(t: f32) -> Vec2 { let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; let my_curve = CubicCardinalSpline::new(0.3, points).to_curve(); my_curve.position(t+1) } ``` (Note that this does not provide identical output for values of `t` outside of the interval [0,1].) On the other hand, any user who was specifying additional endpoint tangents simply to get the curve to pass through the right points (i.e. not requiring exactly the same output) can simply omit the endpoints that were being supplied only for control purposes. --- ## Discussion ### Design considerations This is one of the two approaches outlined in #12570 — in this PR, we are basically declaring that the docs are right and the implementation was flawed. One semi-interesting question is how the endpoint tangents actually ought to be defined when we include them, and another option considered was mirroring the control points adjacent to the endpoints instead of duplicating them, which would have had the advantage that the expected length of the corresponding difference should be more similar to that of the other difference-tangents, provided that the points are equally spaced. In this PR, the duplication method (which produces smaller tangents) was chosen for a couple reasons: - It seems to be more standard - It is exceptionally simple to implement - I was a little concerned that the aforementioned alternative would result in some over-extrapolation ### An annoyance If you look at the code, you'll see I was unable to find a satisfactory way of doing this without allocating a new vector. This doesn't seem like a big problem given the context, but it does bother me. In particular, if there is some easy parallel to `slice::windows` for iterators that doesn't pull in an external dependency, I would love to know about it.
2024-03-21 18:58:51 +00:00
/// Test that a simple cardinal spline passes through all of its control points with
/// the correct tangents.
#[test]
fn cardinal_control_pts() {
use super::CubicCardinalSpline;
let tension = 0.2;
let [p0, p1, p2, p3] = [vec2(-1., -2.), vec2(0., 1.), vec2(1., 2.), vec2(-2., 1.)];
let curve = CubicCardinalSpline::new(tension, [p0, p1, p2, p3]).to_curve();
// Positions at segment endpoints
assert!(curve.position(0.).abs_diff_eq(p0, FLOAT_EQ));
assert!(curve.position(1.).abs_diff_eq(p1, FLOAT_EQ));
assert!(curve.position(2.).abs_diff_eq(p2, FLOAT_EQ));
assert!(curve.position(3.).abs_diff_eq(p3, FLOAT_EQ));
// Tangents at segment endpoints
assert!(curve
.velocity(0.)
.abs_diff_eq((p1 - p0) * tension * 2., FLOAT_EQ));
assert!(curve
.velocity(1.)
.abs_diff_eq((p2 - p0) * tension, FLOAT_EQ));
assert!(curve
.velocity(2.)
.abs_diff_eq((p3 - p1) * tension, FLOAT_EQ));
assert!(curve
.velocity(3.)
.abs_diff_eq((p3 - p2) * tension * 2., FLOAT_EQ));
}
/// Test that [`RationalCurve`] properly generalizes [`CubicCurve`]. A Cubic upgraded to a rational
/// should produce pretty much the same output.
#[test]
fn cubic_to_rational() {
const EPSILON: f32 = 0.00001;
let points = [
vec2(0.0, 0.0),
vec2(1.0, 1.0),
vec2(1.0, 1.0),
vec2(2.0, -1.0),
vec2(3.0, 1.0),
vec2(0.0, 0.0),
];
let b_spline = CubicBSpline::new(points).to_curve();
let rational_b_spline = RationalCurve::from(b_spline.clone());
/// Tests if two vectors of points are approximately the same
fn compare_vectors(cubic_curve: Vec<Vec2>, rational_curve: Vec<Vec2>, name: &str) {
assert_eq!(
cubic_curve.len(),
rational_curve.len(),
"{name} vector lengths mismatch"
);
for (i, (a, b)) in cubic_curve.iter().zip(rational_curve.iter()).enumerate() {
assert!(
a.distance(*b) < EPSILON,
"Mismatch at {name} value {i}. CubicCurve: {} Converted RationalCurve: {}",
a,
b
);
}
}
// Both curves should yield the same values
let cubic_positions: Vec<_> = b_spline.iter_positions(10).collect();
let rational_positions: Vec<_> = rational_b_spline.iter_positions(10).collect();
compare_vectors(cubic_positions, rational_positions, "position");
let cubic_velocities: Vec<_> = b_spline.iter_velocities(10).collect();
let rational_velocities: Vec<_> = rational_b_spline.iter_velocities(10).collect();
compare_vectors(cubic_velocities, rational_velocities, "velocity");
let cubic_accelerations: Vec<_> = b_spline.iter_accelerations(10).collect();
let rational_accelerations: Vec<_> = rational_b_spline.iter_accelerations(10).collect();
compare_vectors(cubic_accelerations, rational_accelerations, "acceleration");
}
/// Test that a nurbs curve can approximate a portion of a circle.
#[test]
fn nurbs_circular_arc() {
use std::f32::consts::FRAC_PI_2;
const EPSILON: f32 = 0.0000001;
// The following NURBS parameters were determined by constraining the first two
// points to the line y=1, the second two points to the line x=1, and the distance
// between each pair of points to be equal. One can solve the weights by assuming the
// first and last weights to be one, the intermediate weights to be equal, and
// subjecting ones self to a lot of tedious matrix algebra.
let alpha = FRAC_PI_2;
let leg = 2.0 * f32::sin(alpha / 2.0) / (1.0 + 2.0 * f32::cos(alpha / 2.0));
let weight = (1.0 + 2.0 * f32::cos(alpha / 2.0)) / 3.0;
let points = [
vec2(1.0, 0.0),
vec2(1.0, leg),
vec2(leg, 1.0),
vec2(0.0, 1.0),
];
let weights = [1.0, weight, weight, 1.0];
let knots = [0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0];
let spline = CubicNurbs::new(points, Some(weights), Some(knots)).unwrap();
let curve = spline.to_curve();
for (i, point) in curve.iter_positions(10).enumerate() {
assert!(
f32::abs(point.length() - 1.0) < EPSILON,
"Point {i} is not on the unit circle: {point:?} has length {}",
point.length()
);
}
}
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
}