bevy/crates/bevy_reflect/src/reflect.rs

279 lines
11 KiB
Rust
Raw Normal View History

bevy_reflect: Improve debug formatting for reflected types (#4218) # Objective Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`. It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation. ## Solution Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered. To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits. ### Example Using the following structs: ```rust #[derive(Reflect)] pub struct Foo { a: usize, nested: Bar, #[reflect(ignore)] _ignored: NonReflectedValue, } #[derive(Reflect)] pub struct Bar { value: Vec2, tuple_value: (i32, String), list_value: Vec<usize>, // We can't determine debug formatting for Option<T> yet unknown_value: Option<String>, custom_debug: CustomDebug } #[derive(Reflect)] #[reflect(Debug)] struct CustomDebug; impl Debug for CustomDebug { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "This is a custom debug!") } } pub struct NonReflectedValue { _a: usize, } ``` We can do: ```rust let value = Foo { a: 1, _ignored: NonReflectedValue { _a: 10 }, nested: Bar { value: Vec2::new(1.23, 3.21), tuple_value: (123, String::from("Hello")), list_value: vec![1, 2, 3], unknown_value: Some(String::from("World")), custom_debug: CustomDebug }, }; let reflected_value: &dyn Reflect = &value; println!("{:#?}", reflected_value) ``` Which results in: ```rust Foo { a: 2, nested: Bar { value: Vec2( 1.23, 3.21, ), tuple_value: ( 123, "Hello", ), list_value: [ 1, 2, 3, ], unknown_value: Reflect(core::option::Option<alloc::string::String>), custom_debug: This is a custom debug!, }, } ``` Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits). Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
use crate::{
bevy_reflect: Reflect enums (#4761) # Objective > This is a revival of #1347. Credit for the original PR should go to @Davier. Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API. ## Solution Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically: ```rust #[derive(Reflect)] enum Foo { A, B(usize), C { value: f32 }, } let mut foo = Foo::B(123); assert_eq!("B", foo.variant_name()); assert_eq!(1, foo.field_len()); let new_value = DynamicEnum::from(Foo::C { value: 1.23 }); foo.apply(&new_value); assert_eq!(Foo::C{value: 1.23}, foo); ``` ### Features #### Derive Macro Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection. ```rust #[derive(Reflect)] enum TestEnum { A, // Uncomment to ignore all of `B` // #[reflect(ignore)] B(usize), C { // Uncomment to ignore only field `foo` of `C` // #[reflect(ignore)] foo: f32, bar: bool, }, } ``` #### Dynamic Enums Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro. ```rust let mut value = TestEnum::A; // Create from a concrete instance let dyn_enum = DynamicEnum::from(TestEnum::B(123)); value.apply(&dyn_enum); assert_eq!(TestEnum::B(123), value); // Create a purely dynamic instance let dyn_enum = DynamicEnum::new("TestEnum", "A", ()); value.apply(&dyn_enum); assert_eq!(TestEnum::A, value); ``` #### Variants An enum value is always represented as one of its variants— never the enum in its entirety. ```rust let value = TestEnum::A; assert_eq!("A", value.variant_name()); // Since we are using the `A` variant, we cannot also be the `B` variant assert_ne!("B", value.variant_name()); ``` All variant types are representable within the `Enum` trait: unit, struct, and tuple. You can get the current type like: ```rust match value.variant_type() { VariantType::Unit => println!("A unit variant!"), VariantType::Struct => println!("A struct variant!"), VariantType::Tuple => println!("A tuple variant!"), } ``` > Notice that they don't contain any values representing the fields. These are purely tags. If a variant has them, you can access the fields as well: ```rust let mut value = TestEnum::C { foo: 1.23, bar: false }; // Read/write specific fields *value.field_mut("bar").unwrap() = true; // Iterate over the entire collection of fields for field in value.iter_fields() { println!("{} = {:?}", field.name(), field.value()); } ``` #### Variant Swapping It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them. ```rust let mut value: Box<dyn Enum> = Box::new(TestEnum::A); value.set(Box::new(TestEnum::B(123))).unwrap(); ``` #### Serialization Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized. > Note, like the rest of reflection-based serialization, the order of the keys in these representations is important! ##### Unit ```json { "type": "my_crate::TestEnum", "enum": { "variant": "A" } } ``` ##### Tuple ```json { "type": "my_crate::TestEnum", "enum": { "variant": "B", "tuple": [ { "type": "usize", "value": 123 } ] } } ``` <details> <summary>Effects on Option</summary> This ends up making `Option` look a little ugly: ```json { "type": "core::option::Option<usize>", "enum": { "variant": "Some", "tuple": [ { "type": "usize", "value": 123 } ] } } ``` </details> ##### Struct ```json { "type": "my_crate::TestEnum", "enum": { "variant": "C", "struct": { "foo": { "type": "f32", "value": 1.23 }, "bar": { "type": "bool", "value": false } } } } ``` ## Design Decisions <details> <summary><strong>View Section</strong></summary> This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future. ### Variant Representation One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though. #### Alternatives ##### 1. Variant Traits One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like: ```rust pub trait Enum: Reflect { fn variant(&self) -> Variant; } pub enum Variant<'a> { Unit, Tuple(&'a dyn TupleVariant), Struct(&'a dyn StructVariant), } pub trait TupleVariant { fn field_len(&self) -> usize; // ... } ``` And then do things like: ```rust fn get_tuple_len(foo: &dyn Enum) -> usize { match foo.variant() { Variant::Tuple(tuple) => tuple.field_len(), _ => panic!("not a tuple variant!") } } ``` The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun: ```rust let foo: Option<i32> = None; let my_enum = Box::new(foo) as Box<dyn TupleVariant>; ``` Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants. ##### 2. Variant Structs To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations. Each variant struct would probably look something like: ```rust pub trait Enum: Reflect { fn variant_mut(&self) -> VariantMut; } pub enum VariantMut<'a> { Unit, Tuple(TupleVariantMut), Struct(StructVariantMut), } struct StructVariantMut<'a> { fields: Vec<&'a mut dyn Reflect>, field_indices: HashMap<Cow<'static, str>, usize> } ``` This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough. ##### 3. Generated Structs The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant. Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC. In order to work properly, the enum had to be transmuted to the generated struct: ```rust fn variant(&self) -> crate::EnumVariant<'_> { match self { Foo::Bar {value: i32} => { let wrapper_ref = unsafe { std::mem::transmute::<&Self, &FooBarWrapper>(self) }; crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct) } } } ``` This works because `FooBarWrapper` is defined as `repr(transparent)`. Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because: * To reduce generated code (which would hopefully speed up compile times) * To avoid cluttering the code with generated structs not visible to the user * To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems) * To avoid additional unsafe blocks * My own misunderstanding of @Davier's code That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation. #### Benefits of All-in-One As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.). The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't). This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter): ```rust let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123}; // We know it's the `Bar` variant let field = dyn_enum.field("value").unwrap(); ``` Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes. Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums. </details> --- ## Changelog ### Added * Added `Enum` trait * Added `Enum` impl to `Reflect` derive macro * Added `DynamicEnum` struct * Added `DynamicVariant` * Added `EnumInfo` * Added `VariantInfo` * Added `StructVariantInfo` * Added `TupleVariantInfo` * Added `UnitVariantInfo` * Added serializtion/deserialization support for enums * Added `EnumSerializer` * Added `VariantType` * Added `VariantFieldIter` * Added `VariantField` * Added `enum_partial_eq(...)` * Added `enum_hash(...)` ### Changed * `Option<T>` now implements `Enum` * `bevy_window` now depends on `bevy_reflect` * Implemented `Reflect` and `FromReflect` for `WindowId` * Derive `FromReflect` on `PerspectiveProjection` * Derive `FromReflect` on `OrthographicProjection` * Derive `FromReflect` on `WindowOrigin` * Derive `FromReflect` on `ScalingMode` * Derive `FromReflect` on `DepthCalculation` ## Migration Guide * Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]` * Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums. --- Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated! Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
array_debug, enum_debug, list_debug, map_debug, serde::Serializable, struct_debug, tuple_debug,
tuple_struct_debug, Array, Enum, List, Map, Struct, Tuple, TupleStruct, TypeInfo, Typed,
ValueInfo,
bevy_reflect: Improve debug formatting for reflected types (#4218) # Objective Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`. It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation. ## Solution Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered. To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits. ### Example Using the following structs: ```rust #[derive(Reflect)] pub struct Foo { a: usize, nested: Bar, #[reflect(ignore)] _ignored: NonReflectedValue, } #[derive(Reflect)] pub struct Bar { value: Vec2, tuple_value: (i32, String), list_value: Vec<usize>, // We can't determine debug formatting for Option<T> yet unknown_value: Option<String>, custom_debug: CustomDebug } #[derive(Reflect)] #[reflect(Debug)] struct CustomDebug; impl Debug for CustomDebug { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "This is a custom debug!") } } pub struct NonReflectedValue { _a: usize, } ``` We can do: ```rust let value = Foo { a: 1, _ignored: NonReflectedValue { _a: 10 }, nested: Bar { value: Vec2::new(1.23, 3.21), tuple_value: (123, String::from("Hello")), list_value: vec![1, 2, 3], unknown_value: Some(String::from("World")), custom_debug: CustomDebug }, }; let reflected_value: &dyn Reflect = &value; println!("{:#?}", reflected_value) ``` Which results in: ```rust Foo { a: 2, nested: Bar { value: Vec2( 1.23, 3.21, ), tuple_value: ( 123, "Hello", ), list_value: [ 1, 2, 3, ], unknown_value: Reflect(core::option::Option<alloc::string::String>), custom_debug: This is a custom debug!, }, } ``` Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits). Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
};
use std::{
any::{self, Any, TypeId},
fmt::Debug,
};
2020-11-28 00:39:59 +00:00
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
use crate::utility::NonGenericTypeInfoCell;
2020-11-28 00:39:59 +00:00
pub use bevy_utils::AHasher as ReflectHasher;
/// An immutable enumeration of "kinds" of reflected type.
///
/// Each variant contains a trait object with methods specific to a kind of
/// type.
///
/// A `ReflectRef` is obtained via [`Reflect::reflect_ref`].
2020-11-28 00:39:59 +00:00
pub enum ReflectRef<'a> {
Struct(&'a dyn Struct),
TupleStruct(&'a dyn TupleStruct),
Tuple(&'a dyn Tuple),
2020-11-28 00:39:59 +00:00
List(&'a dyn List),
Array(&'a dyn Array),
2020-11-28 00:39:59 +00:00
Map(&'a dyn Map),
bevy_reflect: Reflect enums (#4761) # Objective > This is a revival of #1347. Credit for the original PR should go to @Davier. Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API. ## Solution Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically: ```rust #[derive(Reflect)] enum Foo { A, B(usize), C { value: f32 }, } let mut foo = Foo::B(123); assert_eq!("B", foo.variant_name()); assert_eq!(1, foo.field_len()); let new_value = DynamicEnum::from(Foo::C { value: 1.23 }); foo.apply(&new_value); assert_eq!(Foo::C{value: 1.23}, foo); ``` ### Features #### Derive Macro Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection. ```rust #[derive(Reflect)] enum TestEnum { A, // Uncomment to ignore all of `B` // #[reflect(ignore)] B(usize), C { // Uncomment to ignore only field `foo` of `C` // #[reflect(ignore)] foo: f32, bar: bool, }, } ``` #### Dynamic Enums Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro. ```rust let mut value = TestEnum::A; // Create from a concrete instance let dyn_enum = DynamicEnum::from(TestEnum::B(123)); value.apply(&dyn_enum); assert_eq!(TestEnum::B(123), value); // Create a purely dynamic instance let dyn_enum = DynamicEnum::new("TestEnum", "A", ()); value.apply(&dyn_enum); assert_eq!(TestEnum::A, value); ``` #### Variants An enum value is always represented as one of its variants— never the enum in its entirety. ```rust let value = TestEnum::A; assert_eq!("A", value.variant_name()); // Since we are using the `A` variant, we cannot also be the `B` variant assert_ne!("B", value.variant_name()); ``` All variant types are representable within the `Enum` trait: unit, struct, and tuple. You can get the current type like: ```rust match value.variant_type() { VariantType::Unit => println!("A unit variant!"), VariantType::Struct => println!("A struct variant!"), VariantType::Tuple => println!("A tuple variant!"), } ``` > Notice that they don't contain any values representing the fields. These are purely tags. If a variant has them, you can access the fields as well: ```rust let mut value = TestEnum::C { foo: 1.23, bar: false }; // Read/write specific fields *value.field_mut("bar").unwrap() = true; // Iterate over the entire collection of fields for field in value.iter_fields() { println!("{} = {:?}", field.name(), field.value()); } ``` #### Variant Swapping It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them. ```rust let mut value: Box<dyn Enum> = Box::new(TestEnum::A); value.set(Box::new(TestEnum::B(123))).unwrap(); ``` #### Serialization Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized. > Note, like the rest of reflection-based serialization, the order of the keys in these representations is important! ##### Unit ```json { "type": "my_crate::TestEnum", "enum": { "variant": "A" } } ``` ##### Tuple ```json { "type": "my_crate::TestEnum", "enum": { "variant": "B", "tuple": [ { "type": "usize", "value": 123 } ] } } ``` <details> <summary>Effects on Option</summary> This ends up making `Option` look a little ugly: ```json { "type": "core::option::Option<usize>", "enum": { "variant": "Some", "tuple": [ { "type": "usize", "value": 123 } ] } } ``` </details> ##### Struct ```json { "type": "my_crate::TestEnum", "enum": { "variant": "C", "struct": { "foo": { "type": "f32", "value": 1.23 }, "bar": { "type": "bool", "value": false } } } } ``` ## Design Decisions <details> <summary><strong>View Section</strong></summary> This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future. ### Variant Representation One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though. #### Alternatives ##### 1. Variant Traits One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like: ```rust pub trait Enum: Reflect { fn variant(&self) -> Variant; } pub enum Variant<'a> { Unit, Tuple(&'a dyn TupleVariant), Struct(&'a dyn StructVariant), } pub trait TupleVariant { fn field_len(&self) -> usize; // ... } ``` And then do things like: ```rust fn get_tuple_len(foo: &dyn Enum) -> usize { match foo.variant() { Variant::Tuple(tuple) => tuple.field_len(), _ => panic!("not a tuple variant!") } } ``` The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun: ```rust let foo: Option<i32> = None; let my_enum = Box::new(foo) as Box<dyn TupleVariant>; ``` Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants. ##### 2. Variant Structs To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations. Each variant struct would probably look something like: ```rust pub trait Enum: Reflect { fn variant_mut(&self) -> VariantMut; } pub enum VariantMut<'a> { Unit, Tuple(TupleVariantMut), Struct(StructVariantMut), } struct StructVariantMut<'a> { fields: Vec<&'a mut dyn Reflect>, field_indices: HashMap<Cow<'static, str>, usize> } ``` This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough. ##### 3. Generated Structs The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant. Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC. In order to work properly, the enum had to be transmuted to the generated struct: ```rust fn variant(&self) -> crate::EnumVariant<'_> { match self { Foo::Bar {value: i32} => { let wrapper_ref = unsafe { std::mem::transmute::<&Self, &FooBarWrapper>(self) }; crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct) } } } ``` This works because `FooBarWrapper` is defined as `repr(transparent)`. Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because: * To reduce generated code (which would hopefully speed up compile times) * To avoid cluttering the code with generated structs not visible to the user * To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems) * To avoid additional unsafe blocks * My own misunderstanding of @Davier's code That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation. #### Benefits of All-in-One As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.). The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't). This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter): ```rust let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123}; // We know it's the `Bar` variant let field = dyn_enum.field("value").unwrap(); ``` Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes. Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums. </details> --- ## Changelog ### Added * Added `Enum` trait * Added `Enum` impl to `Reflect` derive macro * Added `DynamicEnum` struct * Added `DynamicVariant` * Added `EnumInfo` * Added `VariantInfo` * Added `StructVariantInfo` * Added `TupleVariantInfo` * Added `UnitVariantInfo` * Added serializtion/deserialization support for enums * Added `EnumSerializer` * Added `VariantType` * Added `VariantFieldIter` * Added `VariantField` * Added `enum_partial_eq(...)` * Added `enum_hash(...)` ### Changed * `Option<T>` now implements `Enum` * `bevy_window` now depends on `bevy_reflect` * Implemented `Reflect` and `FromReflect` for `WindowId` * Derive `FromReflect` on `PerspectiveProjection` * Derive `FromReflect` on `OrthographicProjection` * Derive `FromReflect` on `WindowOrigin` * Derive `FromReflect` on `ScalingMode` * Derive `FromReflect` on `DepthCalculation` ## Migration Guide * Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]` * Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums. --- Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated! Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
Enum(&'a dyn Enum),
2020-11-28 00:39:59 +00:00
Value(&'a dyn Reflect),
}
/// A mutable enumeration of "kinds" of reflected type.
///
/// Each variant contains a trait object with methods specific to a kind of
/// type.
///
/// A `ReflectMut` is obtained via [`Reflect::reflect_mut`].
2020-11-28 00:39:59 +00:00
pub enum ReflectMut<'a> {
Struct(&'a mut dyn Struct),
TupleStruct(&'a mut dyn TupleStruct),
Tuple(&'a mut dyn Tuple),
2020-11-28 00:39:59 +00:00
List(&'a mut dyn List),
Array(&'a mut dyn Array),
2020-11-28 00:39:59 +00:00
Map(&'a mut dyn Map),
bevy_reflect: Reflect enums (#4761) # Objective > This is a revival of #1347. Credit for the original PR should go to @Davier. Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API. ## Solution Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically: ```rust #[derive(Reflect)] enum Foo { A, B(usize), C { value: f32 }, } let mut foo = Foo::B(123); assert_eq!("B", foo.variant_name()); assert_eq!(1, foo.field_len()); let new_value = DynamicEnum::from(Foo::C { value: 1.23 }); foo.apply(&new_value); assert_eq!(Foo::C{value: 1.23}, foo); ``` ### Features #### Derive Macro Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection. ```rust #[derive(Reflect)] enum TestEnum { A, // Uncomment to ignore all of `B` // #[reflect(ignore)] B(usize), C { // Uncomment to ignore only field `foo` of `C` // #[reflect(ignore)] foo: f32, bar: bool, }, } ``` #### Dynamic Enums Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro. ```rust let mut value = TestEnum::A; // Create from a concrete instance let dyn_enum = DynamicEnum::from(TestEnum::B(123)); value.apply(&dyn_enum); assert_eq!(TestEnum::B(123), value); // Create a purely dynamic instance let dyn_enum = DynamicEnum::new("TestEnum", "A", ()); value.apply(&dyn_enum); assert_eq!(TestEnum::A, value); ``` #### Variants An enum value is always represented as one of its variants— never the enum in its entirety. ```rust let value = TestEnum::A; assert_eq!("A", value.variant_name()); // Since we are using the `A` variant, we cannot also be the `B` variant assert_ne!("B", value.variant_name()); ``` All variant types are representable within the `Enum` trait: unit, struct, and tuple. You can get the current type like: ```rust match value.variant_type() { VariantType::Unit => println!("A unit variant!"), VariantType::Struct => println!("A struct variant!"), VariantType::Tuple => println!("A tuple variant!"), } ``` > Notice that they don't contain any values representing the fields. These are purely tags. If a variant has them, you can access the fields as well: ```rust let mut value = TestEnum::C { foo: 1.23, bar: false }; // Read/write specific fields *value.field_mut("bar").unwrap() = true; // Iterate over the entire collection of fields for field in value.iter_fields() { println!("{} = {:?}", field.name(), field.value()); } ``` #### Variant Swapping It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them. ```rust let mut value: Box<dyn Enum> = Box::new(TestEnum::A); value.set(Box::new(TestEnum::B(123))).unwrap(); ``` #### Serialization Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized. > Note, like the rest of reflection-based serialization, the order of the keys in these representations is important! ##### Unit ```json { "type": "my_crate::TestEnum", "enum": { "variant": "A" } } ``` ##### Tuple ```json { "type": "my_crate::TestEnum", "enum": { "variant": "B", "tuple": [ { "type": "usize", "value": 123 } ] } } ``` <details> <summary>Effects on Option</summary> This ends up making `Option` look a little ugly: ```json { "type": "core::option::Option<usize>", "enum": { "variant": "Some", "tuple": [ { "type": "usize", "value": 123 } ] } } ``` </details> ##### Struct ```json { "type": "my_crate::TestEnum", "enum": { "variant": "C", "struct": { "foo": { "type": "f32", "value": 1.23 }, "bar": { "type": "bool", "value": false } } } } ``` ## Design Decisions <details> <summary><strong>View Section</strong></summary> This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future. ### Variant Representation One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though. #### Alternatives ##### 1. Variant Traits One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like: ```rust pub trait Enum: Reflect { fn variant(&self) -> Variant; } pub enum Variant<'a> { Unit, Tuple(&'a dyn TupleVariant), Struct(&'a dyn StructVariant), } pub trait TupleVariant { fn field_len(&self) -> usize; // ... } ``` And then do things like: ```rust fn get_tuple_len(foo: &dyn Enum) -> usize { match foo.variant() { Variant::Tuple(tuple) => tuple.field_len(), _ => panic!("not a tuple variant!") } } ``` The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun: ```rust let foo: Option<i32> = None; let my_enum = Box::new(foo) as Box<dyn TupleVariant>; ``` Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants. ##### 2. Variant Structs To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations. Each variant struct would probably look something like: ```rust pub trait Enum: Reflect { fn variant_mut(&self) -> VariantMut; } pub enum VariantMut<'a> { Unit, Tuple(TupleVariantMut), Struct(StructVariantMut), } struct StructVariantMut<'a> { fields: Vec<&'a mut dyn Reflect>, field_indices: HashMap<Cow<'static, str>, usize> } ``` This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough. ##### 3. Generated Structs The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant. Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC. In order to work properly, the enum had to be transmuted to the generated struct: ```rust fn variant(&self) -> crate::EnumVariant<'_> { match self { Foo::Bar {value: i32} => { let wrapper_ref = unsafe { std::mem::transmute::<&Self, &FooBarWrapper>(self) }; crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct) } } } ``` This works because `FooBarWrapper` is defined as `repr(transparent)`. Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because: * To reduce generated code (which would hopefully speed up compile times) * To avoid cluttering the code with generated structs not visible to the user * To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems) * To avoid additional unsafe blocks * My own misunderstanding of @Davier's code That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation. #### Benefits of All-in-One As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.). The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't). This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter): ```rust let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123}; // We know it's the `Bar` variant let field = dyn_enum.field("value").unwrap(); ``` Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes. Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums. </details> --- ## Changelog ### Added * Added `Enum` trait * Added `Enum` impl to `Reflect` derive macro * Added `DynamicEnum` struct * Added `DynamicVariant` * Added `EnumInfo` * Added `VariantInfo` * Added `StructVariantInfo` * Added `TupleVariantInfo` * Added `UnitVariantInfo` * Added serializtion/deserialization support for enums * Added `EnumSerializer` * Added `VariantType` * Added `VariantFieldIter` * Added `VariantField` * Added `enum_partial_eq(...)` * Added `enum_hash(...)` ### Changed * `Option<T>` now implements `Enum` * `bevy_window` now depends on `bevy_reflect` * Implemented `Reflect` and `FromReflect` for `WindowId` * Derive `FromReflect` on `PerspectiveProjection` * Derive `FromReflect` on `OrthographicProjection` * Derive `FromReflect` on `WindowOrigin` * Derive `FromReflect` on `ScalingMode` * Derive `FromReflect` on `DepthCalculation` ## Migration Guide * Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]` * Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums. --- Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated! Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
Enum(&'a mut dyn Enum),
2020-11-28 00:39:59 +00:00
Value(&'a mut dyn Reflect),
}
/// A reflected Rust type.
///
/// Methods for working with particular kinds of Rust type are available using the [`Array`], [`List`],
/// [`Map`], [`Tuple`], [`TupleStruct`], [`Struct`], and [`Enum`] subtraits.
///
/// When using `#[derive(Reflect)]` on a struct, tuple struct or enum, the suitable subtrait for that
/// type (`Struct`, `TupleStruct` or `Enum`) is derived automatically.
pub trait Reflect: Any + Send + Sync {
/// Returns the [type name][std::any::type_name] of the underlying type.
2020-11-28 00:39:59 +00:00
fn type_name(&self) -> &str;
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
/// Returns the [`TypeInfo`] of the underlying type.
///
/// This method is great if you have an instance of a type or a `dyn Reflect`,
/// and want to access its [`TypeInfo`]. However, if this method is to be called
/// frequently, consider using [`TypeRegistry::get_type_info`] as it can be more
/// performant for such use cases.
///
/// [`TypeRegistry::get_type_info`]: crate::TypeRegistry::get_type_info
fn get_type_info(&self) -> &'static TypeInfo;
/// Returns the value as a [`Box<dyn Any>`][std::any::Any].
fn into_any(self: Box<Self>) -> Box<dyn Any>;
/// Returns the value as a [`&dyn Any`][std::any::Any].
fn as_any(&self) -> &dyn Any;
/// Returns the value as a [`&mut dyn Any`][std::any::Any].
fn as_any_mut(&mut self) -> &mut dyn Any;
bevy_reflect: Add `as_reflect` and `as_reflect_mut` (#4350) # Objective Trait objects that have `Reflect` as a supertrait cannot be upcast to a `dyn Reflect`. Attempting something like: ```rust trait MyTrait: Reflect { // ... } fn foo(value: &dyn MyTrait) { let reflected = value as &dyn Reflect; // Error! // ... } ``` Results in `error[E0658]: trait upcasting coercion is experimental`. The reason this is important is that a lot of `bevy_reflect` methods require a `&dyn Reflect`. This is trivial with concrete types, but if we don't know the concrete type (we only have the trait object), we can't use these methods. For example, we couldn't create a `ReflectSerializer` for the type since it expects a `&dyn Reflect` value— even though we should be able to. ## Solution Add `as_reflect` and `as_reflect_mut` to `Reflect` to allow upcasting to a `dyn Reflect`: ```rust trait MyTrait: Reflect { // ... } fn foo(value: &dyn MyTrait) { let reflected = value.as_reflect(); // ... } ``` ## Alternatives We could defer this type of logic to the crate/user. They can add these methods to their trait in the same exact way we do here. The main benefit of doing it ourselves is it makes things convenient for them (especially when using the derive macro). We could also create an `AsReflect` trait with a blanket impl over all reflected types, however, I could not get that to work for trait objects since they aren't sized. --- ## Changelog - Added trait method `Reflect::as_reflect(&self)` - Added trait method `Reflect::as_reflect_mut(&mut self)` ## Migration Guide - Manual implementors of `Reflect` will need to add implementations for the methods above (this should be pretty easy as most cases just need to return `self`)
2022-04-25 13:54:48 +00:00
/// Casts this type to a reflected value
fn as_reflect(&self) -> &dyn Reflect;
/// Casts this type to a mutable reflected value
fn as_reflect_mut(&mut self) -> &mut dyn Reflect;
/// Applies a reflected value to this value.
///
/// If a type implements a subtrait of `Reflect`, then the semantics of this
/// method are as follows:
/// - If `T` is a [`Struct`], then the value of each named field of `value` is
/// applied to the corresponding named field of `self`. Fields which are
/// not present in both structs are ignored.
/// - If `T` is a [`TupleStruct`] or [`Tuple`], then the value of each
/// numbered field is applied to the corresponding numbered field of
/// `self.` Fields which are not present in both values are ignored.
/// - If `T` is an [`Enum`], then the variant of `self` is `updated` to match
/// the variant of `value`. The corresponding fields of that variant are
/// applied from `value` onto `self`. Fields which are not present in both
/// values are ignored.
/// - If `T` is a [`List`] or [`Array`], then each element of `value` is applied
/// to the corresponding element of `self`. Up to `self.len()` items are applied,
/// and excess elements in `value` are appended to `self`.
/// - If `T` is a [`Map`], then for each key in `value`, the associated
/// value is applied to the value associated with the same key in `self`.
/// Keys which are not present in `self` are inserted.
/// - If `T` is none of these, then `value` is downcast to `T`, cloned, and
/// assigned to `self`.
///
/// Note that `Reflect` must be implemented manually for [`List`]s and
/// [`Map`]s in order to achieve the correct semantics, as derived
/// implementations will have the semantics for [`Struct`], [`TupleStruct`], [`Enum`]
/// or none of the above depending on the kind of type. For lists and maps, use the
/// [`list_apply`] and [`map_apply`] helper functions when implementing this method.
///
/// [`list_apply`]: crate::list_apply
/// [`map_apply`]: crate::map_apply
///
/// # Panics
///
/// Derived implementations of this method will panic:
/// - If the type of `value` is not of the same kind as `T` (e.g. if `T` is
/// a `List`, while `value` is a `Struct`).
/// - If `T` is any complex type and the corresponding fields or elements of
/// `self` and `value` are not of the same type.
/// - If `T` is a value type and `self` cannot be downcast to `T`
2020-11-28 00:39:59 +00:00
fn apply(&mut self, value: &dyn Reflect);
/// Performs a type-checked assignment of a reflected value to this value.
///
/// If `value` does not contain a value of type `T`, returns an `Err`
/// containing the trait object.
2020-11-28 00:39:59 +00:00
fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>>;
/// Returns an enumeration of "kinds" of type.
///
/// See [`ReflectRef`].
2020-11-28 00:39:59 +00:00
fn reflect_ref(&self) -> ReflectRef;
/// Returns a mutable enumeration of "kinds" of type.
///
/// See [`ReflectMut`].
2020-11-28 00:39:59 +00:00
fn reflect_mut(&mut self) -> ReflectMut;
/// Clones the value as a `Reflect` trait object.
///
/// When deriving `Reflect` for a struct, tuple struct or enum, the value is
/// cloned via [`Struct::clone_dynamic`], [`TupleStruct::clone_dynamic`],
/// or [`Enum::clone_dynamic`], respectively.
/// Implementors of other `Reflect` subtraits (e.g. [`List`], [`Map`]) should
/// use those subtraits' respective `clone_dynamic` methods.
2020-11-28 00:39:59 +00:00
fn clone_value(&self) -> Box<dyn Reflect>;
/// Returns a hash of the value (which includes the type).
///
/// If the underlying type does not support hashing, returns `None`.
bevy_reflect: Small refactor and default `Reflect` methods (#4739) # Objective Quick followup to #4712. While updating some [other PRs](https://github.com/bevyengine/bevy/pull/4218), I realized the `ReflectTraits` struct could be improved. The issue with the current implementation is that `ReflectTraits::get_xxx_impl(...)` returns just the _logic_ to the corresponding `Reflect` trait method, rather than the entire function. This makes it slightly more annoying to manage since the variable names need to be consistent across files. For example, `get_partial_eq_impl` uses a `value` variable. But the name "value" isn't defined in the `get_partial_eq_impl` method, it's defined in three other methods in a completely separate file. It's not likely to cause any bugs if we keep it as it is since differing variable names will probably just result in a compile error (except in very particular cases). But it would be useful to someone who wanted to edit/add/remove a method. ## Solution Made `get_hash_impl`, `get_partial_eq_impl` and `get_serialize_impl` return the entire method implementation for `reflect_hash`, `reflect_partial_eq`, and `serializable`, respectively. As a result of this, those three `Reflect` methods were also given default implementations. This was fairly simple to do since all three could just be made to return `None`. --- ## Changelog * Small cleanup/refactor to `ReflectTraits` in `bevy_reflect_derive` * Gave `Reflect::reflect_hash`, `Reflect::reflect_partial_eq`, and `Reflect::serializable` default implementations
2022-05-18 12:26:11 +00:00
fn reflect_hash(&self) -> Option<u64> {
None
}
/// Returns a "partial equality" comparison result.
///
/// If the underlying type does not support equality testing, returns `None`.
bevy_reflect: Small refactor and default `Reflect` methods (#4739) # Objective Quick followup to #4712. While updating some [other PRs](https://github.com/bevyengine/bevy/pull/4218), I realized the `ReflectTraits` struct could be improved. The issue with the current implementation is that `ReflectTraits::get_xxx_impl(...)` returns just the _logic_ to the corresponding `Reflect` trait method, rather than the entire function. This makes it slightly more annoying to manage since the variable names need to be consistent across files. For example, `get_partial_eq_impl` uses a `value` variable. But the name "value" isn't defined in the `get_partial_eq_impl` method, it's defined in three other methods in a completely separate file. It's not likely to cause any bugs if we keep it as it is since differing variable names will probably just result in a compile error (except in very particular cases). But it would be useful to someone who wanted to edit/add/remove a method. ## Solution Made `get_hash_impl`, `get_partial_eq_impl` and `get_serialize_impl` return the entire method implementation for `reflect_hash`, `reflect_partial_eq`, and `serializable`, respectively. As a result of this, those three `Reflect` methods were also given default implementations. This was fairly simple to do since all three could just be made to return `None`. --- ## Changelog * Small cleanup/refactor to `ReflectTraits` in `bevy_reflect_derive` * Gave `Reflect::reflect_hash`, `Reflect::reflect_partial_eq`, and `Reflect::serializable` default implementations
2022-05-18 12:26:11 +00:00
fn reflect_partial_eq(&self, _value: &dyn Reflect) -> Option<bool> {
None
}
bevy_reflect: Improve debug formatting for reflected types (#4218) # Objective Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`. It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation. ## Solution Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered. To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits. ### Example Using the following structs: ```rust #[derive(Reflect)] pub struct Foo { a: usize, nested: Bar, #[reflect(ignore)] _ignored: NonReflectedValue, } #[derive(Reflect)] pub struct Bar { value: Vec2, tuple_value: (i32, String), list_value: Vec<usize>, // We can't determine debug formatting for Option<T> yet unknown_value: Option<String>, custom_debug: CustomDebug } #[derive(Reflect)] #[reflect(Debug)] struct CustomDebug; impl Debug for CustomDebug { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "This is a custom debug!") } } pub struct NonReflectedValue { _a: usize, } ``` We can do: ```rust let value = Foo { a: 1, _ignored: NonReflectedValue { _a: 10 }, nested: Bar { value: Vec2::new(1.23, 3.21), tuple_value: (123, String::from("Hello")), list_value: vec![1, 2, 3], unknown_value: Some(String::from("World")), custom_debug: CustomDebug }, }; let reflected_value: &dyn Reflect = &value; println!("{:#?}", reflected_value) ``` Which results in: ```rust Foo { a: 2, nested: Bar { value: Vec2( 1.23, 3.21, ), tuple_value: ( 123, "Hello", ), list_value: [ 1, 2, 3, ], unknown_value: Reflect(core::option::Option<alloc::string::String>), custom_debug: This is a custom debug!, }, } ``` Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits). Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
/// Debug formatter for the value.
///
/// Any value that is not an implementor of other `Reflect` subtraits
/// (e.g. [`List`], [`Map`]), will default to the format: `"Reflect(type_name)"`,
/// where `type_name` is the [type name] of the underlying type.
///
/// [type name]: Self::type_name
fn debug(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self.reflect_ref() {
ReflectRef::Struct(dyn_struct) => struct_debug(dyn_struct, f),
ReflectRef::TupleStruct(dyn_tuple_struct) => tuple_struct_debug(dyn_tuple_struct, f),
ReflectRef::Tuple(dyn_tuple) => tuple_debug(dyn_tuple, f),
ReflectRef::List(dyn_list) => list_debug(dyn_list, f),
ReflectRef::Array(dyn_array) => array_debug(dyn_array, f),
ReflectRef::Map(dyn_map) => map_debug(dyn_map, f),
bevy_reflect: Reflect enums (#4761) # Objective > This is a revival of #1347. Credit for the original PR should go to @Davier. Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API. ## Solution Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically: ```rust #[derive(Reflect)] enum Foo { A, B(usize), C { value: f32 }, } let mut foo = Foo::B(123); assert_eq!("B", foo.variant_name()); assert_eq!(1, foo.field_len()); let new_value = DynamicEnum::from(Foo::C { value: 1.23 }); foo.apply(&new_value); assert_eq!(Foo::C{value: 1.23}, foo); ``` ### Features #### Derive Macro Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection. ```rust #[derive(Reflect)] enum TestEnum { A, // Uncomment to ignore all of `B` // #[reflect(ignore)] B(usize), C { // Uncomment to ignore only field `foo` of `C` // #[reflect(ignore)] foo: f32, bar: bool, }, } ``` #### Dynamic Enums Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro. ```rust let mut value = TestEnum::A; // Create from a concrete instance let dyn_enum = DynamicEnum::from(TestEnum::B(123)); value.apply(&dyn_enum); assert_eq!(TestEnum::B(123), value); // Create a purely dynamic instance let dyn_enum = DynamicEnum::new("TestEnum", "A", ()); value.apply(&dyn_enum); assert_eq!(TestEnum::A, value); ``` #### Variants An enum value is always represented as one of its variants— never the enum in its entirety. ```rust let value = TestEnum::A; assert_eq!("A", value.variant_name()); // Since we are using the `A` variant, we cannot also be the `B` variant assert_ne!("B", value.variant_name()); ``` All variant types are representable within the `Enum` trait: unit, struct, and tuple. You can get the current type like: ```rust match value.variant_type() { VariantType::Unit => println!("A unit variant!"), VariantType::Struct => println!("A struct variant!"), VariantType::Tuple => println!("A tuple variant!"), } ``` > Notice that they don't contain any values representing the fields. These are purely tags. If a variant has them, you can access the fields as well: ```rust let mut value = TestEnum::C { foo: 1.23, bar: false }; // Read/write specific fields *value.field_mut("bar").unwrap() = true; // Iterate over the entire collection of fields for field in value.iter_fields() { println!("{} = {:?}", field.name(), field.value()); } ``` #### Variant Swapping It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them. ```rust let mut value: Box<dyn Enum> = Box::new(TestEnum::A); value.set(Box::new(TestEnum::B(123))).unwrap(); ``` #### Serialization Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized. > Note, like the rest of reflection-based serialization, the order of the keys in these representations is important! ##### Unit ```json { "type": "my_crate::TestEnum", "enum": { "variant": "A" } } ``` ##### Tuple ```json { "type": "my_crate::TestEnum", "enum": { "variant": "B", "tuple": [ { "type": "usize", "value": 123 } ] } } ``` <details> <summary>Effects on Option</summary> This ends up making `Option` look a little ugly: ```json { "type": "core::option::Option<usize>", "enum": { "variant": "Some", "tuple": [ { "type": "usize", "value": 123 } ] } } ``` </details> ##### Struct ```json { "type": "my_crate::TestEnum", "enum": { "variant": "C", "struct": { "foo": { "type": "f32", "value": 1.23 }, "bar": { "type": "bool", "value": false } } } } ``` ## Design Decisions <details> <summary><strong>View Section</strong></summary> This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future. ### Variant Representation One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though. #### Alternatives ##### 1. Variant Traits One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like: ```rust pub trait Enum: Reflect { fn variant(&self) -> Variant; } pub enum Variant<'a> { Unit, Tuple(&'a dyn TupleVariant), Struct(&'a dyn StructVariant), } pub trait TupleVariant { fn field_len(&self) -> usize; // ... } ``` And then do things like: ```rust fn get_tuple_len(foo: &dyn Enum) -> usize { match foo.variant() { Variant::Tuple(tuple) => tuple.field_len(), _ => panic!("not a tuple variant!") } } ``` The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun: ```rust let foo: Option<i32> = None; let my_enum = Box::new(foo) as Box<dyn TupleVariant>; ``` Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants. ##### 2. Variant Structs To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations. Each variant struct would probably look something like: ```rust pub trait Enum: Reflect { fn variant_mut(&self) -> VariantMut; } pub enum VariantMut<'a> { Unit, Tuple(TupleVariantMut), Struct(StructVariantMut), } struct StructVariantMut<'a> { fields: Vec<&'a mut dyn Reflect>, field_indices: HashMap<Cow<'static, str>, usize> } ``` This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough. ##### 3. Generated Structs The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant. Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC. In order to work properly, the enum had to be transmuted to the generated struct: ```rust fn variant(&self) -> crate::EnumVariant<'_> { match self { Foo::Bar {value: i32} => { let wrapper_ref = unsafe { std::mem::transmute::<&Self, &FooBarWrapper>(self) }; crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct) } } } ``` This works because `FooBarWrapper` is defined as `repr(transparent)`. Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because: * To reduce generated code (which would hopefully speed up compile times) * To avoid cluttering the code with generated structs not visible to the user * To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems) * To avoid additional unsafe blocks * My own misunderstanding of @Davier's code That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation. #### Benefits of All-in-One As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.). The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't). This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter): ```rust let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123}; // We know it's the `Bar` variant let field = dyn_enum.field("value").unwrap(); ``` Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes. Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums. </details> --- ## Changelog ### Added * Added `Enum` trait * Added `Enum` impl to `Reflect` derive macro * Added `DynamicEnum` struct * Added `DynamicVariant` * Added `EnumInfo` * Added `VariantInfo` * Added `StructVariantInfo` * Added `TupleVariantInfo` * Added `UnitVariantInfo` * Added serializtion/deserialization support for enums * Added `EnumSerializer` * Added `VariantType` * Added `VariantFieldIter` * Added `VariantField` * Added `enum_partial_eq(...)` * Added `enum_hash(...)` ### Changed * `Option<T>` now implements `Enum` * `bevy_window` now depends on `bevy_reflect` * Implemented `Reflect` and `FromReflect` for `WindowId` * Derive `FromReflect` on `PerspectiveProjection` * Derive `FromReflect` on `OrthographicProjection` * Derive `FromReflect` on `WindowOrigin` * Derive `FromReflect` on `ScalingMode` * Derive `FromReflect` on `DepthCalculation` ## Migration Guide * Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]` * Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums. --- Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated! Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
ReflectRef::Enum(dyn_enum) => enum_debug(dyn_enum, f),
bevy_reflect: Improve debug formatting for reflected types (#4218) # Objective Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`. It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation. ## Solution Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered. To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits. ### Example Using the following structs: ```rust #[derive(Reflect)] pub struct Foo { a: usize, nested: Bar, #[reflect(ignore)] _ignored: NonReflectedValue, } #[derive(Reflect)] pub struct Bar { value: Vec2, tuple_value: (i32, String), list_value: Vec<usize>, // We can't determine debug formatting for Option<T> yet unknown_value: Option<String>, custom_debug: CustomDebug } #[derive(Reflect)] #[reflect(Debug)] struct CustomDebug; impl Debug for CustomDebug { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "This is a custom debug!") } } pub struct NonReflectedValue { _a: usize, } ``` We can do: ```rust let value = Foo { a: 1, _ignored: NonReflectedValue { _a: 10 }, nested: Bar { value: Vec2::new(1.23, 3.21), tuple_value: (123, String::from("Hello")), list_value: vec![1, 2, 3], unknown_value: Some(String::from("World")), custom_debug: CustomDebug }, }; let reflected_value: &dyn Reflect = &value; println!("{:#?}", reflected_value) ``` Which results in: ```rust Foo { a: 2, nested: Bar { value: Vec2( 1.23, 3.21, ), tuple_value: ( 123, "Hello", ), list_value: [ 1, 2, 3, ], unknown_value: Reflect(core::option::Option<alloc::string::String>), custom_debug: This is a custom debug!, }, } ``` Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits). Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
_ => write!(f, "Reflect({})", self.type_name()),
}
}
/// Returns a serializable version of the value.
///
/// If the underlying type does not support serialization, returns `None`.
bevy_reflect: Small refactor and default `Reflect` methods (#4739) # Objective Quick followup to #4712. While updating some [other PRs](https://github.com/bevyengine/bevy/pull/4218), I realized the `ReflectTraits` struct could be improved. The issue with the current implementation is that `ReflectTraits::get_xxx_impl(...)` returns just the _logic_ to the corresponding `Reflect` trait method, rather than the entire function. This makes it slightly more annoying to manage since the variable names need to be consistent across files. For example, `get_partial_eq_impl` uses a `value` variable. But the name "value" isn't defined in the `get_partial_eq_impl` method, it's defined in three other methods in a completely separate file. It's not likely to cause any bugs if we keep it as it is since differing variable names will probably just result in a compile error (except in very particular cases). But it would be useful to someone who wanted to edit/add/remove a method. ## Solution Made `get_hash_impl`, `get_partial_eq_impl` and `get_serialize_impl` return the entire method implementation for `reflect_hash`, `reflect_partial_eq`, and `serializable`, respectively. As a result of this, those three `Reflect` methods were also given default implementations. This was fairly simple to do since all three could just be made to return `None`. --- ## Changelog * Small cleanup/refactor to `ReflectTraits` in `bevy_reflect_derive` * Gave `Reflect::reflect_hash`, `Reflect::reflect_partial_eq`, and `Reflect::serializable` default implementations
2022-05-18 12:26:11 +00:00
fn serializable(&self) -> Option<Serializable> {
None
}
2020-11-28 00:39:59 +00:00
}
/// A trait for types which can be constructed from a reflected type.
///
/// This trait can be derived on types which implement [`Reflect`]. Some complex
/// types (such as `Vec<T>`) may only be reflected if their element types
/// implement this trait.
///
/// For structs and tuple structs, fields marked with the `#[reflect(ignore)]`
/// attribute will be constructed using the `Default` implementation of the
/// field type, rather than the corresponding field value (if any) of the
/// reflected value.
pub trait FromReflect: Reflect + Sized {
/// Constructs a concrete instance of `Self` from a reflected value.
fn from_reflect(reflect: &dyn Reflect) -> Option<Self>;
}
2020-11-28 00:39:59 +00:00
impl Debug for dyn Reflect {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
bevy_reflect: Improve debug formatting for reflected types (#4218) # Objective Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`. It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation. ## Solution Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered. To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits. ### Example Using the following structs: ```rust #[derive(Reflect)] pub struct Foo { a: usize, nested: Bar, #[reflect(ignore)] _ignored: NonReflectedValue, } #[derive(Reflect)] pub struct Bar { value: Vec2, tuple_value: (i32, String), list_value: Vec<usize>, // We can't determine debug formatting for Option<T> yet unknown_value: Option<String>, custom_debug: CustomDebug } #[derive(Reflect)] #[reflect(Debug)] struct CustomDebug; impl Debug for CustomDebug { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "This is a custom debug!") } } pub struct NonReflectedValue { _a: usize, } ``` We can do: ```rust let value = Foo { a: 1, _ignored: NonReflectedValue { _a: 10 }, nested: Bar { value: Vec2::new(1.23, 3.21), tuple_value: (123, String::from("Hello")), list_value: vec![1, 2, 3], unknown_value: Some(String::from("World")), custom_debug: CustomDebug }, }; let reflected_value: &dyn Reflect = &value; println!("{:#?}", reflected_value) ``` Which results in: ```rust Foo { a: 2, nested: Bar { value: Vec2( 1.23, 3.21, ), tuple_value: ( 123, "Hello", ), list_value: [ 1, 2, 3, ], unknown_value: Reflect(core::option::Option<alloc::string::String>), custom_debug: This is a custom debug!, }, } ``` Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits). Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
self.debug(f)
2020-11-28 00:39:59 +00:00
}
}
bevy_reflect: Add statically available type info for reflected types (#4042) # Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField::new::<T>()]; let info = TupleStructInfo::new::<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d). <details> <summary>See More</summary> The test project included 250 of the following structs (as well as a few other structs): ```rust #[derive(Default)] #[cfg_attr(feature = "reflect", derive(Reflect))] #[cfg_attr(feature = "from_reflect", derive(FromReflect))] pub struct Big001 { inventory: Inventory, foo: usize, bar: String, baz: ItemDescriptor, items: [Item; 20], hello: Option<String>, world: HashMap<i32, String>, okay: (isize, usize, /* wesize */), nope: ((String, String), (f32, f32)), blah: Cow<'static, str>, } ``` > I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time. I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`. Here are the times I got: | Test | Test 1 | Test 2 | Test 3 | Average | | -------------------------------- | ------ | ------ | ------ | ------- | | Main | 1.7s | 3.1s | 1.9s | 2.33s | | Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s | | Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s | | PR | 3.5s | 1.8s | 1.9s | 2.4s | | PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s | | PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s | </details> --- ## Future Work Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`. Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
impl Typed for dyn Reflect {
fn type_info() -> &'static TypeInfo {
static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
CELL.get_or_set(|| TypeInfo::Value(ValueInfo::new::<Self>()))
}
}
#[deny(rustdoc::broken_intra_doc_links)]
2020-11-28 00:39:59 +00:00
impl dyn Reflect {
/// Downcasts the value to type `T`, consuming the trait object.
///
/// If the underlying value is not of type `T`, returns `Err(self)`.
2020-11-28 00:39:59 +00:00
pub fn downcast<T: Reflect>(self: Box<dyn Reflect>) -> Result<Box<T>, Box<dyn Reflect>> {
if self.is::<T>() {
Ok(self.into_any().downcast().unwrap())
2020-11-28 00:39:59 +00:00
} else {
Err(self)
}
}
/// Downcasts the value to type `T`, unboxing and consuming the trait object.
///
/// If the underlying value is not of type `T`, returns `Err(self)`.
2020-11-28 00:39:59 +00:00
pub fn take<T: Reflect>(self: Box<dyn Reflect>) -> Result<T, Box<dyn Reflect>> {
self.downcast::<T>().map(|value| *value)
}
/// Returns `true` if the underlying value represents a value of type `T`, or `false`
/// otherwise.
///
/// Read `is` for more information on underlying values and represented types.
#[inline]
pub fn represents<T: Reflect>(&self) -> bool {
self.type_name() == any::type_name::<T>()
}
/// Returns `true` if the underlying value is of type `T`, or `false`
/// otherwise.
///
/// The underlying value is the concrete type that is stored in this `dyn` object;
/// it can be downcasted to. In the case that this underlying value "represents"
/// a different type, like the Dynamic\*\*\* types do, you can call `represents`
/// to determine what type they represent. Represented types cannot be downcasted
/// to, but you can use [`FromReflect`] to create a value of the represented type from them.
2020-11-28 00:39:59 +00:00
#[inline]
pub fn is<T: Reflect>(&self) -> bool {
self.type_id() == TypeId::of::<T>()
2020-11-28 00:39:59 +00:00
}
/// Downcasts the value to type `T` by reference.
///
/// If the underlying value is not of type `T`, returns `None`.
2020-11-28 00:39:59 +00:00
#[inline]
pub fn downcast_ref<T: Reflect>(&self) -> Option<&T> {
self.as_any().downcast_ref::<T>()
2020-11-28 00:39:59 +00:00
}
/// Downcasts the value to type `T` by mutable reference.
///
/// If the underlying value is not of type `T`, returns `None`.
2020-11-28 00:39:59 +00:00
#[inline]
pub fn downcast_mut<T: Reflect>(&mut self) -> Option<&mut T> {
self.as_any_mut().downcast_mut::<T>()
2020-11-28 00:39:59 +00:00
}
}