bevy/crates/bevy_reflect/src/kind.rs

333 lines
11 KiB
Rust
Raw Normal View History

use thiserror::Error;
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
#[cfg(feature = "functions")]
use crate::func::Function;
use crate::{Array, Enum, List, Map, PartialReflect, Set, Struct, Tuple, TupleStruct};
/// An enumeration of the "kinds" of a reflected type.
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
///
/// Each kind corresponds to a specific reflection trait,
/// such as [`Struct`] or [`List`],
/// which itself corresponds to the kind or structure of a type.
///
/// A [`ReflectKind`] is obtained via [`PartialReflect::reflect_kind`],
/// or via [`ReflectRef::kind`],[`ReflectMut::kind`] or [`ReflectOwned::kind`].
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum ReflectKind {
/// A [struct-like] type.
///
/// [struct-like]: Struct
Struct,
/// A [tuple-struct-like] type.
///
/// [tuple-struct-like]: TupleStruct
TupleStruct,
/// A [tuple-like] type.
///
/// [tuple-like]: Tuple
Tuple,
/// A [list-like] type.
///
/// [list-like]: List
List,
/// An [array-like] type.
///
/// [array-like]: Array
Array,
/// A [map-like] type.
///
/// [map-like]: Map
Map,
/// A [set-like] type.
///
/// [set-like]: Set
Set,
/// An [enum-like] type.
///
/// [enum-like]: Enum
Enum,
/// A [function-like] type.
///
/// [function-like]: Function
#[cfg(feature = "functions")]
Function,
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
/// An opaque type.
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
///
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
/// This most often represents a type where it is either impossible, difficult,
/// or unuseful to reflect the type further.
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
///
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
/// This includes types like `String` and `Instant`.
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
///
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
/// Despite not technically being opaque types,
/// primitives like `u32` `i32` are considered opaque for the purposes of reflection.
///
/// Additionally, any type that [derives `Reflect`] with the `#[reflect(opaque)]` attribute
/// will be considered an opaque type.
///
/// [derives `Reflect`]: bevy_reflect_derive::Reflect
Opaque,
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
impl core::fmt::Display for ReflectKind {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
match self {
ReflectKind::Struct => f.pad("struct"),
ReflectKind::TupleStruct => f.pad("tuple struct"),
ReflectKind::Tuple => f.pad("tuple"),
ReflectKind::List => f.pad("list"),
ReflectKind::Array => f.pad("array"),
ReflectKind::Map => f.pad("map"),
ReflectKind::Set => f.pad("set"),
ReflectKind::Enum => f.pad("enum"),
#[cfg(feature = "functions")]
ReflectKind::Function => f.pad("function"),
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
ReflectKind::Opaque => f.pad("opaque"),
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
}
}
macro_rules! impl_reflect_kind_conversions {
($name:ident$(<$lifetime:lifetime>)?) => {
impl $name$(<$lifetime>)? {
/// Returns the "kind" of this reflected type without any information.
pub fn kind(&self) -> ReflectKind {
match self {
Self::Struct(_) => ReflectKind::Struct,
Self::TupleStruct(_) => ReflectKind::TupleStruct,
Self::Tuple(_) => ReflectKind::Tuple,
Self::List(_) => ReflectKind::List,
Self::Array(_) => ReflectKind::Array,
Self::Map(_) => ReflectKind::Map,
Self::Set(_) => ReflectKind::Set,
Self::Enum(_) => ReflectKind::Enum,
#[cfg(feature = "functions")]
Self::Function(_) => ReflectKind::Function,
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
Self::Opaque(_) => ReflectKind::Opaque,
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
}
}
impl From<$name$(<$lifetime>)?> for ReflectKind {
fn from(value: $name) -> Self {
match value {
$name::Struct(_) => Self::Struct,
$name::TupleStruct(_) => Self::TupleStruct,
$name::Tuple(_) => Self::Tuple,
$name::List(_) => Self::List,
$name::Array(_) => Self::Array,
$name::Map(_) => Self::Map,
$name::Set(_) => Self::Set,
$name::Enum(_) => Self::Enum,
#[cfg(feature = "functions")]
$name::Function(_) => Self::Function,
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
$name::Opaque(_) => Self::Opaque,
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
}
}
};
}
/// Caused when a type was expected to be of a certain [kind], but was not.
///
/// [kind]: ReflectKind
#[derive(Debug, Error)]
#[error("kind mismatch: expected {expected:?}, received {received:?}")]
pub struct ReflectKindMismatchError {
pub expected: ReflectKind,
pub received: ReflectKind,
}
macro_rules! impl_cast_method {
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
($name:ident : Opaque => $retval:ty) => {
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
#[doc = "Attempts a cast to a [`PartialReflect`] trait object."]
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
#[doc = "\n\nReturns an error if `self` is not the [`Self::Opaque`] variant."]
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
pub fn $name(self) -> Result<$retval, ReflectKindMismatchError> {
match self {
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
Self::Opaque(value) => Ok(value),
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
_ => Err(ReflectKindMismatchError {
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
expected: ReflectKind::Opaque,
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
received: self.kind(),
}),
}
}
};
($name:ident : $kind:ident => $retval:ty) => {
#[doc = concat!("Attempts a cast to a [`", stringify!($kind), "`] trait object.")]
#[doc = concat!("\n\nReturns an error if `self` is not the [`Self::", stringify!($kind), "`] variant.")]
pub fn $name(self) -> Result<$retval, ReflectKindMismatchError> {
match self {
Self::$kind(value) => Ok(value),
_ => Err(ReflectKindMismatchError {
expected: ReflectKind::$kind,
received: self.kind(),
}),
}
}
};
}
/// An immutable enumeration of ["kinds"] of a reflected type.
///
/// Each variant contains a trait object with methods specific to a kind of
/// type.
///
/// A [`ReflectRef`] is obtained via [`PartialReflect::reflect_ref`].
///
/// ["kinds"]: ReflectKind
pub enum ReflectRef<'a> {
Struct(&'a dyn Struct),
TupleStruct(&'a dyn TupleStruct),
Tuple(&'a dyn Tuple),
List(&'a dyn List),
Array(&'a dyn Array),
Map(&'a dyn Map),
Set(&'a dyn Set),
Enum(&'a dyn Enum),
#[cfg(feature = "functions")]
Function(&'a dyn Function),
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
Opaque(&'a dyn PartialReflect),
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
impl_reflect_kind_conversions!(ReflectRef<'_>);
impl<'a> ReflectRef<'a> {
impl_cast_method!(as_struct: Struct => &'a dyn Struct);
impl_cast_method!(as_tuple_struct: TupleStruct => &'a dyn TupleStruct);
impl_cast_method!(as_tuple: Tuple => &'a dyn Tuple);
impl_cast_method!(as_list: List => &'a dyn List);
impl_cast_method!(as_array: Array => &'a dyn Array);
impl_cast_method!(as_map: Map => &'a dyn Map);
impl_cast_method!(as_set: Set => &'a dyn Set);
impl_cast_method!(as_enum: Enum => &'a dyn Enum);
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
impl_cast_method!(as_opaque: Opaque => &'a dyn PartialReflect);
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
/// A mutable enumeration of ["kinds"] of a reflected type.
///
/// Each variant contains a trait object with methods specific to a kind of
/// type.
///
/// A [`ReflectMut`] is obtained via [`PartialReflect::reflect_mut`].
///
/// ["kinds"]: ReflectKind
pub enum ReflectMut<'a> {
Struct(&'a mut dyn Struct),
TupleStruct(&'a mut dyn TupleStruct),
Tuple(&'a mut dyn Tuple),
List(&'a mut dyn List),
Array(&'a mut dyn Array),
Map(&'a mut dyn Map),
Set(&'a mut dyn Set),
Enum(&'a mut dyn Enum),
#[cfg(feature = "functions")]
Function(&'a mut dyn Function),
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
Opaque(&'a mut dyn PartialReflect),
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
impl_reflect_kind_conversions!(ReflectMut<'_>);
impl<'a> ReflectMut<'a> {
impl_cast_method!(as_struct: Struct => &'a mut dyn Struct);
impl_cast_method!(as_tuple_struct: TupleStruct => &'a mut dyn TupleStruct);
impl_cast_method!(as_tuple: Tuple => &'a mut dyn Tuple);
impl_cast_method!(as_list: List => &'a mut dyn List);
impl_cast_method!(as_array: Array => &'a mut dyn Array);
impl_cast_method!(as_map: Map => &'a mut dyn Map);
impl_cast_method!(as_set: Set => &'a mut dyn Set);
impl_cast_method!(as_enum: Enum => &'a mut dyn Enum);
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
impl_cast_method!(as_opaque: Opaque => &'a mut dyn PartialReflect);
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
/// An owned enumeration of ["kinds"] of a reflected type.
///
/// Each variant contains a trait object with methods specific to a kind of
/// type.
///
/// A [`ReflectOwned`] is obtained via [`PartialReflect::reflect_owned`].
///
/// ["kinds"]: ReflectKind
pub enum ReflectOwned {
Struct(Box<dyn Struct>),
TupleStruct(Box<dyn TupleStruct>),
Tuple(Box<dyn Tuple>),
List(Box<dyn List>),
Array(Box<dyn Array>),
Map(Box<dyn Map>),
Set(Box<dyn Set>),
Enum(Box<dyn Enum>),
#[cfg(feature = "functions")]
Function(Box<dyn Function>),
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
Opaque(Box<dyn PartialReflect>),
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
impl_reflect_kind_conversions!(ReflectOwned);
impl ReflectOwned {
impl_cast_method!(into_struct: Struct => Box<dyn Struct>);
impl_cast_method!(into_tuple_struct: TupleStruct => Box<dyn TupleStruct>);
impl_cast_method!(into_tuple: Tuple => Box<dyn Tuple>);
impl_cast_method!(into_list: List => Box<dyn List>);
impl_cast_method!(into_array: Array => Box<dyn Array>);
impl_cast_method!(into_map: Map => Box<dyn Map>);
impl_cast_method!(into_set: Set => Box<dyn Set>);
impl_cast_method!(into_enum: Enum => Box<dyn Enum>);
bevy_reflect: Replace "value" terminology with "opaque" (#15240) # Objective Currently, the term "value" in the context of reflection is a bit overloaded. For one, it can be used synonymously with "data" or "variable". An example sentence would be "this function takes a reflected value". However, it is also used to refer to reflected types which are `ReflectKind::Value`. These types are usually either primitives, opaque types, or types that don't fall into any other `ReflectKind` (or perhaps could, but don't due to some limitation/difficulty). An example sentence would be "this function takes a reflected value type". This makes it difficult to write good documentation or other learning material without causing some amount of confusion to readers. Ideally, we'd be able to move away from the `ReflectKind::Value` usage and come up with a better term. ## Solution This PR replaces the terminology of "value" with "opaque" across `bevy_reflect`. This includes in documentation, type names, variant names, and macros. The term "opaque" was chosen because that's essentially how the type is treated within the reflection API. In other words, its internal structure is hidden. All we can do is work with the type itself. ### Primitives While primitives are not technically opaque types, I think it's still clearer to refer to them as "opaque" rather than keep the confusing "value" terminology. We could consider adding another concept for primitives (e.g. `ReflectKind::Primitive`), but I'm not sure that provides a lot of benefit right now. In most circumstances, they'll be treated just like an opaque type. They would also likely use the same macro (or two copies of the same macro but with different names). ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide The reflection concept of "value type" has been replaced with a clearer "opaque type". The following renames have been made to account for this: - `ReflectKind::Value` → `ReflectKind::Opaque` - `ReflectRef::Value` → `ReflectRef::Opaque` - `ReflectMut::Value` → `ReflectMut::Opaque` - `ReflectOwned::Value` → `ReflectOwned::Opaque` - `TypeInfo::Value` → `TypeInfo::Opaque` - `ValueInfo` → `OpaqueInfo` - `impl_reflect_value!` → `impl_reflect_opaque!` - `impl_from_reflect_value!` → `impl_from_reflect_opaque!` Additionally, declaring your own opaque types no longer uses `#[reflect_value]`. This attribute has been replaced by `#[reflect(opaque)]`: ```rust // BEFORE #[derive(Reflect)] #[reflect_value(Default)] struct MyOpaqueType(u32); // AFTER #[derive(Reflect)] #[reflect(opaque)] #[reflect(Default)] struct MyOpaqueType(u32); ``` Note that the order in which `#[reflect(opaque)]` appears does not matter.
2024-09-23 18:04:57 +00:00
impl_cast_method!(into_value: Opaque => Box<dyn PartialReflect>);
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
}
#[cfg(test)]
mod tests {
use std::collections::HashSet;
use super::*;
bevy_reflect: Add `ReflectRef`/`ReflectMut`/`ReflectOwned` convenience casting methods (#15235) # Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-09-23 16:50:46 +00:00
#[test]
fn should_cast_ref() {
let value = vec![1, 2, 3];
let result = value.reflect_ref().as_list();
assert!(result.is_ok());
let result = value.reflect_ref().as_array();
assert!(matches!(
result,
Err(ReflectKindMismatchError {
expected: ReflectKind::Array,
received: ReflectKind::List
})
));
}
#[test]
fn should_cast_mut() {
let mut value: HashSet<i32> = HashSet::new();
let result = value.reflect_mut().as_set();
assert!(result.is_ok());
let result = value.reflect_mut().as_map();
assert!(matches!(
result,
Err(ReflectKindMismatchError {
expected: ReflectKind::Map,
received: ReflectKind::Set
})
));
}
#[test]
fn should_cast_owned() {
let value = Box::new(Some(123));
let result = value.reflect_owned().into_enum();
assert!(result.is_ok());
let value = Box::new(Some(123));
let result = value.reflect_owned().into_struct();
assert!(matches!(
result,
Err(ReflectKindMismatchError {
expected: ReflectKind::Struct,
received: ReflectKind::Enum
})
));
}
}