bevy/crates/bevy_pbr/src/render/mesh_bindings.rs

237 lines
8.2 KiB
Rust
Raw Normal View History

Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
//! Bind group layout related definitions for the mesh pipeline.
use bevy_math::Mat4;
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
use bevy_render::{
mesh::morph::MAX_MORPH_WEIGHTS,
render_resource::{
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
BindGroup, BindGroupDescriptor, BindGroupLayout, BindGroupLayoutDescriptor,
BindingResource, Buffer, TextureView,
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
},
renderer::RenderDevice,
};
use crate::render::skin::MAX_JOINTS;
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
const MORPH_WEIGHT_SIZE: usize = std::mem::size_of::<f32>();
pub const MORPH_BUFFER_SIZE: usize = MAX_MORPH_WEIGHTS * MORPH_WEIGHT_SIZE;
const JOINT_SIZE: usize = std::mem::size_of::<Mat4>();
pub(crate) const JOINT_BUFFER_SIZE: usize = MAX_JOINTS * JOINT_SIZE;
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
/// Individual layout entries.
mod layout_entry {
use super::{JOINT_BUFFER_SIZE, MORPH_BUFFER_SIZE};
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
use crate::MeshUniform;
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
use bevy_render::{
render_resource::{
BindGroupLayoutEntry, BindingType, BufferBindingType, BufferSize, GpuArrayBuffer,
ShaderStages, TextureSampleType, TextureViewDimension,
},
renderer::RenderDevice,
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
};
fn buffer(binding: u32, size: u64, visibility: ShaderStages) -> BindGroupLayoutEntry {
BindGroupLayoutEntry {
binding,
visibility,
count: None,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: BufferSize::new(size),
},
}
}
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
pub(super) fn model(render_device: &RenderDevice, binding: u32) -> BindGroupLayoutEntry {
GpuArrayBuffer::<MeshUniform>::binding_layout(
binding,
ShaderStages::VERTEX_FRAGMENT,
render_device,
)
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
}
pub(super) fn skinning(binding: u32) -> BindGroupLayoutEntry {
buffer(binding, JOINT_BUFFER_SIZE as u64, ShaderStages::VERTEX)
}
pub(super) fn weights(binding: u32) -> BindGroupLayoutEntry {
buffer(binding, MORPH_BUFFER_SIZE as u64, ShaderStages::VERTEX)
}
pub(super) fn targets(binding: u32) -> BindGroupLayoutEntry {
BindGroupLayoutEntry {
binding,
visibility: ShaderStages::VERTEX,
ty: BindingType::Texture {
view_dimension: TextureViewDimension::D3,
sample_type: TextureSampleType::Float { filterable: false },
multisampled: false,
},
count: None,
}
}
}
/// Individual [`BindGroupEntry`](bevy_render::render_resource::BindGroupEntry)
/// for bind groups.
mod entry {
use super::{JOINT_BUFFER_SIZE, MORPH_BUFFER_SIZE};
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
use bevy_render::render_resource::{
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
BindGroupEntry, BindingResource, Buffer, BufferBinding, BufferSize, TextureView,
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
};
fn entry(binding: u32, size: u64, buffer: &Buffer) -> BindGroupEntry {
BindGroupEntry {
binding,
resource: BindingResource::Buffer(BufferBinding {
buffer,
offset: 0,
size: Some(BufferSize::new(size).unwrap()),
}),
}
}
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
pub(super) fn model(binding: u32, resource: BindingResource) -> BindGroupEntry {
BindGroupEntry { binding, resource }
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
}
pub(super) fn skinning(binding: u32, buffer: &Buffer) -> BindGroupEntry {
entry(binding, JOINT_BUFFER_SIZE as u64, buffer)
}
pub(super) fn weights(binding: u32, buffer: &Buffer) -> BindGroupEntry {
entry(binding, MORPH_BUFFER_SIZE as u64, buffer)
}
pub(super) fn targets(binding: u32, texture: &TextureView) -> BindGroupEntry {
BindGroupEntry {
binding,
resource: BindingResource::TextureView(texture),
}
}
}
/// All possible [`BindGroupLayout`]s in bevy's default mesh shader (`mesh.wgsl`).
#[derive(Clone)]
pub struct MeshLayouts {
/// The mesh model uniform (transform) and nothing else.
pub model_only: BindGroupLayout,
/// Also includes the uniform for skinning
pub skinned: BindGroupLayout,
/// Also includes the uniform and [`MorphAttributes`] for morph targets.
///
/// [`MorphAttributes`]: bevy_render::mesh::morph::MorphAttributes
pub morphed: BindGroupLayout,
/// Also includes both uniforms for skinning and morph targets, also the
/// morph target [`MorphAttributes`] binding.
///
/// [`MorphAttributes`]: bevy_render::mesh::morph::MorphAttributes
pub morphed_skinned: BindGroupLayout,
}
impl MeshLayouts {
/// Prepare the layouts used by the default bevy [`Mesh`].
///
/// [`Mesh`]: bevy_render::prelude::Mesh
pub fn new(render_device: &RenderDevice) -> Self {
MeshLayouts {
model_only: Self::model_only_layout(render_device),
skinned: Self::skinned_layout(render_device),
morphed: Self::morphed_layout(render_device),
morphed_skinned: Self::morphed_skinned_layout(render_device),
}
}
// ---------- create individual BindGroupLayouts ----------
fn model_only_layout(render_device: &RenderDevice) -> BindGroupLayout {
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
entries: &[layout_entry::model(render_device, 0)],
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
label: Some("mesh_layout"),
})
}
fn skinned_layout(render_device: &RenderDevice) -> BindGroupLayout {
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
entries: &[
layout_entry::model(render_device, 0),
layout_entry::skinning(1),
],
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
label: Some("skinned_mesh_layout"),
})
}
fn morphed_layout(render_device: &RenderDevice) -> BindGroupLayout {
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
layout_entry::model(render_device, 0),
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
layout_entry::weights(2),
layout_entry::targets(3),
],
label: Some("morphed_mesh_layout"),
})
}
fn morphed_skinned_layout(render_device: &RenderDevice) -> BindGroupLayout {
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
layout_entry::model(render_device, 0),
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
layout_entry::skinning(1),
layout_entry::weights(2),
layout_entry::targets(3),
],
label: Some("morphed_skinned_mesh_layout"),
})
}
// ---------- BindGroup methods ----------
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
pub fn model_only(&self, render_device: &RenderDevice, model: &BindingResource) -> BindGroup {
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
render_device.create_bind_group(&BindGroupDescriptor {
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
entries: &[entry::model(0, model.clone())],
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
layout: &self.model_only,
label: Some("model_only_mesh_bind_group"),
})
}
pub fn skinned(
&self,
render_device: &RenderDevice,
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
model: &BindingResource,
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
skin: &Buffer,
) -> BindGroup {
render_device.create_bind_group(&BindGroupDescriptor {
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
entries: &[entry::model(0, model.clone()), entry::skinning(1, skin)],
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
layout: &self.skinned,
label: Some("skinned_mesh_bind_group"),
})
}
pub fn morphed(
&self,
render_device: &RenderDevice,
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
model: &BindingResource,
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
weights: &Buffer,
targets: &TextureView,
) -> BindGroup {
render_device.create_bind_group(&BindGroupDescriptor {
entries: &[
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
entry::model(0, model.clone()),
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
entry::weights(2, weights),
entry::targets(3, targets),
],
layout: &self.morphed,
label: Some("morphed_mesh_bind_group"),
})
}
pub fn morphed_skinned(
&self,
render_device: &RenderDevice,
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
model: &BindingResource,
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
skin: &Buffer,
weights: &Buffer,
targets: &TextureView,
) -> BindGroup {
render_device.create_bind_group(&BindGroupDescriptor {
entries: &[
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
entry::model(0, model.clone()),
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
entry::skinning(1, skin),
entry::weights(2, weights),
entry::targets(3, targets),
],
layout: &self.morphed_skinned,
label: Some("morphed_skinned_mesh_bind_group"),
})
}
}