mirror of
https://github.com/bevyengine/bevy
synced 2024-12-21 10:33:08 +00:00
256 lines
11 KiB
WebGPU Shading Language
256 lines
11 KiB
WebGPU Shading Language
|
#define_import_path bevy_pbr::lighting
|
|||
|
|
|||
|
// From the Filament design doc
|
|||
|
// https://google.github.io/filament/Filament.html#table_symbols
|
|||
|
// Symbol Definition
|
|||
|
// v View unit vector
|
|||
|
// l Incident light unit vector
|
|||
|
// n Surface normal unit vector
|
|||
|
// h Half unit vector between l and v
|
|||
|
// f BRDF
|
|||
|
// f_d Diffuse component of a BRDF
|
|||
|
// f_r Specular component of a BRDF
|
|||
|
// α Roughness, remapped from using input perceptualRoughness
|
|||
|
// σ Diffuse reflectance
|
|||
|
// Ω Spherical domain
|
|||
|
// f0 Reflectance at normal incidence
|
|||
|
// f90 Reflectance at grazing angle
|
|||
|
// χ+(a) Heaviside function (1 if a>0 and 0 otherwise)
|
|||
|
// nior Index of refraction (IOR) of an interface
|
|||
|
// ⟨n⋅l⟩ Dot product clamped to [0..1]
|
|||
|
// ⟨a⟩ Saturated value (clamped to [0..1])
|
|||
|
|
|||
|
// The Bidirectional Reflectance Distribution Function (BRDF) describes the surface response of a standard material
|
|||
|
// and consists of two components, the diffuse component (f_d) and the specular component (f_r):
|
|||
|
// f(v,l) = f_d(v,l) + f_r(v,l)
|
|||
|
//
|
|||
|
// The form of the microfacet model is the same for diffuse and specular
|
|||
|
// f_r(v,l) = f_d(v,l) = 1 / { |n⋅v||n⋅l| } ∫_Ω D(m,α) G(v,l,m) f_m(v,l,m) (v⋅m) (l⋅m) dm
|
|||
|
//
|
|||
|
// In which:
|
|||
|
// D, also called the Normal Distribution Function (NDF) models the distribution of the microfacets
|
|||
|
// G models the visibility (or occlusion or shadow-masking) of the microfacets
|
|||
|
// f_m is the microfacet BRDF and differs between specular and diffuse components
|
|||
|
//
|
|||
|
// The above integration needs to be approximated.
|
|||
|
|
|||
|
// distanceAttenuation is simply the square falloff of light intensity
|
|||
|
// combined with a smooth attenuation at the edge of the light radius
|
|||
|
//
|
|||
|
// light radius is a non-physical construct for efficiency purposes,
|
|||
|
// because otherwise every light affects every fragment in the scene
|
|||
|
fn getDistanceAttenuation(distanceSquare: f32, inverseRangeSquared: f32) -> f32 {
|
|||
|
let factor = distanceSquare * inverseRangeSquared;
|
|||
|
let smoothFactor = saturate(1.0 - factor * factor);
|
|||
|
let attenuation = smoothFactor * smoothFactor;
|
|||
|
return attenuation * 1.0 / max(distanceSquare, 0.0001);
|
|||
|
}
|
|||
|
|
|||
|
// Normal distribution function (specular D)
|
|||
|
// Based on https://google.github.io/filament/Filament.html#citation-walter07
|
|||
|
|
|||
|
// D_GGX(h,α) = α^2 / { π ((n⋅h)^2 (α2−1) + 1)^2 }
|
|||
|
|
|||
|
// Simple implementation, has precision problems when using fp16 instead of fp32
|
|||
|
// see https://google.github.io/filament/Filament.html#listing_speculardfp16
|
|||
|
fn D_GGX(roughness: f32, NoH: f32, h: vec3<f32>) -> f32 {
|
|||
|
let oneMinusNoHSquared = 1.0 - NoH * NoH;
|
|||
|
let a = NoH * roughness;
|
|||
|
let k = roughness / (oneMinusNoHSquared + a * a);
|
|||
|
let d = k * k * (1.0 / PI);
|
|||
|
return d;
|
|||
|
}
|
|||
|
|
|||
|
// Visibility function (Specular G)
|
|||
|
// V(v,l,a) = G(v,l,α) / { 4 (n⋅v) (n⋅l) }
|
|||
|
// such that f_r becomes
|
|||
|
// f_r(v,l) = D(h,α) V(v,l,α) F(v,h,f0)
|
|||
|
// where
|
|||
|
// V(v,l,α) = 0.5 / { n⋅l sqrt((n⋅v)^2 (1−α2) + α2) + n⋅v sqrt((n⋅l)^2 (1−α2) + α2) }
|
|||
|
// Note the two sqrt's, that may be slow on mobile, see https://google.github.io/filament/Filament.html#listing_approximatedspecularv
|
|||
|
fn V_SmithGGXCorrelated(roughness: f32, NoV: f32, NoL: f32) -> f32 {
|
|||
|
let a2 = roughness * roughness;
|
|||
|
let lambdaV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2);
|
|||
|
let lambdaL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2);
|
|||
|
let v = 0.5 / (lambdaV + lambdaL);
|
|||
|
return v;
|
|||
|
}
|
|||
|
|
|||
|
// Fresnel function
|
|||
|
// see https://google.github.io/filament/Filament.html#citation-schlick94
|
|||
|
// F_Schlick(v,h,f_0,f_90) = f_0 + (f_90 − f_0) (1 − v⋅h)^5
|
|||
|
fn F_Schlick_vec(f0: vec3<f32>, f90: f32, VoH: f32) -> vec3<f32> {
|
|||
|
// not using mix to keep the vec3 and float versions identical
|
|||
|
return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0);
|
|||
|
}
|
|||
|
|
|||
|
fn F_Schlick(f0: f32, f90: f32, VoH: f32) -> f32 {
|
|||
|
// not using mix to keep the vec3 and float versions identical
|
|||
|
return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0);
|
|||
|
}
|
|||
|
|
|||
|
fn fresnel(f0: vec3<f32>, LoH: f32) -> vec3<f32> {
|
|||
|
// f_90 suitable for ambient occlusion
|
|||
|
// see https://google.github.io/filament/Filament.html#lighting/occlusion
|
|||
|
let f90 = saturate(dot(f0, vec3<f32>(50.0 * 0.33)));
|
|||
|
return F_Schlick_vec(f0, f90, LoH);
|
|||
|
}
|
|||
|
|
|||
|
// Specular BRDF
|
|||
|
// https://google.github.io/filament/Filament.html#materialsystem/specularbrdf
|
|||
|
|
|||
|
// Cook-Torrance approximation of the microfacet model integration using Fresnel law F to model f_m
|
|||
|
// f_r(v,l) = { D(h,α) G(v,l,α) F(v,h,f0) } / { 4 (n⋅v) (n⋅l) }
|
|||
|
fn specular(f0: vec3<f32>, roughness: f32, h: vec3<f32>, NoV: f32, NoL: f32,
|
|||
|
NoH: f32, LoH: f32, specularIntensity: f32) -> vec3<f32> {
|
|||
|
let D = D_GGX(roughness, NoH, h);
|
|||
|
let V = V_SmithGGXCorrelated(roughness, NoV, NoL);
|
|||
|
let F = fresnel(f0, LoH);
|
|||
|
|
|||
|
return (specularIntensity * D * V) * F;
|
|||
|
}
|
|||
|
|
|||
|
// Diffuse BRDF
|
|||
|
// https://google.github.io/filament/Filament.html#materialsystem/diffusebrdf
|
|||
|
// fd(v,l) = σ/π * 1 / { |n⋅v||n⋅l| } ∫Ω D(m,α) G(v,l,m) (v⋅m) (l⋅m) dm
|
|||
|
//
|
|||
|
// simplest approximation
|
|||
|
// float Fd_Lambert() {
|
|||
|
// return 1.0 / PI;
|
|||
|
// }
|
|||
|
//
|
|||
|
// vec3 Fd = diffuseColor * Fd_Lambert();
|
|||
|
//
|
|||
|
// Disney approximation
|
|||
|
// See https://google.github.io/filament/Filament.html#citation-burley12
|
|||
|
// minimal quality difference
|
|||
|
fn Fd_Burley(roughness: f32, NoV: f32, NoL: f32, LoH: f32) -> f32 {
|
|||
|
let f90 = 0.5 + 2.0 * roughness * LoH * LoH;
|
|||
|
let lightScatter = F_Schlick(1.0, f90, NoL);
|
|||
|
let viewScatter = F_Schlick(1.0, f90, NoV);
|
|||
|
return lightScatter * viewScatter * (1.0 / PI);
|
|||
|
}
|
|||
|
|
|||
|
// From https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
|
|||
|
fn EnvBRDFApprox(f0: vec3<f32>, perceptual_roughness: f32, NoV: f32) -> vec3<f32> {
|
|||
|
let c0 = vec4<f32>(-1.0, -0.0275, -0.572, 0.022);
|
|||
|
let c1 = vec4<f32>(1.0, 0.0425, 1.04, -0.04);
|
|||
|
let r = perceptual_roughness * c0 + c1;
|
|||
|
let a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
|
|||
|
let AB = vec2<f32>(-1.04, 1.04) * a004 + r.zw;
|
|||
|
return f0 * AB.x + AB.y;
|
|||
|
}
|
|||
|
|
|||
|
fn perceptualRoughnessToRoughness(perceptualRoughness: f32) -> f32 {
|
|||
|
// clamp perceptual roughness to prevent precision problems
|
|||
|
// According to Filament design 0.089 is recommended for mobile
|
|||
|
// Filament uses 0.045 for non-mobile
|
|||
|
let clampedPerceptualRoughness = clamp(perceptualRoughness, 0.089, 1.0);
|
|||
|
return clampedPerceptualRoughness * clampedPerceptualRoughness;
|
|||
|
}
|
|||
|
|
|||
|
// from https://64.github.io/tonemapping/
|
|||
|
// reinhard on RGB oversaturates colors
|
|||
|
fn reinhard(color: vec3<f32>) -> vec3<f32> {
|
|||
|
return color / (1.0 + color);
|
|||
|
}
|
|||
|
|
|||
|
fn reinhard_extended(color: vec3<f32>, max_white: f32) -> vec3<f32> {
|
|||
|
let numerator = color * (1.0 + (color / vec3<f32>(max_white * max_white)));
|
|||
|
return numerator / (1.0 + color);
|
|||
|
}
|
|||
|
|
|||
|
// luminance coefficients from Rec. 709.
|
|||
|
// https://en.wikipedia.org/wiki/Rec._709
|
|||
|
fn luminance(v: vec3<f32>) -> f32 {
|
|||
|
return dot(v, vec3<f32>(0.2126, 0.7152, 0.0722));
|
|||
|
}
|
|||
|
|
|||
|
fn change_luminance(c_in: vec3<f32>, l_out: f32) -> vec3<f32> {
|
|||
|
let l_in = luminance(c_in);
|
|||
|
return c_in * (l_out / l_in);
|
|||
|
}
|
|||
|
|
|||
|
fn reinhard_luminance(color: vec3<f32>) -> vec3<f32> {
|
|||
|
let l_old = luminance(color);
|
|||
|
let l_new = l_old / (1.0 + l_old);
|
|||
|
return change_luminance(color, l_new);
|
|||
|
}
|
|||
|
|
|||
|
fn reinhard_extended_luminance(color: vec3<f32>, max_white_l: f32) -> vec3<f32> {
|
|||
|
let l_old = luminance(color);
|
|||
|
let numerator = l_old * (1.0 + (l_old / (max_white_l * max_white_l)));
|
|||
|
let l_new = numerator / (1.0 + l_old);
|
|||
|
return change_luminance(color, l_new);
|
|||
|
}
|
|||
|
|
|||
|
fn point_light(
|
|||
|
world_position: vec3<f32>, light: PointLight, roughness: f32, NdotV: f32, N: vec3<f32>, V: vec3<f32>,
|
|||
|
R: vec3<f32>, F0: vec3<f32>, diffuseColor: vec3<f32>
|
|||
|
) -> vec3<f32> {
|
|||
|
let light_to_frag = light.position_radius.xyz - world_position.xyz;
|
|||
|
let distance_square = dot(light_to_frag, light_to_frag);
|
|||
|
let rangeAttenuation =
|
|||
|
getDistanceAttenuation(distance_square, light.color_inverse_square_range.w);
|
|||
|
|
|||
|
// Specular.
|
|||
|
// Representative Point Area Lights.
|
|||
|
// see http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf p14-16
|
|||
|
let a = roughness;
|
|||
|
let centerToRay = dot(light_to_frag, R) * R - light_to_frag;
|
|||
|
let closestPoint = light_to_frag + centerToRay * saturate(light.position_radius.w * inverseSqrt(dot(centerToRay, centerToRay)));
|
|||
|
let LspecLengthInverse = inverseSqrt(dot(closestPoint, closestPoint));
|
|||
|
let normalizationFactor = a / saturate(a + (light.position_radius.w * 0.5 * LspecLengthInverse));
|
|||
|
let specularIntensity = normalizationFactor * normalizationFactor;
|
|||
|
|
|||
|
var L: vec3<f32> = closestPoint * LspecLengthInverse; // normalize() equivalent?
|
|||
|
var H: vec3<f32> = normalize(L + V);
|
|||
|
var NoL: f32 = saturate(dot(N, L));
|
|||
|
var NoH: f32 = saturate(dot(N, H));
|
|||
|
var LoH: f32 = saturate(dot(L, H));
|
|||
|
|
|||
|
let specular_light = specular(F0, roughness, H, NdotV, NoL, NoH, LoH, specularIntensity);
|
|||
|
|
|||
|
// Diffuse.
|
|||
|
// Comes after specular since its NoL is used in the lighting equation.
|
|||
|
L = normalize(light_to_frag);
|
|||
|
H = normalize(L + V);
|
|||
|
NoL = saturate(dot(N, L));
|
|||
|
NoH = saturate(dot(N, H));
|
|||
|
LoH = saturate(dot(L, H));
|
|||
|
|
|||
|
let diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH);
|
|||
|
|
|||
|
// See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminanceEquation
|
|||
|
// Lout = f(v,l) Φ / { 4 π d^2 }⟨n⋅l⟩
|
|||
|
// where
|
|||
|
// f(v,l) = (f_d(v,l) + f_r(v,l)) * light_color
|
|||
|
// Φ is luminous power in lumens
|
|||
|
// our rangeAttentuation = 1 / d^2 multiplied with an attenuation factor for smoothing at the edge of the non-physical maximum light radius
|
|||
|
|
|||
|
// For a point light, luminous intensity, I, in lumens per steradian is given by:
|
|||
|
// I = Φ / 4 π
|
|||
|
// The derivation of this can be seen here: https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminousPower
|
|||
|
|
|||
|
// NOTE: light.color.rgb is premultiplied with light.intensity / 4 π (which would be the luminous intensity) on the CPU
|
|||
|
|
|||
|
// TODO compensate for energy loss https://google.github.io/filament/Filament.html#materialsystem/improvingthebrdfs/energylossinspecularreflectance
|
|||
|
|
|||
|
return ((diffuse + specular_light) * light.color_inverse_square_range.rgb) * (rangeAttenuation * NoL);
|
|||
|
}
|
|||
|
|
|||
|
fn directional_light(light: DirectionalLight, roughness: f32, NdotV: f32, normal: vec3<f32>, view: vec3<f32>, R: vec3<f32>, F0: vec3<f32>, diffuseColor: vec3<f32>) -> vec3<f32> {
|
|||
|
let incident_light = light.direction_to_light.xyz;
|
|||
|
|
|||
|
let half_vector = normalize(incident_light + view);
|
|||
|
let NoL = saturate(dot(normal, incident_light));
|
|||
|
let NoH = saturate(dot(normal, half_vector));
|
|||
|
let LoH = saturate(dot(incident_light, half_vector));
|
|||
|
|
|||
|
let diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH);
|
|||
|
let specularIntensity = 1.0;
|
|||
|
let specular_light = specular(F0, roughness, half_vector, NdotV, NoL, NoH, LoH, specularIntensity);
|
|||
|
|
|||
|
return (specular_light + diffuse) * light.color.rgb * NoL;
|
|||
|
}
|