2024-05-23 16:12:46 +00:00
|
|
|
//! Demonstrates UV mappings of the [`CircularSector`] and [`CircularSegment`] primitives.
|
|
|
|
//!
|
|
|
|
//! Also draws the bounding boxes and circles of the primitives.
|
|
|
|
use std::f32::consts::FRAC_PI_2;
|
|
|
|
|
|
|
|
use bevy::{
|
|
|
|
color::palettes::css::{BLUE, DARK_SLATE_GREY, RED},
|
Refactor Bounded2d/Bounded3d to use isometries (#14485)
# Objective
Previously, this area of bevy_math used raw translation and rotations to
encode isometries, which did not exist earlier. The goal of this PR is
to make the codebase of bevy_math more harmonious by using actual
isometries (`Isometry2d`/`Isometry3d`) in these places instead — this
will hopefully make the interfaces more digestible for end-users, in
addition to facilitating conversions.
For instance, together with the addition of #14478, this means that a
bounding box for a collider with an isometric `Transform` can be
computed as
```rust
collider.aabb_3d(collider_transform.to_isometry())
```
instead of using manual destructuring.
## Solution
- The traits `Bounded2d` and `Bounded3d` now use `Isometry2d` and
`Isometry3d` (respectively) instead of `translation` and `rotation`
parameters; e.g.:
```rust
/// A trait with methods that return 3D bounding volumes for a shape.
pub trait Bounded3d {
/// Get an axis-aligned bounding box for the shape translated and
rotated by the given isometry.
fn aabb_3d(&self, isometry: Isometry3d) -> Aabb3d;
/// Get a bounding sphere for the shape translated and rotated by the
given isometry.
fn bounding_sphere(&self, isometry: Isometry3d) -> BoundingSphere;
}
```
- Similarly, the `from_point_cloud` constructors for axis-aligned
bounding boxes and bounding circles/spheres now take isometries instead
of separate `translation` and `rotation`; e.g.:
```rust
/// Computes the smallest [`Aabb3d`] containing the given set of points,
/// transformed by the rotation and translation of the given isometry.
///
/// # Panics
///
/// Panics if the given set of points is empty.
#[inline(always)]
pub fn from_point_cloud(
isometry: Isometry3d,
points: impl Iterator<Item = impl Into<Vec3A>>,
) -> Aabb3d { //... }
```
This has a couple additional results:
1. The end-user no longer interacts directly with `Into<Vec3A>` or
`Into<Rot2>` parameters; these conversions all happen earlier now,
inside the isometry types.
2. Similarly, almost all intermediate `Vec3 -> Vec3A` conversions have
been eliminated from the `Bounded3d` implementations for primitives.
This probably has some performance benefit, but I have not measured it
as of now.
## Testing
Existing unit tests help ensure that nothing has been broken in the
refactor.
---
## Migration Guide
The `Bounded2d` and `Bounded3d` traits now take `Isometry2d` and
`Isometry3d` parameters (respectively) instead of separate translation
and rotation arguments. Existing calls to `aabb_2d`, `bounding_circle`,
`aabb_3d`, and `bounding_sphere` will have to be changed to use
isometries instead. A straightforward conversion is to refactor just by
calling `Isometry2d/3d::new`, as follows:
```rust
// Old:
let aabb = my_shape.aabb_2d(my_translation, my_rotation);
// New:
let aabb = my_shape.aabb_2d(Isometry2d::new(my_translation, my_rotation));
```
However, if the old translation and rotation are 3d
translation/rotations originating from a `Transform` or
`GlobalTransform`, then `to_isometry` may be used instead. For example:
```rust
// Old:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.translation, shape_transform.rotation);
// New:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.to_isometry());
```
This discussion also applies to the `from_point_cloud` construction
method of `Aabb2d`/`BoundingCircle`/`Aabb3d`/`BoundingSphere`, which has
similarly been altered to use isometries.
2024-07-29 23:37:02 +00:00
|
|
|
math::{
|
|
|
|
bounding::{Bounded2d, BoundingVolume},
|
|
|
|
Isometry2d,
|
|
|
|
},
|
2024-05-23 16:12:46 +00:00
|
|
|
prelude::*,
|
|
|
|
render::mesh::{CircularMeshUvMode, CircularSectorMeshBuilder, CircularSegmentMeshBuilder},
|
|
|
|
sprite::MaterialMesh2dBundle,
|
|
|
|
};
|
|
|
|
|
|
|
|
fn main() {
|
|
|
|
App::new()
|
|
|
|
.add_plugins(DefaultPlugins)
|
|
|
|
.add_systems(Startup, setup)
|
|
|
|
.add_systems(
|
|
|
|
Update,
|
|
|
|
(
|
|
|
|
draw_bounds::<CircularSector>,
|
|
|
|
draw_bounds::<CircularSegment>,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
.run();
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Component, Debug)]
|
|
|
|
struct DrawBounds<Shape: Bounded2d + Send + Sync + 'static>(Shape);
|
|
|
|
|
|
|
|
fn setup(
|
|
|
|
mut commands: Commands,
|
|
|
|
asset_server: Res<AssetServer>,
|
|
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
|
|
mut materials: ResMut<Assets<ColorMaterial>>,
|
|
|
|
) {
|
|
|
|
let material = materials.add(asset_server.load("branding/icon.png"));
|
|
|
|
|
|
|
|
commands.spawn(Camera2dBundle {
|
|
|
|
camera: Camera {
|
|
|
|
clear_color: ClearColorConfig::Custom(DARK_SLATE_GREY.into()),
|
|
|
|
..default()
|
|
|
|
},
|
|
|
|
..default()
|
|
|
|
});
|
|
|
|
|
|
|
|
const UPPER_Y: f32 = 50.0;
|
|
|
|
const LOWER_Y: f32 = -50.0;
|
|
|
|
const FIRST_X: f32 = -450.0;
|
|
|
|
const OFFSET: f32 = 100.0;
|
|
|
|
const NUM_SLICES: i32 = 8;
|
|
|
|
|
|
|
|
// This draws NUM_SLICES copies of the Bevy logo as circular sectors and segments,
|
|
|
|
// with successively larger angles up to a complete circle.
|
|
|
|
for i in 0..NUM_SLICES {
|
|
|
|
let fraction = (i + 1) as f32 / NUM_SLICES as f32;
|
|
|
|
|
|
|
|
let sector = CircularSector::from_turns(40.0, fraction);
|
|
|
|
// We want to rotate the circular sector so that the sectors appear clockwise from north.
|
|
|
|
// We must rotate it both in the Transform and in the mesh's UV mappings.
|
|
|
|
let sector_angle = -sector.half_angle();
|
|
|
|
let sector_mesh =
|
|
|
|
CircularSectorMeshBuilder::new(sector).uv_mode(CircularMeshUvMode::Mask {
|
|
|
|
angle: sector_angle,
|
|
|
|
});
|
|
|
|
commands.spawn((
|
|
|
|
MaterialMesh2dBundle {
|
|
|
|
mesh: meshes.add(sector_mesh).into(),
|
|
|
|
material: material.clone(),
|
|
|
|
transform: Transform {
|
|
|
|
translation: Vec3::new(FIRST_X + OFFSET * i as f32, 2.0 * UPPER_Y, 0.0),
|
|
|
|
rotation: Quat::from_rotation_z(sector_angle),
|
|
|
|
..default()
|
|
|
|
},
|
|
|
|
..default()
|
|
|
|
},
|
|
|
|
DrawBounds(sector),
|
|
|
|
));
|
|
|
|
|
|
|
|
let segment = CircularSegment::from_turns(40.0, fraction);
|
|
|
|
// For the circular segment, we will draw Bevy charging forward, which requires rotating the
|
|
|
|
// shape and texture by 90 degrees.
|
|
|
|
//
|
|
|
|
// Note that this may be unintuitive; it may feel like we should rotate the texture by the
|
|
|
|
// opposite angle to preserve the orientation of Bevy. But the angle is not the angle of the
|
|
|
|
// texture itself, rather it is the angle at which the vertices are mapped onto the texture.
|
|
|
|
// so it is the negative of what you might otherwise expect.
|
|
|
|
let segment_angle = -FRAC_PI_2;
|
|
|
|
let segment_mesh =
|
|
|
|
CircularSegmentMeshBuilder::new(segment).uv_mode(CircularMeshUvMode::Mask {
|
|
|
|
angle: -segment_angle,
|
|
|
|
});
|
|
|
|
commands.spawn((
|
|
|
|
MaterialMesh2dBundle {
|
|
|
|
mesh: meshes.add(segment_mesh).into(),
|
|
|
|
material: material.clone(),
|
|
|
|
transform: Transform {
|
|
|
|
translation: Vec3::new(FIRST_X + OFFSET * i as f32, LOWER_Y, 0.0),
|
|
|
|
rotation: Quat::from_rotation_z(segment_angle),
|
|
|
|
..default()
|
|
|
|
},
|
|
|
|
..default()
|
|
|
|
},
|
|
|
|
DrawBounds(segment),
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn draw_bounds<Shape: Bounded2d + Send + Sync + 'static>(
|
|
|
|
q: Query<(&DrawBounds<Shape>, &GlobalTransform)>,
|
|
|
|
mut gizmos: Gizmos,
|
|
|
|
) {
|
|
|
|
for (shape, transform) in &q {
|
|
|
|
let (_, rotation, translation) = transform.to_scale_rotation_translation();
|
|
|
|
let translation = translation.truncate();
|
|
|
|
let rotation = rotation.to_euler(EulerRot::XYZ).2;
|
Refactor Bounded2d/Bounded3d to use isometries (#14485)
# Objective
Previously, this area of bevy_math used raw translation and rotations to
encode isometries, which did not exist earlier. The goal of this PR is
to make the codebase of bevy_math more harmonious by using actual
isometries (`Isometry2d`/`Isometry3d`) in these places instead — this
will hopefully make the interfaces more digestible for end-users, in
addition to facilitating conversions.
For instance, together with the addition of #14478, this means that a
bounding box for a collider with an isometric `Transform` can be
computed as
```rust
collider.aabb_3d(collider_transform.to_isometry())
```
instead of using manual destructuring.
## Solution
- The traits `Bounded2d` and `Bounded3d` now use `Isometry2d` and
`Isometry3d` (respectively) instead of `translation` and `rotation`
parameters; e.g.:
```rust
/// A trait with methods that return 3D bounding volumes for a shape.
pub trait Bounded3d {
/// Get an axis-aligned bounding box for the shape translated and
rotated by the given isometry.
fn aabb_3d(&self, isometry: Isometry3d) -> Aabb3d;
/// Get a bounding sphere for the shape translated and rotated by the
given isometry.
fn bounding_sphere(&self, isometry: Isometry3d) -> BoundingSphere;
}
```
- Similarly, the `from_point_cloud` constructors for axis-aligned
bounding boxes and bounding circles/spheres now take isometries instead
of separate `translation` and `rotation`; e.g.:
```rust
/// Computes the smallest [`Aabb3d`] containing the given set of points,
/// transformed by the rotation and translation of the given isometry.
///
/// # Panics
///
/// Panics if the given set of points is empty.
#[inline(always)]
pub fn from_point_cloud(
isometry: Isometry3d,
points: impl Iterator<Item = impl Into<Vec3A>>,
) -> Aabb3d { //... }
```
This has a couple additional results:
1. The end-user no longer interacts directly with `Into<Vec3A>` or
`Into<Rot2>` parameters; these conversions all happen earlier now,
inside the isometry types.
2. Similarly, almost all intermediate `Vec3 -> Vec3A` conversions have
been eliminated from the `Bounded3d` implementations for primitives.
This probably has some performance benefit, but I have not measured it
as of now.
## Testing
Existing unit tests help ensure that nothing has been broken in the
refactor.
---
## Migration Guide
The `Bounded2d` and `Bounded3d` traits now take `Isometry2d` and
`Isometry3d` parameters (respectively) instead of separate translation
and rotation arguments. Existing calls to `aabb_2d`, `bounding_circle`,
`aabb_3d`, and `bounding_sphere` will have to be changed to use
isometries instead. A straightforward conversion is to refactor just by
calling `Isometry2d/3d::new`, as follows:
```rust
// Old:
let aabb = my_shape.aabb_2d(my_translation, my_rotation);
// New:
let aabb = my_shape.aabb_2d(Isometry2d::new(my_translation, my_rotation));
```
However, if the old translation and rotation are 3d
translation/rotations originating from a `Transform` or
`GlobalTransform`, then `to_isometry` may be used instead. For example:
```rust
// Old:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.translation, shape_transform.rotation);
// New:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.to_isometry());
```
This discussion also applies to the `from_point_cloud` construction
method of `Aabb2d`/`BoundingCircle`/`Aabb3d`/`BoundingSphere`, which has
similarly been altered to use isometries.
2024-07-29 23:37:02 +00:00
|
|
|
let isometry = Isometry2d::new(translation, Rot2::radians(rotation));
|
2024-05-23 16:12:46 +00:00
|
|
|
|
Refactor Bounded2d/Bounded3d to use isometries (#14485)
# Objective
Previously, this area of bevy_math used raw translation and rotations to
encode isometries, which did not exist earlier. The goal of this PR is
to make the codebase of bevy_math more harmonious by using actual
isometries (`Isometry2d`/`Isometry3d`) in these places instead — this
will hopefully make the interfaces more digestible for end-users, in
addition to facilitating conversions.
For instance, together with the addition of #14478, this means that a
bounding box for a collider with an isometric `Transform` can be
computed as
```rust
collider.aabb_3d(collider_transform.to_isometry())
```
instead of using manual destructuring.
## Solution
- The traits `Bounded2d` and `Bounded3d` now use `Isometry2d` and
`Isometry3d` (respectively) instead of `translation` and `rotation`
parameters; e.g.:
```rust
/// A trait with methods that return 3D bounding volumes for a shape.
pub trait Bounded3d {
/// Get an axis-aligned bounding box for the shape translated and
rotated by the given isometry.
fn aabb_3d(&self, isometry: Isometry3d) -> Aabb3d;
/// Get a bounding sphere for the shape translated and rotated by the
given isometry.
fn bounding_sphere(&self, isometry: Isometry3d) -> BoundingSphere;
}
```
- Similarly, the `from_point_cloud` constructors for axis-aligned
bounding boxes and bounding circles/spheres now take isometries instead
of separate `translation` and `rotation`; e.g.:
```rust
/// Computes the smallest [`Aabb3d`] containing the given set of points,
/// transformed by the rotation and translation of the given isometry.
///
/// # Panics
///
/// Panics if the given set of points is empty.
#[inline(always)]
pub fn from_point_cloud(
isometry: Isometry3d,
points: impl Iterator<Item = impl Into<Vec3A>>,
) -> Aabb3d { //... }
```
This has a couple additional results:
1. The end-user no longer interacts directly with `Into<Vec3A>` or
`Into<Rot2>` parameters; these conversions all happen earlier now,
inside the isometry types.
2. Similarly, almost all intermediate `Vec3 -> Vec3A` conversions have
been eliminated from the `Bounded3d` implementations for primitives.
This probably has some performance benefit, but I have not measured it
as of now.
## Testing
Existing unit tests help ensure that nothing has been broken in the
refactor.
---
## Migration Guide
The `Bounded2d` and `Bounded3d` traits now take `Isometry2d` and
`Isometry3d` parameters (respectively) instead of separate translation
and rotation arguments. Existing calls to `aabb_2d`, `bounding_circle`,
`aabb_3d`, and `bounding_sphere` will have to be changed to use
isometries instead. A straightforward conversion is to refactor just by
calling `Isometry2d/3d::new`, as follows:
```rust
// Old:
let aabb = my_shape.aabb_2d(my_translation, my_rotation);
// New:
let aabb = my_shape.aabb_2d(Isometry2d::new(my_translation, my_rotation));
```
However, if the old translation and rotation are 3d
translation/rotations originating from a `Transform` or
`GlobalTransform`, then `to_isometry` may be used instead. For example:
```rust
// Old:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.translation, shape_transform.rotation);
// New:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.to_isometry());
```
This discussion also applies to the `from_point_cloud` construction
method of `Aabb2d`/`BoundingCircle`/`Aabb3d`/`BoundingSphere`, which has
similarly been altered to use isometries.
2024-07-29 23:37:02 +00:00
|
|
|
let aabb = shape.0.aabb_2d(isometry);
|
2024-05-23 16:12:46 +00:00
|
|
|
gizmos.rect_2d(aabb.center(), 0.0, aabb.half_size() * 2.0, RED);
|
|
|
|
|
Refactor Bounded2d/Bounded3d to use isometries (#14485)
# Objective
Previously, this area of bevy_math used raw translation and rotations to
encode isometries, which did not exist earlier. The goal of this PR is
to make the codebase of bevy_math more harmonious by using actual
isometries (`Isometry2d`/`Isometry3d`) in these places instead — this
will hopefully make the interfaces more digestible for end-users, in
addition to facilitating conversions.
For instance, together with the addition of #14478, this means that a
bounding box for a collider with an isometric `Transform` can be
computed as
```rust
collider.aabb_3d(collider_transform.to_isometry())
```
instead of using manual destructuring.
## Solution
- The traits `Bounded2d` and `Bounded3d` now use `Isometry2d` and
`Isometry3d` (respectively) instead of `translation` and `rotation`
parameters; e.g.:
```rust
/// A trait with methods that return 3D bounding volumes for a shape.
pub trait Bounded3d {
/// Get an axis-aligned bounding box for the shape translated and
rotated by the given isometry.
fn aabb_3d(&self, isometry: Isometry3d) -> Aabb3d;
/// Get a bounding sphere for the shape translated and rotated by the
given isometry.
fn bounding_sphere(&self, isometry: Isometry3d) -> BoundingSphere;
}
```
- Similarly, the `from_point_cloud` constructors for axis-aligned
bounding boxes and bounding circles/spheres now take isometries instead
of separate `translation` and `rotation`; e.g.:
```rust
/// Computes the smallest [`Aabb3d`] containing the given set of points,
/// transformed by the rotation and translation of the given isometry.
///
/// # Panics
///
/// Panics if the given set of points is empty.
#[inline(always)]
pub fn from_point_cloud(
isometry: Isometry3d,
points: impl Iterator<Item = impl Into<Vec3A>>,
) -> Aabb3d { //... }
```
This has a couple additional results:
1. The end-user no longer interacts directly with `Into<Vec3A>` or
`Into<Rot2>` parameters; these conversions all happen earlier now,
inside the isometry types.
2. Similarly, almost all intermediate `Vec3 -> Vec3A` conversions have
been eliminated from the `Bounded3d` implementations for primitives.
This probably has some performance benefit, but I have not measured it
as of now.
## Testing
Existing unit tests help ensure that nothing has been broken in the
refactor.
---
## Migration Guide
The `Bounded2d` and `Bounded3d` traits now take `Isometry2d` and
`Isometry3d` parameters (respectively) instead of separate translation
and rotation arguments. Existing calls to `aabb_2d`, `bounding_circle`,
`aabb_3d`, and `bounding_sphere` will have to be changed to use
isometries instead. A straightforward conversion is to refactor just by
calling `Isometry2d/3d::new`, as follows:
```rust
// Old:
let aabb = my_shape.aabb_2d(my_translation, my_rotation);
// New:
let aabb = my_shape.aabb_2d(Isometry2d::new(my_translation, my_rotation));
```
However, if the old translation and rotation are 3d
translation/rotations originating from a `Transform` or
`GlobalTransform`, then `to_isometry` may be used instead. For example:
```rust
// Old:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.translation, shape_transform.rotation);
// New:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.to_isometry());
```
This discussion also applies to the `from_point_cloud` construction
method of `Aabb2d`/`BoundingCircle`/`Aabb3d`/`BoundingSphere`, which has
similarly been altered to use isometries.
2024-07-29 23:37:02 +00:00
|
|
|
let bounding_circle = shape.0.bounding_circle(isometry);
|
2024-05-23 16:12:46 +00:00
|
|
|
gizmos.circle_2d(bounding_circle.center, bounding_circle.radius(), BLUE);
|
|
|
|
}
|
|
|
|
}
|