2023-08-15 21:48:37 +00:00
|
|
|
#![doc = include_str!("../README.md")]
|
Suppress the `clippy::type_complexity` lint (#8313)
# Objective
The clippy lint `type_complexity` is known not to play well with bevy.
It frequently triggers when writing complex queries, and taking the
lint's advice of using a type alias almost always just obfuscates the
code with no benefit. Because of this, this lint is currently ignored in
CI, but unfortunately it still shows up when viewing bevy code in an
IDE.
As someone who's made a fair amount of pull requests to this repo, I
will say that this issue has been a consistent thorn in my side. Since
bevy code is filled with spurious, ignorable warnings, it can be very
difficult to spot the *real* warnings that must be fixed -- most of the
time I just ignore all warnings, only to later find out that one of them
was real after I'm done when CI runs.
## Solution
Suppress this lint in all bevy crates. This was previously attempted in
#7050, but the review process ended up making it more complicated than
it needs to be and landed on a subpar solution.
The discussion in https://github.com/rust-lang/rust-clippy/pull/10571
explores some better long-term solutions to this problem. Since there is
no timeline on when these solutions may land, we should resolve this
issue in the meantime by locally suppressing these lints.
### Unresolved issues
Currently, these lints are not suppressed in our examples, since that
would require suppressing the lint in every single source file. They are
still ignored in CI.
2023-04-06 21:27:36 +00:00
|
|
|
|
2023-03-02 12:53:54 +00:00
|
|
|
/// Common run conditions
|
|
|
|
pub mod common_conditions;
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
mod fixed;
|
|
|
|
mod real;
|
2022-05-26 00:27:18 +00:00
|
|
|
mod stopwatch;
|
|
|
|
#[allow(clippy::module_inception)]
|
|
|
|
mod time;
|
|
|
|
mod timer;
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
mod virt;
|
2022-05-26 00:27:18 +00:00
|
|
|
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
pub use fixed::*;
|
|
|
|
pub use real::*;
|
2022-05-26 00:27:18 +00:00
|
|
|
pub use stopwatch::*;
|
|
|
|
pub use time::*;
|
|
|
|
pub use timer::*;
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
pub use virt::*;
|
2022-05-26 00:27:18 +00:00
|
|
|
|
|
|
|
pub mod prelude {
|
|
|
|
//! The Bevy Time Prelude.
|
2022-11-02 20:40:45 +00:00
|
|
|
#[doc(hidden)]
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
pub use crate::{Fixed, Real, Time, Timer, TimerMode, Virtual};
|
2022-05-26 00:27:18 +00:00
|
|
|
}
|
|
|
|
|
2023-12-14 04:35:40 +00:00
|
|
|
use bevy_app::{prelude::*, RunFixedMainLoop};
|
2024-02-02 21:14:54 +00:00
|
|
|
use bevy_ecs::event::{signal_event_update_system, EventUpdateSignal, EventUpdates};
|
2022-05-26 00:27:18 +00:00
|
|
|
use bevy_ecs::prelude::*;
|
Wait until `FixedUpdate` can see events before dropping them (#10077)
## Objective
Currently, events are dropped after two frames. This cadence wasn't
*chosen* for a specific reason, double buffering just lets events
persist for at least two frames. Events only need to be dropped at a
predictable point so that the event queues don't grow forever (i.e.
events should never cause a memory leak).
Events (and especially input events) need to be observable by systems in
`FixedUpdate`, but as-is events are dropped before those systems even
get a chance to see them.
## Solution
Instead of unconditionally dropping events in `First`, require
`FixedUpdate` to first queue the buffer swap (if the `TimePlugin` has
been installed). This way, events are only dropped after a frame that
runs `FixedUpdate`.
## Future Work
In the same way we have independent copies of `Time` for tracking time
in `Main` and `FixedUpdate`, we will need independent copies of `Input`
for tracking press/release status correctly in `Main` and `FixedUpdate`.
--
Every run of `FixedUpdate` covers a specific timespan. For example, if
the fixed timestep `Δt` is 10ms, the first three `FixedUpdate` runs
cover `[0ms, 10ms)`, `[10ms, 20ms)`, and `[20ms, 30ms)`.
`FixedUpdate` can run many times in one frame. For truly
framerate-independent behavior, each `FixedUpdate` should only see the
events that occurred in its covered timespan, but what happens right now
is the first step in the frame reads all pending events.
Fixing that will require timestamped events.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-11-26 23:04:41 +00:00
|
|
|
use bevy_utils::{tracing::warn, Duration, Instant};
|
|
|
|
pub use crossbeam_channel::TrySendError;
|
|
|
|
use crossbeam_channel::{Receiver, Sender};
|
2022-05-26 00:27:18 +00:00
|
|
|
|
|
|
|
/// Adds time functionality to Apps.
|
|
|
|
#[derive(Default)]
|
|
|
|
pub struct TimePlugin;
|
|
|
|
|
Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
|
|
|
#[derive(Debug, PartialEq, Eq, Clone, Hash, SystemSet)]
|
2023-09-18 19:43:56 +00:00
|
|
|
/// Updates the elapsed time. Any system that interacts with [`Time`] component should run after
|
2022-05-26 00:27:18 +00:00
|
|
|
/// this.
|
|
|
|
pub struct TimeSystem;
|
|
|
|
|
|
|
|
impl Plugin for TimePlugin {
|
|
|
|
fn build(&self, app: &mut App) {
|
|
|
|
app.init_resource::<Time>()
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
.init_resource::<Time<Real>>()
|
|
|
|
.init_resource::<Time<Virtual>>()
|
|
|
|
.init_resource::<Time<Fixed>>()
|
2022-10-24 14:33:47 +00:00
|
|
|
.init_resource::<TimeUpdateStrategy>()
|
register missing reflect types (#5747)
# Objective
- While generating https://github.com/jakobhellermann/bevy_reflect_ts_type_export/blob/main/generated/types.ts, I noticed that some types that implement `Reflect` did not register themselves
- `Viewport` isn't reflect but can be (there's a TODO)
## Solution
- register all reflected types
- derive `Reflect` for `Viewport`
## Changelog
- more types are not registered in the type registry
- remove `Serialize`, `Deserialize` impls from `Viewport`
I also decided to remove the `Serialize, Deserialize` from the `Viewport`, since they were (AFAIK) only used for reflection, which now is done without serde. So this is technically a breaking change for people who relied on that impl directly.
Personally I don't think that every bevy type should implement `Serialize, Deserialize`, as that would lead to a ton of code generation that mostly isn't necessary because we can do the same with `Reflect`, but if this is deemed controversial I can remove it from this PR.
## Migration Guide
- `KeyCode` now implements `Reflect` not as `reflect_value`, but with proper struct reflection. The `Serialize` and `Deserialize` impls were removed, now that they are no longer required for scene serialization.
2022-08-23 17:41:39 +00:00
|
|
|
.register_type::<Time>()
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
.register_type::<Time<Real>>()
|
|
|
|
.register_type::<Time<Virtual>>()
|
|
|
|
.register_type::<Time<Fixed>>()
|
|
|
|
.register_type::<Timer>()
|
register missing reflect types (#5747)
# Objective
- While generating https://github.com/jakobhellermann/bevy_reflect_ts_type_export/blob/main/generated/types.ts, I noticed that some types that implement `Reflect` did not register themselves
- `Viewport` isn't reflect but can be (there's a TODO)
## Solution
- register all reflected types
- derive `Reflect` for `Viewport`
## Changelog
- more types are not registered in the type registry
- remove `Serialize`, `Deserialize` impls from `Viewport`
I also decided to remove the `Serialize, Deserialize` from the `Viewport`, since they were (AFAIK) only used for reflection, which now is done without serde. So this is technically a breaking change for people who relied on that impl directly.
Personally I don't think that every bevy type should implement `Serialize, Deserialize`, as that would lead to a ton of code generation that mostly isn't necessary because we can do the same with `Reflect`, but if this is deemed controversial I can remove it from this PR.
## Migration Guide
- `KeyCode` now implements `Reflect` not as `reflect_value`, but with proper struct reflection. The `Serialize` and `Deserialize` impls were removed, now that they are no longer required for scene serialization.
2022-08-23 17:41:39 +00:00
|
|
|
.register_type::<Stopwatch>()
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
.add_systems(
|
|
|
|
First,
|
|
|
|
(time_system, virtual_time_system.after(time_system)).in_set(TimeSystem),
|
|
|
|
)
|
2023-12-14 04:35:40 +00:00
|
|
|
.add_systems(RunFixedMainLoop, run_fixed_main_schedule);
|
2023-05-01 18:00:01 +00:00
|
|
|
|
2023-12-14 04:35:40 +00:00
|
|
|
// ensure the events are not dropped until `FixedMain` systems can observe them
|
Wait until `FixedUpdate` can see events before dropping them (#10077)
## Objective
Currently, events are dropped after two frames. This cadence wasn't
*chosen* for a specific reason, double buffering just lets events
persist for at least two frames. Events only need to be dropped at a
predictable point so that the event queues don't grow forever (i.e.
events should never cause a memory leak).
Events (and especially input events) need to be observable by systems in
`FixedUpdate`, but as-is events are dropped before those systems even
get a chance to see them.
## Solution
Instead of unconditionally dropping events in `First`, require
`FixedUpdate` to first queue the buffer swap (if the `TimePlugin` has
been installed). This way, events are only dropped after a frame that
runs `FixedUpdate`.
## Future Work
In the same way we have independent copies of `Time` for tracking time
in `Main` and `FixedUpdate`, we will need independent copies of `Input`
for tracking press/release status correctly in `Main` and `FixedUpdate`.
--
Every run of `FixedUpdate` covers a specific timespan. For example, if
the fixed timestep `Δt` is 10ms, the first three `FixedUpdate` runs
cover `[0ms, 10ms)`, `[10ms, 20ms)`, and `[20ms, 30ms)`.
`FixedUpdate` can run many times in one frame. For truly
framerate-independent behavior, each `FixedUpdate` should only see the
events that occurred in its covered timespan, but what happens right now
is the first step in the frame reads all pending events.
Fixing that will require timestamped events.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-11-26 23:04:41 +00:00
|
|
|
app.init_resource::<EventUpdateSignal>()
|
2024-02-02 21:14:54 +00:00
|
|
|
.add_systems(
|
|
|
|
First,
|
|
|
|
bevy_ecs::event::reset_event_update_signal_system.after(EventUpdates),
|
|
|
|
)
|
|
|
|
.add_systems(FixedPostUpdate, signal_event_update_system);
|
Wait until `FixedUpdate` can see events before dropping them (#10077)
## Objective
Currently, events are dropped after two frames. This cadence wasn't
*chosen* for a specific reason, double buffering just lets events
persist for at least two frames. Events only need to be dropped at a
predictable point so that the event queues don't grow forever (i.e.
events should never cause a memory leak).
Events (and especially input events) need to be observable by systems in
`FixedUpdate`, but as-is events are dropped before those systems even
get a chance to see them.
## Solution
Instead of unconditionally dropping events in `First`, require
`FixedUpdate` to first queue the buffer swap (if the `TimePlugin` has
been installed). This way, events are only dropped after a frame that
runs `FixedUpdate`.
## Future Work
In the same way we have independent copies of `Time` for tracking time
in `Main` and `FixedUpdate`, we will need independent copies of `Input`
for tracking press/release status correctly in `Main` and `FixedUpdate`.
--
Every run of `FixedUpdate` covers a specific timespan. For example, if
the fixed timestep `Δt` is 10ms, the first three `FixedUpdate` runs
cover `[0ms, 10ms)`, `[10ms, 20ms)`, and `[20ms, 30ms)`.
`FixedUpdate` can run many times in one frame. For truly
framerate-independent behavior, each `FixedUpdate` should only see the
events that occurred in its covered timespan, but what happens right now
is the first step in the frame reads all pending events.
Fixing that will require timestamped events.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-11-26 23:04:41 +00:00
|
|
|
|
2023-05-01 18:00:01 +00:00
|
|
|
#[cfg(feature = "bevy_ci_testing")]
|
|
|
|
if let Some(ci_testing_config) = app
|
|
|
|
.world
|
|
|
|
.get_resource::<bevy_app::ci_testing::CiTestingConfig>()
|
|
|
|
{
|
|
|
|
if let Some(frame_time) = ci_testing_config.frame_time {
|
|
|
|
app.world
|
|
|
|
.insert_resource(TimeUpdateStrategy::ManualDuration(Duration::from_secs_f32(
|
|
|
|
frame_time,
|
|
|
|
)));
|
|
|
|
}
|
|
|
|
}
|
2022-05-26 00:27:18 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-10-24 14:33:47 +00:00
|
|
|
/// Configuration resource used to determine how the time system should run.
|
|
|
|
///
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
/// For most cases, [`TimeUpdateStrategy::Automatic`] is fine. When writing tests, dealing with
|
|
|
|
/// networking or similar, you may prefer to set the next [`Time`] value manually.
|
2022-10-24 14:33:47 +00:00
|
|
|
#[derive(Resource, Default)]
|
|
|
|
pub enum TimeUpdateStrategy {
|
2023-08-15 21:48:37 +00:00
|
|
|
/// [`Time`] will be automatically updated each frame using an [`Instant`] sent from the render world via a [`TimeSender`].
|
|
|
|
/// If nothing is sent, the system clock will be used instead.
|
2022-10-24 14:33:47 +00:00
|
|
|
#[default]
|
|
|
|
Automatic,
|
2023-08-15 21:48:37 +00:00
|
|
|
/// [`Time`] will be updated to the specified [`Instant`] value each frame.
|
|
|
|
/// In order for time to progress, this value must be manually updated each frame.
|
|
|
|
///
|
|
|
|
/// Note that the `Time` resource will not be updated until [`TimeSystem`] runs.
|
2022-10-24 14:33:47 +00:00
|
|
|
ManualInstant(Instant),
|
2023-08-15 21:48:37 +00:00
|
|
|
/// [`Time`] will be incremented by the specified [`Duration`] each frame.
|
2022-10-24 14:33:47 +00:00
|
|
|
ManualDuration(Duration),
|
|
|
|
}
|
|
|
|
|
2023-08-15 21:48:37 +00:00
|
|
|
/// Channel resource used to receive time from the render world.
|
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
|
|
|
#[derive(Resource)]
|
2022-07-11 23:19:00 +00:00
|
|
|
pub struct TimeReceiver(pub Receiver<Instant>);
|
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
|
|
|
|
2023-08-15 21:48:37 +00:00
|
|
|
/// Channel resource used to send time from the render world.
|
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
|
|
|
#[derive(Resource)]
|
2022-07-11 23:19:00 +00:00
|
|
|
pub struct TimeSender(pub Sender<Instant>);
|
|
|
|
|
2023-08-15 21:48:37 +00:00
|
|
|
/// Creates channels used for sending time between the render world and the main world.
|
2022-07-11 23:19:00 +00:00
|
|
|
pub fn create_time_channels() -> (TimeSender, TimeReceiver) {
|
|
|
|
// bound the channel to 2 since when pipelined the render phase can finish before
|
|
|
|
// the time system runs.
|
|
|
|
let (s, r) = crossbeam_channel::bounded::<Instant>(2);
|
|
|
|
(TimeSender(s), TimeReceiver(r))
|
|
|
|
}
|
|
|
|
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
/// The system used to update the [`Time`] used by app logic. If there is a render world the time is
|
|
|
|
/// sent from there to this system through channels. Otherwise the time is updated in this system.
|
2022-07-11 23:19:00 +00:00
|
|
|
fn time_system(
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
mut time: ResMut<Time<Real>>,
|
2022-10-24 14:33:47 +00:00
|
|
|
update_strategy: Res<TimeUpdateStrategy>,
|
2022-07-11 23:19:00 +00:00
|
|
|
time_recv: Option<Res<TimeReceiver>>,
|
2022-10-24 20:42:13 +00:00
|
|
|
mut has_received_time: Local<bool>,
|
2022-07-11 23:19:00 +00:00
|
|
|
) {
|
2022-10-24 14:33:47 +00:00
|
|
|
let new_time = if let Some(time_recv) = time_recv {
|
2022-07-11 23:19:00 +00:00
|
|
|
// TODO: Figure out how to handle this when using pipelined rendering.
|
|
|
|
if let Ok(new_time) = time_recv.0.try_recv() {
|
2022-10-24 20:42:13 +00:00
|
|
|
*has_received_time = true;
|
2022-10-24 14:33:47 +00:00
|
|
|
new_time
|
|
|
|
} else {
|
2022-10-24 20:42:13 +00:00
|
|
|
if *has_received_time {
|
|
|
|
warn!("time_system did not receive the time from the render world! Calculations depending on the time may be incorrect.");
|
|
|
|
}
|
2022-10-24 14:33:47 +00:00
|
|
|
Instant::now()
|
2022-07-11 23:19:00 +00:00
|
|
|
}
|
|
|
|
} else {
|
2022-10-24 14:33:47 +00:00
|
|
|
Instant::now()
|
|
|
|
};
|
|
|
|
|
|
|
|
match update_strategy.as_ref() {
|
|
|
|
TimeUpdateStrategy::Automatic => time.update_with_instant(new_time),
|
|
|
|
TimeUpdateStrategy::ManualInstant(instant) => time.update_with_instant(*instant),
|
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
|
|
|
TimeUpdateStrategy::ManualDuration(duration) => time.update_with_duration(*duration),
|
2022-07-11 23:19:00 +00:00
|
|
|
}
|
2022-05-26 00:27:18 +00:00
|
|
|
}
|
2024-02-02 21:14:54 +00:00
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use crate::{Fixed, Time, TimePlugin, TimeUpdateStrategy};
|
|
|
|
use bevy_app::{App, Startup, Update};
|
|
|
|
use bevy_ecs::event::{Event, EventReader, EventWriter};
|
|
|
|
use std::error::Error;
|
|
|
|
|
|
|
|
#[derive(Event)]
|
|
|
|
struct TestEvent<T: Default> {
|
|
|
|
sender: std::sync::mpsc::Sender<T>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T: Default> Drop for TestEvent<T> {
|
|
|
|
fn drop(&mut self) {
|
|
|
|
self.sender
|
|
|
|
.send(T::default())
|
|
|
|
.expect("Failed to send drop signal");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn events_get_dropped_regression_test_11528() -> Result<(), impl Error> {
|
|
|
|
let (tx1, rx1) = std::sync::mpsc::channel();
|
|
|
|
let (tx2, rx2) = std::sync::mpsc::channel();
|
|
|
|
let mut app = App::new();
|
|
|
|
app.add_plugins(TimePlugin)
|
|
|
|
.add_event::<TestEvent<i32>>()
|
|
|
|
.add_event::<TestEvent<()>>()
|
|
|
|
.add_systems(Startup, move |mut ev2: EventWriter<TestEvent<()>>| {
|
|
|
|
ev2.send(TestEvent {
|
|
|
|
sender: tx2.clone(),
|
|
|
|
});
|
|
|
|
})
|
|
|
|
.add_systems(Update, move |mut ev1: EventWriter<TestEvent<i32>>| {
|
|
|
|
// Keep adding events so this event type is processed every update
|
|
|
|
ev1.send(TestEvent {
|
|
|
|
sender: tx1.clone(),
|
|
|
|
});
|
|
|
|
})
|
|
|
|
.add_systems(
|
|
|
|
Update,
|
|
|
|
|mut ev1: EventReader<TestEvent<i32>>, mut ev2: EventReader<TestEvent<()>>| {
|
|
|
|
// Read events so they can be dropped
|
|
|
|
for _ in ev1.read() {}
|
|
|
|
for _ in ev2.read() {}
|
|
|
|
},
|
|
|
|
)
|
|
|
|
.insert_resource(TimeUpdateStrategy::ManualDuration(
|
|
|
|
Time::<Fixed>::default().timestep(),
|
|
|
|
));
|
|
|
|
|
|
|
|
for _ in 0..10 {
|
|
|
|
app.update();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check event type 1 as been dropped at least once
|
|
|
|
let _drop_signal = rx1.try_recv()?;
|
|
|
|
// Check event type 2 has been dropped
|
|
|
|
rx2.try_recv()
|
|
|
|
}
|
|
|
|
}
|