bevy/examples/window/low_power.rs

222 lines
8.4 KiB
Rust
Raw Normal View History

//! This example illustrates how to run a winit window in a reactive, low power mode.
//!
//! This is useful for making desktop applications, or any other program that doesn't need to be
//! running the event loop non-stop.
Reduce power usage with configurable event loop (#3974) # Objective - Reduce power usage for games when not focused. - Reduce power usage to ~0 when a desktop application is minimized (opt-in). - Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in) https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4 Note resource usage in the Task Manager in the above video. ## Solution - Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types. - Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want. - For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`. - The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized. - The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application. - Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input. - Added an example `low_power` to demonstrate these changes ## Usage Configuring the event loop: ```rs use bevy::winit::{WinitConfig}; // ... .insert_resource(WinitConfig::desktop_app()) // preset // or .insert_resource(WinitConfig::game()) // preset // or .insert_resource(WinitConfig{ .. }) // manual ``` Requesting a redraw: ```rs use bevy::window::RequestRedraw; // ... fn request_redraw(mut event: EventWriter<RequestRedraw>) { event.send(RequestRedraw); } ``` ## Other details - Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused". - Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
2022-03-07 23:32:05 +00:00
use std::time::Duration;
use bevy::{
prelude::*,
window::{PresentMode, RequestRedraw},
winit::WinitSettings,
};
fn main() {
App::new()
// Continuous rendering for games - bevy's default.
.insert_resource(WinitSettings::game())
// Power-saving reactive rendering for applications.
.insert_resource(WinitSettings::desktop_app())
// You can also customize update behavior with the fields of [`WinitConfig`]
.insert_resource(WinitSettings {
focused_mode: bevy::winit::UpdateMode::Continuous,
unfocused_mode: bevy::winit::UpdateMode::ReactiveLowPower {
max_wait: Duration::from_millis(10),
},
..default()
})
// Turn off vsync to maximize CPU/GPU usage
.insert_resource(WindowDescriptor {
present_mode: PresentMode::Immediate,
..default()
})
.insert_resource(ExampleMode::Game)
.add_plugins(DefaultPlugins)
.add_startup_system(test_setup::setup)
.add_system(test_setup::cycle_modes)
.add_system(test_setup::rotate_cube)
.add_system(test_setup::update_text)
.add_system(update_winit)
.run();
}
#[derive(Debug)]
enum ExampleMode {
Game,
Application,
ApplicationWithRedraw,
}
/// Update winit based on the current `ExampleMode`
fn update_winit(
mode: Res<ExampleMode>,
mut event: EventWriter<RequestRedraw>,
mut winit_config: ResMut<WinitSettings>,
) {
use ExampleMode::*;
*winit_config = match *mode {
Game => {
// In the default `WinitConfig::game()` mode:
// * When focused: the event loop runs as fast as possible
// * When not focused: the event loop runs as fast as possible
WinitSettings::game()
}
Application => {
// While in `WinitConfig::desktop_app()` mode:
// * When focused: the app will update any time a winit event (e.g. the window is
// moved/resized, the mouse moves, a button is pressed, etc.), a [`RequestRedraw`]
// event is received, or after 5 seconds if the app has not updated.
// * When not focused: the app will update when the window is directly interacted with
// (e.g. the mouse hovers over a visible part of the out of focus window), a
// [`RequestRedraw`] event is received, or one minute has passed without the app
// updating.
WinitSettings::desktop_app()
}
ApplicationWithRedraw => {
// Sending a `RequestRedraw` event is useful when you want the app to update the next
// frame regardless of any user input. For example, your application might use
// `WinitConfig::desktop_app()` to reduce power use, but UI animations need to play even
// when there are no inputs, so you send redraw requests while the animation is playing.
event.send(RequestRedraw);
WinitSettings::desktop_app()
}
};
}
/// Everything in this module is for setting up and animating the scene, and is not important to the
/// demonstrated features.
pub(crate) mod test_setup {
use crate::ExampleMode;
use bevy::{prelude::*, window::RequestRedraw};
/// Switch between update modes when the mouse is clicked.
pub(crate) fn cycle_modes(
mut mode: ResMut<ExampleMode>,
mouse_button_input: Res<Input<KeyCode>>,
) {
if mouse_button_input.just_pressed(KeyCode::Space) {
*mode = match *mode {
ExampleMode::Game => ExampleMode::Application,
ExampleMode::Application => ExampleMode::ApplicationWithRedraw,
ExampleMode::ApplicationWithRedraw => ExampleMode::Game,
};
}
}
#[derive(Component)]
pub(crate) struct Rotator;
/// Rotate the cube to make it clear when the app is updating
pub(crate) fn rotate_cube(
time: Res<Time>,
mut cube_transform: Query<&mut Transform, With<Rotator>>,
) {
for mut transform in cube_transform.iter_mut() {
let t = time.seconds_since_startup() as f32;
*transform =
transform.with_rotation(Quat::from_rotation_x(t) * Quat::from_rotation_y(t));
}
}
#[derive(Component)]
pub struct ModeText;
pub(crate) fn update_text(
mut frame: Local<usize>,
mode: Res<ExampleMode>,
mut query: Query<&mut Text, With<ModeText>>,
) {
*frame += 1;
let mode = match *mode {
ExampleMode::Game => "game(), continuous, default",
ExampleMode::Application => "desktop_app(), reactive",
ExampleMode::ApplicationWithRedraw => "desktop_app(), reactive, RequestRedraw sent",
};
query.get_single_mut().unwrap().sections[1].value = mode.to_string();
query.get_single_mut().unwrap().sections[3].value = format!("{}", *frame);
}
/// Set up a scene with a cube and some text
pub fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut event: EventWriter<RequestRedraw>,
asset_server: Res<AssetServer>,
) {
commands
.spawn_bundle(PbrBundle {
mesh: meshes.add(Mesh::from(shape::Cube { size: 0.5 })),
material: materials.add(Color::rgb(0.8, 0.7, 0.6).into()),
..default()
})
.insert(Rotator);
commands.spawn_bundle(PointLightBundle {
point_light: PointLight {
intensity: 1500.0,
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(4.0, 8.0, 4.0),
..default()
});
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
commands.spawn_bundle(Camera3dBundle {
Reduce power usage with configurable event loop (#3974) # Objective - Reduce power usage for games when not focused. - Reduce power usage to ~0 when a desktop application is minimized (opt-in). - Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in) https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4 Note resource usage in the Task Manager in the above video. ## Solution - Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types. - Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want. - For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`. - The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized. - The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application. - Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input. - Added an example `low_power` to demonstrate these changes ## Usage Configuring the event loop: ```rs use bevy::winit::{WinitConfig}; // ... .insert_resource(WinitConfig::desktop_app()) // preset // or .insert_resource(WinitConfig::game()) // preset // or .insert_resource(WinitConfig{ .. }) // manual ``` Requesting a redraw: ```rs use bevy::window::RequestRedraw; // ... fn request_redraw(mut event: EventWriter<RequestRedraw>) { event.send(RequestRedraw); } ``` ## Other details - Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused". - Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
2022-03-07 23:32:05 +00:00
transform: Transform::from_xyz(-2.0, 2.0, 2.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
Reduce power usage with configurable event loop (#3974) # Objective - Reduce power usage for games when not focused. - Reduce power usage to ~0 when a desktop application is minimized (opt-in). - Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in) https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4 Note resource usage in the Task Manager in the above video. ## Solution - Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types. - Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want. - For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`. - The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized. - The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application. - Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input. - Added an example `low_power` to demonstrate these changes ## Usage Configuring the event loop: ```rs use bevy::winit::{WinitConfig}; // ... .insert_resource(WinitConfig::desktop_app()) // preset // or .insert_resource(WinitConfig::game()) // preset // or .insert_resource(WinitConfig{ .. }) // manual ``` Requesting a redraw: ```rs use bevy::window::RequestRedraw; // ... fn request_redraw(mut event: EventWriter<RequestRedraw>) { event.send(RequestRedraw); } ``` ## Other details - Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused". - Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
2022-03-07 23:32:05 +00:00
});
event.send(RequestRedraw);
commands
.spawn_bundle(TextBundle {
style: Style {
align_self: AlignSelf::FlexStart,
position_type: PositionType::Absolute,
position: UiRect {
Reduce power usage with configurable event loop (#3974) # Objective - Reduce power usage for games when not focused. - Reduce power usage to ~0 when a desktop application is minimized (opt-in). - Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in) https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4 Note resource usage in the Task Manager in the above video. ## Solution - Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types. - Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want. - For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`. - The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized. - The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application. - Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input. - Added an example `low_power` to demonstrate these changes ## Usage Configuring the event loop: ```rs use bevy::winit::{WinitConfig}; // ... .insert_resource(WinitConfig::desktop_app()) // preset // or .insert_resource(WinitConfig::game()) // preset // or .insert_resource(WinitConfig{ .. }) // manual ``` Requesting a redraw: ```rs use bevy::window::RequestRedraw; // ... fn request_redraw(mut event: EventWriter<RequestRedraw>) { event.send(RequestRedraw); } ``` ## Other details - Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused". - Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
2022-03-07 23:32:05 +00:00
top: Val::Px(5.0),
left: Val::Px(5.0),
..default()
Reduce power usage with configurable event loop (#3974) # Objective - Reduce power usage for games when not focused. - Reduce power usage to ~0 when a desktop application is minimized (opt-in). - Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in) https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4 Note resource usage in the Task Manager in the above video. ## Solution - Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types. - Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want. - For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`. - The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized. - The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application. - Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input. - Added an example `low_power` to demonstrate these changes ## Usage Configuring the event loop: ```rs use bevy::winit::{WinitConfig}; // ... .insert_resource(WinitConfig::desktop_app()) // preset // or .insert_resource(WinitConfig::game()) // preset // or .insert_resource(WinitConfig{ .. }) // manual ``` Requesting a redraw: ```rs use bevy::window::RequestRedraw; // ... fn request_redraw(mut event: EventWriter<RequestRedraw>) { event.send(RequestRedraw); } ``` ## Other details - Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused". - Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
2022-03-07 23:32:05 +00:00
},
..default()
Reduce power usage with configurable event loop (#3974) # Objective - Reduce power usage for games when not focused. - Reduce power usage to ~0 when a desktop application is minimized (opt-in). - Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in) https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4 Note resource usage in the Task Manager in the above video. ## Solution - Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types. - Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want. - For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`. - The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized. - The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application. - Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input. - Added an example `low_power` to demonstrate these changes ## Usage Configuring the event loop: ```rs use bevy::winit::{WinitConfig}; // ... .insert_resource(WinitConfig::desktop_app()) // preset // or .insert_resource(WinitConfig::game()) // preset // or .insert_resource(WinitConfig{ .. }) // manual ``` Requesting a redraw: ```rs use bevy::window::RequestRedraw; // ... fn request_redraw(mut event: EventWriter<RequestRedraw>) { event.send(RequestRedraw); } ``` ## Other details - Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused". - Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
2022-03-07 23:32:05 +00:00
},
text: Text {
sections: vec![
TextSection {
value: "Press spacebar to cycle modes\n".into(),
style: TextStyle {
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
font_size: 50.0,
color: Color::WHITE,
},
},
TextSection {
value: "".into(),
style: TextStyle {
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
font_size: 50.0,
color: Color::GREEN,
},
},
TextSection {
value: "\nFrame: ".into(),
style: TextStyle {
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
font_size: 50.0,
color: Color::YELLOW,
},
},
TextSection {
value: "".into(),
style: TextStyle {
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
font_size: 50.0,
color: Color::YELLOW,
},
},
],
alignment: TextAlignment::default(),
},
..default()
Reduce power usage with configurable event loop (#3974) # Objective - Reduce power usage for games when not focused. - Reduce power usage to ~0 when a desktop application is minimized (opt-in). - Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in) https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4 Note resource usage in the Task Manager in the above video. ## Solution - Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types. - Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want. - For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`. - The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized. - The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application. - Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input. - Added an example `low_power` to demonstrate these changes ## Usage Configuring the event loop: ```rs use bevy::winit::{WinitConfig}; // ... .insert_resource(WinitConfig::desktop_app()) // preset // or .insert_resource(WinitConfig::game()) // preset // or .insert_resource(WinitConfig{ .. }) // manual ``` Requesting a redraw: ```rs use bevy::window::RequestRedraw; // ... fn request_redraw(mut event: EventWriter<RequestRedraw>) { event.send(RequestRedraw); } ``` ## Other details - Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused". - Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
2022-03-07 23:32:05 +00:00
})
.insert(ModeText);
}
}