bevy/crates/bevy_app/src/sub_app.rs

492 lines
15 KiB
Rust
Raw Normal View History

use crate::{App, AppLabel, InternedAppLabel, Plugin, Plugins, PluginsState};
use bevy_ecs::{
Optimize Event Updates (#12936) # Objective Improve performance scalability when adding new event types to a Bevy app. Currently, just using Bevy in the default configuration, all apps spend upwards of 100+us in the `First` schedule, every app tick, evaluating if it should update events or not, even if events are not being used for that particular frame, and this scales with the number of Events registered in the app. ## Solution As `Events::update` is guaranteed `O(1)` by just checking if a resource's value, swapping two Vecs, and then clearing one of them, the actual cost of running `event_update_system` is *very* cheap. The overhead of doing system dependency injection, task scheduling ,and the multithreaded executor outweighs the cost of running the system by a large margin. Create an `EventRegistry` resource that keeps a number of function pointers that update each event. Replace the per-event type `event_update_system` with a singular exclusive system uses the `EventRegistry` to update all events instead. Update `SubApp::add_event` to use `EventRegistry` instead. ## Performance This speeds reduces the cost of the `First` schedule in both many_foxes and many_cubes by over 80%. Note this is with system spans on. The majority of this is now context-switching costs from launching `time_system`, which should be mostly eliminated with #12869. ![image](https://github.com/bevyengine/bevy/assets/3137680/037624be-21a2-4dc2-a42f-9d0bfa3e9b4a) The actual `event_update_system` is usually *very* short, using only a few microseconds on average. ![image](https://github.com/bevyengine/bevy/assets/3137680/01ff1689-3595-49b6-8f09-5c44bcf903e8) --- ## Changelog TODO ## Migration Guide TODO --------- Co-authored-by: Josh Matthews <josh@joshmatthews.net> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-04-13 14:11:28 +00:00
event::EventRegistry,
prelude::*,
schedule::{InternedScheduleLabel, ScheduleBuildSettings, ScheduleLabel},
Support systems that take references as input (#15184) # Objective - Fixes #14924 - Closes #9584 ## Solution - We introduce a new trait, `SystemInput`, that serves as a type function from the `'static` form of the input, to its lifetime'd version, similarly to `SystemParam` or `WorldQuery`. - System functions now take the lifetime'd wrapped version, `SystemInput::Param<'_>`, which prevents the issue presented in #14924 (i.e. `InRef<T>`). - Functions for running systems now take the lifetime'd unwrapped version, `SystemInput::Inner<'_>` (i.e. `&T`). - Due to the above change, system piping had to be re-implemented as a standalone type, rather than `CombinatorSystem` as it was previously. - Removes the `Trigger<'static, E, B>` transmute in observer runner code. ## Testing - All current tests pass. - Added additional tests and doc-tests. --- ## Showcase ```rust let mut world = World::new(); let mut value = 2; // Currently possible: fn square(In(input): In<usize>) -> usize { input * input } value = world.run_system_once_with(value, square); // Now possible: fn square_mut(InMut(input): InMut<usize>) { *input *= *input; } world.run_system_once_with(&mut value, square_mut); // Or: fn square_ref(InRef(input): InRef<usize>) -> usize { *input * *input } value = world.run_system_once_with(&value, square_ref); ``` ## Migration Guide - All current explicit usages of the following types must be changed in the way specified: - `SystemId<I, O>` to `SystemId<In<I>, O>` - `System<In = T>` to `System<In = In<T>>` - `IntoSystem<I, O, M>` to `IntoSystem<In<I>, O, M>` - `Condition<M, T>` to `Condition<M, In<T>>` - `In<Trigger<E, B>>` is no longer a valid input parameter type. Use `Trigger<E, B>` directly, instead. --------- Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
2024-09-23 17:37:29 +00:00
system::{SystemId, SystemInput},
};
#[cfg(feature = "trace")]
use bevy_utils::tracing::info_span;
use bevy_utils::{HashMap, HashSet};
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
use core::fmt::Debug;
type ExtractFn = Box<dyn Fn(&mut World, &mut World) + Send>;
/// A secondary application with its own [`World`]. These can run independently of each other.
///
/// These are useful for situations where certain processes (e.g. a render thread) need to be kept
/// separate from the main application.
///
/// # Example
///
/// ```
/// # use bevy_app::{App, AppLabel, SubApp, Main};
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::schedule::ScheduleLabel;
///
/// #[derive(Resource, Default)]
/// struct Val(pub i32);
///
/// #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, AppLabel)]
/// struct ExampleApp;
///
/// // Create an app with a certain resource.
/// let mut app = App::new();
/// app.insert_resource(Val(10));
///
/// // Create a sub-app with the same resource and a single schedule.
/// let mut sub_app = SubApp::new();
/// sub_app.update_schedule = Some(Main.intern());
/// sub_app.insert_resource(Val(100));
///
/// // Setup an extract function to copy the resource's value in the main world.
/// sub_app.set_extract(|main_world, sub_world| {
/// sub_world.resource_mut::<Val>().0 = main_world.resource::<Val>().0;
/// });
///
/// // Schedule a system that will verify extraction is working.
/// sub_app.add_systems(Main, |counter: Res<Val>| {
/// // The value will be copied during extraction, so we should see 10 instead of 100.
/// assert_eq!(counter.0, 10);
/// });
///
/// // Add the sub-app to the main app.
/// app.insert_sub_app(ExampleApp, sub_app);
///
/// // Update the application once (using the default runner).
/// app.run();
/// ```
pub struct SubApp {
/// The data of this application.
world: World,
/// List of plugins that have been added.
pub(crate) plugin_registry: Vec<Box<dyn Plugin>>,
/// The names of plugins that have been added to this app. (used to track duplicates and
/// already-registered plugins)
pub(crate) plugin_names: HashSet<String>,
/// Panics if an update is attempted while plugins are building.
pub(crate) plugin_build_depth: usize,
pub(crate) plugins_state: PluginsState,
/// The schedule that will be run by [`update`](Self::update).
pub update_schedule: Option<InternedScheduleLabel>,
/// A function that gives mutable access to two app worlds. This is primarily
/// intended for copying data from the main world to secondary worlds.
extract: Option<ExtractFn>,
}
impl Debug for SubApp {
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "SubApp")
}
}
impl Default for SubApp {
fn default() -> Self {
let mut world = World::new();
world.init_resource::<Schedules>();
Self {
world,
plugin_registry: Vec::default(),
plugin_names: HashSet::default(),
plugin_build_depth: 0,
plugins_state: PluginsState::Adding,
update_schedule: None,
extract: None,
}
}
}
impl SubApp {
/// Returns a default, empty [`SubApp`].
pub fn new() -> Self {
Self::default()
}
/// This method is a workaround. Each [`SubApp`] can have its own plugins, but [`Plugin`]
/// works on an [`App`] as a whole.
fn run_as_app<F>(&mut self, f: F)
where
F: FnOnce(&mut App),
{
let mut app = App::empty();
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
core::mem::swap(self, &mut app.sub_apps.main);
f(&mut app);
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
core::mem::swap(self, &mut app.sub_apps.main);
}
/// Returns a reference to the [`World`].
pub fn world(&self) -> &World {
&self.world
}
/// Returns a mutable reference to the [`World`].
pub fn world_mut(&mut self) -> &mut World {
&mut self.world
}
/// Runs the default schedule.
2024-06-10 18:06:05 +00:00
///
/// Does not clear internal trackers used for change detection.
pub fn run_default_schedule(&mut self) {
if self.is_building_plugins() {
panic!("SubApp::update() was called while a plugin was building.");
}
if let Some(label) = self.update_schedule {
self.world.run_schedule(label);
}
2024-06-10 18:06:05 +00:00
}
/// Runs the default schedule and updates internal component trackers.
pub fn update(&mut self) {
self.run_default_schedule();
self.world.clear_trackers();
}
/// Extracts data from `world` into the app's world using the registered extract method.
///
/// **Note:** There is no default extract method. Calling `extract` does nothing if
/// [`set_extract`](Self::set_extract) has not been called.
pub fn extract(&mut self, world: &mut World) {
if let Some(f) = self.extract.as_mut() {
f(world, &mut self.world);
}
}
/// Sets the method that will be called by [`extract`](Self::extract).
///
/// The first argument is the `World` to extract data from, the second argument is the app `World`.
pub fn set_extract<F>(&mut self, extract: F) -> &mut Self
where
F: Fn(&mut World, &mut World) + Send + 'static,
{
self.extract = Some(Box::new(extract));
self
}
/// See [`App::insert_resource`].
pub fn insert_resource<R: Resource>(&mut self, resource: R) -> &mut Self {
self.world.insert_resource(resource);
self
}
/// See [`App::init_resource`].
pub fn init_resource<R: Resource + FromWorld>(&mut self) -> &mut Self {
self.world.init_resource::<R>();
self
}
/// See [`App::add_systems`].
pub fn add_systems<M>(
&mut self,
schedule: impl ScheduleLabel,
systems: impl IntoSystemConfigs<M>,
) -> &mut Self {
let mut schedules = self.world.resource_mut::<Schedules>();
schedules.add_systems(schedule, systems);
self
}
/// See [`App::register_system`].
Support systems that take references as input (#15184) # Objective - Fixes #14924 - Closes #9584 ## Solution - We introduce a new trait, `SystemInput`, that serves as a type function from the `'static` form of the input, to its lifetime'd version, similarly to `SystemParam` or `WorldQuery`. - System functions now take the lifetime'd wrapped version, `SystemInput::Param<'_>`, which prevents the issue presented in #14924 (i.e. `InRef<T>`). - Functions for running systems now take the lifetime'd unwrapped version, `SystemInput::Inner<'_>` (i.e. `&T`). - Due to the above change, system piping had to be re-implemented as a standalone type, rather than `CombinatorSystem` as it was previously. - Removes the `Trigger<'static, E, B>` transmute in observer runner code. ## Testing - All current tests pass. - Added additional tests and doc-tests. --- ## Showcase ```rust let mut world = World::new(); let mut value = 2; // Currently possible: fn square(In(input): In<usize>) -> usize { input * input } value = world.run_system_once_with(value, square); // Now possible: fn square_mut(InMut(input): InMut<usize>) { *input *= *input; } world.run_system_once_with(&mut value, square_mut); // Or: fn square_ref(InRef(input): InRef<usize>) -> usize { *input * *input } value = world.run_system_once_with(&value, square_ref); ``` ## Migration Guide - All current explicit usages of the following types must be changed in the way specified: - `SystemId<I, O>` to `SystemId<In<I>, O>` - `System<In = T>` to `System<In = In<T>>` - `IntoSystem<I, O, M>` to `IntoSystem<In<I>, O, M>` - `Condition<M, T>` to `Condition<M, In<T>>` - `In<Trigger<E, B>>` is no longer a valid input parameter type. Use `Trigger<E, B>` directly, instead. --------- Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
2024-09-23 17:37:29 +00:00
pub fn register_system<I, O, M>(
&mut self,
Support systems that take references as input (#15184) # Objective - Fixes #14924 - Closes #9584 ## Solution - We introduce a new trait, `SystemInput`, that serves as a type function from the `'static` form of the input, to its lifetime'd version, similarly to `SystemParam` or `WorldQuery`. - System functions now take the lifetime'd wrapped version, `SystemInput::Param<'_>`, which prevents the issue presented in #14924 (i.e. `InRef<T>`). - Functions for running systems now take the lifetime'd unwrapped version, `SystemInput::Inner<'_>` (i.e. `&T`). - Due to the above change, system piping had to be re-implemented as a standalone type, rather than `CombinatorSystem` as it was previously. - Removes the `Trigger<'static, E, B>` transmute in observer runner code. ## Testing - All current tests pass. - Added additional tests and doc-tests. --- ## Showcase ```rust let mut world = World::new(); let mut value = 2; // Currently possible: fn square(In(input): In<usize>) -> usize { input * input } value = world.run_system_once_with(value, square); // Now possible: fn square_mut(InMut(input): InMut<usize>) { *input *= *input; } world.run_system_once_with(&mut value, square_mut); // Or: fn square_ref(InRef(input): InRef<usize>) -> usize { *input * *input } value = world.run_system_once_with(&value, square_ref); ``` ## Migration Guide - All current explicit usages of the following types must be changed in the way specified: - `SystemId<I, O>` to `SystemId<In<I>, O>` - `System<In = T>` to `System<In = In<T>>` - `IntoSystem<I, O, M>` to `IntoSystem<In<I>, O, M>` - `Condition<M, T>` to `Condition<M, In<T>>` - `In<Trigger<E, B>>` is no longer a valid input parameter type. Use `Trigger<E, B>` directly, instead. --------- Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
2024-09-23 17:37:29 +00:00
system: impl IntoSystem<I, O, M> + 'static,
) -> SystemId<I, O>
where
I: SystemInput + 'static,
O: 'static,
{
self.world.register_system(system)
}
/// See [`App::configure_sets`].
#[track_caller]
pub fn configure_sets(
&mut self,
schedule: impl ScheduleLabel,
sets: impl IntoSystemSetConfigs,
) -> &mut Self {
let mut schedules = self.world.resource_mut::<Schedules>();
schedules.configure_sets(schedule, sets);
self
}
/// See [`App::add_schedule`].
pub fn add_schedule(&mut self, schedule: Schedule) -> &mut Self {
let mut schedules = self.world.resource_mut::<Schedules>();
schedules.insert(schedule);
self
}
/// See [`App::init_schedule`].
pub fn init_schedule(&mut self, label: impl ScheduleLabel) -> &mut Self {
let label = label.intern();
let mut schedules = self.world.resource_mut::<Schedules>();
if !schedules.contains(label) {
schedules.insert(Schedule::new(label));
}
self
}
/// See [`App::get_schedule`].
pub fn get_schedule(&self, label: impl ScheduleLabel) -> Option<&Schedule> {
let schedules = self.world.get_resource::<Schedules>()?;
schedules.get(label)
}
/// See [`App::get_schedule_mut`].
pub fn get_schedule_mut(&mut self, label: impl ScheduleLabel) -> Option<&mut Schedule> {
let schedules = self.world.get_resource_mut::<Schedules>()?;
// We must call `.into_inner` here because the borrow checker only understands reborrows
// using ordinary references, not our `Mut` smart pointers.
schedules.into_inner().get_mut(label)
}
/// See [`App::edit_schedule`].
pub fn edit_schedule(
&mut self,
label: impl ScheduleLabel,
mut f: impl FnMut(&mut Schedule),
) -> &mut Self {
let label = label.intern();
let mut schedules = self.world.resource_mut::<Schedules>();
if !schedules.contains(label) {
schedules.insert(Schedule::new(label));
}
let schedule = schedules.get_mut(label).unwrap();
f(schedule);
self
}
/// See [`App::configure_schedules`].
pub fn configure_schedules(
&mut self,
schedule_build_settings: ScheduleBuildSettings,
) -> &mut Self {
self.world_mut()
.resource_mut::<Schedules>()
.configure_schedules(schedule_build_settings);
self
}
/// See [`App::allow_ambiguous_component`].
pub fn allow_ambiguous_component<T: Component>(&mut self) -> &mut Self {
self.world_mut().allow_ambiguous_component::<T>();
self
}
/// See [`App::allow_ambiguous_resource`].
pub fn allow_ambiguous_resource<T: Resource>(&mut self) -> &mut Self {
self.world_mut().allow_ambiguous_resource::<T>();
self
}
/// See [`App::ignore_ambiguity`].
#[track_caller]
pub fn ignore_ambiguity<M1, M2, S1, S2>(
&mut self,
schedule: impl ScheduleLabel,
a: S1,
b: S2,
) -> &mut Self
where
S1: IntoSystemSet<M1>,
S2: IntoSystemSet<M2>,
{
let schedule = schedule.intern();
let mut schedules = self.world.resource_mut::<Schedules>();
schedules.ignore_ambiguity(schedule, a, b);
self
}
/// See [`App::add_event`].
pub fn add_event<T>(&mut self) -> &mut Self
where
T: Event,
{
if !self.world.contains_resource::<Events<T>>() {
Optimize Event Updates (#12936) # Objective Improve performance scalability when adding new event types to a Bevy app. Currently, just using Bevy in the default configuration, all apps spend upwards of 100+us in the `First` schedule, every app tick, evaluating if it should update events or not, even if events are not being used for that particular frame, and this scales with the number of Events registered in the app. ## Solution As `Events::update` is guaranteed `O(1)` by just checking if a resource's value, swapping two Vecs, and then clearing one of them, the actual cost of running `event_update_system` is *very* cheap. The overhead of doing system dependency injection, task scheduling ,and the multithreaded executor outweighs the cost of running the system by a large margin. Create an `EventRegistry` resource that keeps a number of function pointers that update each event. Replace the per-event type `event_update_system` with a singular exclusive system uses the `EventRegistry` to update all events instead. Update `SubApp::add_event` to use `EventRegistry` instead. ## Performance This speeds reduces the cost of the `First` schedule in both many_foxes and many_cubes by over 80%. Note this is with system spans on. The majority of this is now context-switching costs from launching `time_system`, which should be mostly eliminated with #12869. ![image](https://github.com/bevyengine/bevy/assets/3137680/037624be-21a2-4dc2-a42f-9d0bfa3e9b4a) The actual `event_update_system` is usually *very* short, using only a few microseconds on average. ![image](https://github.com/bevyengine/bevy/assets/3137680/01ff1689-3595-49b6-8f09-5c44bcf903e8) --- ## Changelog TODO ## Migration Guide TODO --------- Co-authored-by: Josh Matthews <josh@joshmatthews.net> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-04-13 14:11:28 +00:00
EventRegistry::register_event::<T>(self.world_mut());
}
self
}
/// See [`App::add_plugins`].
pub fn add_plugins<M>(&mut self, plugins: impl Plugins<M>) -> &mut Self {
self.run_as_app(|app| plugins.add_to_app(app));
self
}
/// See [`App::is_plugin_added`].
pub fn is_plugin_added<T>(&self) -> bool
where
T: Plugin,
{
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
self.plugin_names.contains(core::any::type_name::<T>())
}
/// See [`App::get_added_plugins`].
pub fn get_added_plugins<T>(&self) -> Vec<&T>
where
T: Plugin,
{
self.plugin_registry
.iter()
.filter_map(|p| p.downcast_ref())
.collect()
}
/// Returns `true` if there is no plugin in the middle of being built.
pub(crate) fn is_building_plugins(&self) -> bool {
self.plugin_build_depth > 0
}
/// Return the state of plugins.
#[inline]
pub fn plugins_state(&mut self) -> PluginsState {
match self.plugins_state {
PluginsState::Adding => {
let mut state = PluginsState::Ready;
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
let plugins = core::mem::take(&mut self.plugin_registry);
self.run_as_app(|app| {
for plugin in &plugins {
if !plugin.ready(app) {
state = PluginsState::Adding;
return;
}
}
});
self.plugin_registry = plugins;
state
}
state => state,
}
}
/// Runs [`Plugin::finish`] for each plugin.
pub fn finish(&mut self) {
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
let plugins = core::mem::take(&mut self.plugin_registry);
self.run_as_app(|app| {
for plugin in &plugins {
plugin.finish(app);
}
});
self.plugin_registry = plugins;
self.plugins_state = PluginsState::Finished;
}
/// Runs [`Plugin::cleanup`] for each plugin.
pub fn cleanup(&mut self) {
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
let plugins = core::mem::take(&mut self.plugin_registry);
self.run_as_app(|app| {
for plugin in &plugins {
plugin.cleanup(app);
}
});
self.plugin_registry = plugins;
self.plugins_state = PluginsState::Cleaned;
}
/// See [`App::register_type`].
#[cfg(feature = "bevy_reflect")]
pub fn register_type<T: bevy_reflect::GetTypeRegistration>(&mut self) -> &mut Self {
let registry = self.world.resource_mut::<AppTypeRegistry>();
registry.write().register::<T>();
self
}
/// See [`App::register_type_data`].
#[cfg(feature = "bevy_reflect")]
pub fn register_type_data<
T: bevy_reflect::Reflect + bevy_reflect::TypePath,
D: bevy_reflect::TypeData + bevy_reflect::FromType<T>,
>(
&mut self,
) -> &mut Self {
let registry = self.world.resource_mut::<AppTypeRegistry>();
registry.write().register_type_data::<T, D>();
self
}
bevy_reflect: Function registry (#14098) # Objective #13152 added support for reflecting functions. Now, we need a way to register those functions such that they may be accessed anywhere within the ECS. ## Solution Added a `FunctionRegistry` type similar to `TypeRegistry`. This allows a function to be registered and retrieved by name. ```rust fn foo() -> i32 { 123 } let mut registry = FunctionRegistry::default(); registry.register("my_function", foo); let function = registry.get_mut("my_function").unwrap(); let value = function.call(ArgList::new()).unwrap().unwrap_owned(); assert_eq!(value.downcast_ref::<i32>(), Some(&123)); ``` Additionally, I added an `AppFunctionRegistry` resource which wraps a `FunctionRegistryArc`. Functions can be registered into this resource using `App::register_function` or by getting a mutable reference to the resource itself. ### Limitations #### `Send + Sync` In order to get this registry to work across threads, it needs to be `Send + Sync`. This means that `DynamicFunction` needs to be `Send + Sync`, which means that its internal function also needs to be `Send + Sync`. In most cases, this won't be an issue because standard Rust functions (the type most likely to be registered) are always `Send + Sync`. Additionally, closures tend to be `Send + Sync` as well, granted they don't capture any `!Send` or `!Sync` variables. This PR adds this `Send + Sync` requirement, but as mentioned above, it hopefully shouldn't be too big of an issue. #### Closures Unfortunately, closures can't be registered yet. This will likely be explored and added in a followup PR. ### Future Work Besides addressing the limitations listed above, another thing we could look into is improving the lookup of registered functions. One aspect is in the performance of hashing strings. The other is in the developer experience of having to call `std::any::type_name_of_val` to get the name of their function (assuming they didn't give it a custom name). ## Testing You can run the tests locally with: ``` cargo test --package bevy_reflect ``` --- ## Changelog - Added `FunctionRegistry` - Added `AppFunctionRegistry` (a `Resource` available from `bevy_ecs`) - Added `FunctionRegistryArc` - Added `FunctionRegistrationError` - Added `reflect_functions` feature to `bevy_ecs` and `bevy_app` - `FunctionInfo` is no longer `Default` - `DynamicFunction` now requires its wrapped function be `Send + Sync` ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. `DynamicFunction` (both those created manually and those created with `IntoFunction`), now require `Send + Sync`. All standard Rust functions should meet that requirement. Closures, on the other hand, may not if they capture any `!Send` or `!Sync` variables from its environment.
2024-08-06 01:09:48 +00:00
/// See [`App::register_function`].
#[cfg(feature = "reflect_functions")]
bevy_reflect: Anonymous function parsing (#14641) # Objective ### TL;DR #14098 added the `FunctionRegistry` but had some last minute complications due to anonymous functions. It ended up going with a "required name" approach to ensure anonymous functions would always have a name. However, this approach isn't ideal for named functions since, by definition, they will always have a name. Therefore, this PR aims to modify function reflection such that we can make function registration easier for named functions, while still allowing anonymous functions to be registered as well. ### Context Function registration (#14098) ran into a little problem: anonymous functions. Anonymous functions, including function pointers, have very non-unique type names. For example, the anonymous function `|a: i32, b: i32| a + b` has the type name of `fn(i32, i32) -> i32`. This obviously means we'd conflict with another function like `|a: i32, b: i32| a - b`. The solution that #14098 landed on was to always require a name during function registration. The downside with this is that named functions (e.g. `fn add(a: i32, b: i32) -> i32 { a + b }`) had to redundantly provide a name. Additionally, manually constructed `DynamicFunction`s also ran into this ergonomics issue. I don't entirely know how the function registry will be used, but I have a strong suspicion that most of its registrations will either be named functions or manually constructed `DynamicFunction`s, with anonymous functions only being used here and there for quick prototyping or adding small functionality. Why then should the API prioritize the anonymous function use case by always requiring a name during registration? #### Telling Functions Apart Rust doesn't provide a lot of out-of-the-box tools for reflecting functions. One of the biggest hurdles in attempting to solve the problem outlined above would be to somehow tell the different kinds of functions apart. Let's briefly recap on the categories of functions in Rust: | Category | Example | | ------------------ | ----------------------------------------- | | Named function | `fn add(a: i32, b: i32) -> i32 { a + b }` | | Closure | `\|a: i32\| a + captured_variable` | | Anonymous function | `\|a: i32, b: i32\| a + b` | | Function pointer | `fn(i32, i32) -> i32` | My first thought was to try and differentiate these categories based on their size. However, we can see that this doesn't quite work: | Category | `size_of` | | ------------------ | --------- | | Named function | 0 | | Closure | 0+ | | Anonymous function | 0 | | Function pointer | 8 | Not only does this not tell anonymous functions from named ones, but it struggles with pretty much all of them. My second then was to differentiate based on type name: | Category | `type_name` | | ------------------ | ----------------------- | | Named function | `foo::bar::baz` | | Closure | `foo::bar::{{closure}}` | | Anonymous function | `fn() -> String` | | Function pointer | `fn() -> String` | This is much better. While it can't distinguish between function pointers and anonymous functions, this doesn't matter too much since we only care about whether we can _name_ the function. So why didn't we implement this in #14098? #### Relying on `type_name` While this solution was known about while working on #14098, it was left out from that PR due to it being potentially controversial. The [docs](https://doc.rust-lang.org/stable/std/any/fn.type_name.html) for `std::any::type_name` state: > The returned string must not be considered to be a unique identifier of a type as multiple types may map to the same type name. Similarly, there is no guarantee that all parts of a type will appear in the returned string: for example, lifetime specifiers are currently not included. In addition, the output may change between versions of the compiler. So that's it then? We can't use `type_name`? Well, this statement isn't so much a rule as it is a guideline. And Bevy is no stranger to bending the rules to make things work or to improve ergonomics. Remember that before `TypePath`, Bevy's scene system was entirely dependent on `type_name`. Not to mention that `type_name` is being used as a key into both the `TypeRegistry` and the `FunctionRegistry`. Bevy's practices aside, can we reliably use `type_name` for this? My answer would be "yes". Anonymous functions are anonymous. They have no name. There's nothing Rust could do to give them a name apart from generating a random string of characters. But remember that this is a diagnostic tool, it doesn't make sense to obfuscate the type by randomizing the output. So changing it to be anything other than what it is now is very unlikely. The only changes that I could potentially see happening are: 1. Closures replace `{{closure}}` with the name of their variable 2. Lifetimes are included in the output I don't think the first is likely to happen, but if it does then it actually works out in our favor: closures are now named! The second point is probably the likeliest. However, adding lifetimes doesn't mean we can't still rely on `type_name` to determine whether or not a function is named. So we should be okay in this case as well. ## Solution Parse the `type_name` of the function in the `TypedFunction` impl to determine if the function is named or anonymous. This once again makes `FunctionInfo::name` optional. For manual constructions of `DynamicFunction`, `FunctionInfo::named` or ``FunctionInfo::anonymous` can be used. The `FunctionRegistry` API has also been reworked to account for this change. `FunctionRegistry::register` no longer takes a name and instead takes it from the supplied function, returning a `FunctionRegistrationError::MissingName` error if the name is `None`. This also doubles as a replacement for the old `FunctionRegistry::register_dynamic` method, which has been removed. To handle anonymous functions, a `FunctionRegistry::register_with_name` method has been added. This works in the same way `FunctionRegistry::register` used to work before this PR. The overwriting methods have been updated in a similar manner, with modifications to `FunctionRegistry::overwrite_registration`, the removal of `FunctionRegistry::overwrite_registration_dynamic`, and the addition of `FunctionRegistry::overwrite_registration_with_name`. This PR also updates the methods on `App` in a similar way: `App::register_function` no longer requires a name argument and `App::register_function_with_name` has been added to handle anonymous functions (and eventually closures). ## Testing You can run the tests locally by running: ``` cargo test --package bevy_reflect --features functions ``` --- ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. > [!note] > This list is not exhaustive. It only contains some of the most important changes. `FunctionRegistry::register` no longer requires a name string for named functions. Anonymous functions, however, need to be registered using `FunctionRegistry::register_with_name`. ```rust // BEFORE registry .register(std::any::type_name_of_val(&foo), foo)? .register("bar", || println!("Hello world!")); // AFTER registry .register(foo)? .register_with_name("bar", || println!("Hello world!")); ``` `FunctionInfo::name` is now optional. Anonymous functions and closures will now have their name set to `None` by default. Additionally, `FunctionInfo::new` has been renamed to `FunctionInfo::named`.
2024-08-07 03:11:08 +00:00
pub fn register_function<F, Marker>(&mut self, function: F) -> &mut Self
where
bevy_reflect: Function reflection terminology refactor (#14813) # Objective One of the changes in #14704 made `DynamicFunction` effectively the same as `DynamicClosure<'static>`. This change meant that the de facto function type would likely be `DynamicClosure<'static>` instead of the intended `DynamicFunction`, since the former is much more flexible. We _could_ explore ways of making `DynamicFunction` implement `Copy` using some unsafe code, but it likely wouldn't be worth it. And users would likely still reach for the convenience of `DynamicClosure<'static>` over the copy-ability of `DynamicFunction`. The goal of this PR is to fix this confusion between the two types. ## Solution Firstly, the `DynamicFunction` type was removed. Again, it was no different than `DynamicClosure<'static>` so it wasn't a huge deal to remove. Secondly, `DynamicClosure<'env>` and `DynamicClosureMut<'env>` were renamed to `DynamicFunction<'env>` and `DynamicFunctionMut<'env>`, respectively. Yes, we still ultimately kept the naming of `DynamicFunction`, but changed its behavior to that of `DynamicClosure<'env>`. We need a term to refer to both functions and closures, and "function" was the best option. [Originally](https://discord.com/channels/691052431525675048/1002362493634629796/1274091992162242710), I was going to go with "callable" as the replacement term to encompass both functions and closures (e.g. `DynamciCallable<'env>`). However, it was [suggested](https://discord.com/channels/691052431525675048/1002362493634629796/1274653581777047625) by @SkiFire13 that the simpler "function" term could be used instead. While "callable" is perhaps the better umbrella term—being truly ambiguous over functions and closures— "function" is more familiar, used more often, easier to discover, and is subjectively just "better-sounding". ## Testing Most changes are purely swapping type names or updating documentation, but you can verify everything still works by running the following command: ``` cargo test --package bevy_reflect ```
2024-08-19 21:52:36 +00:00
F: bevy_reflect::func::IntoFunction<'static, Marker> + 'static,
bevy_reflect: Anonymous function parsing (#14641) # Objective ### TL;DR #14098 added the `FunctionRegistry` but had some last minute complications due to anonymous functions. It ended up going with a "required name" approach to ensure anonymous functions would always have a name. However, this approach isn't ideal for named functions since, by definition, they will always have a name. Therefore, this PR aims to modify function reflection such that we can make function registration easier for named functions, while still allowing anonymous functions to be registered as well. ### Context Function registration (#14098) ran into a little problem: anonymous functions. Anonymous functions, including function pointers, have very non-unique type names. For example, the anonymous function `|a: i32, b: i32| a + b` has the type name of `fn(i32, i32) -> i32`. This obviously means we'd conflict with another function like `|a: i32, b: i32| a - b`. The solution that #14098 landed on was to always require a name during function registration. The downside with this is that named functions (e.g. `fn add(a: i32, b: i32) -> i32 { a + b }`) had to redundantly provide a name. Additionally, manually constructed `DynamicFunction`s also ran into this ergonomics issue. I don't entirely know how the function registry will be used, but I have a strong suspicion that most of its registrations will either be named functions or manually constructed `DynamicFunction`s, with anonymous functions only being used here and there for quick prototyping or adding small functionality. Why then should the API prioritize the anonymous function use case by always requiring a name during registration? #### Telling Functions Apart Rust doesn't provide a lot of out-of-the-box tools for reflecting functions. One of the biggest hurdles in attempting to solve the problem outlined above would be to somehow tell the different kinds of functions apart. Let's briefly recap on the categories of functions in Rust: | Category | Example | | ------------------ | ----------------------------------------- | | Named function | `fn add(a: i32, b: i32) -> i32 { a + b }` | | Closure | `\|a: i32\| a + captured_variable` | | Anonymous function | `\|a: i32, b: i32\| a + b` | | Function pointer | `fn(i32, i32) -> i32` | My first thought was to try and differentiate these categories based on their size. However, we can see that this doesn't quite work: | Category | `size_of` | | ------------------ | --------- | | Named function | 0 | | Closure | 0+ | | Anonymous function | 0 | | Function pointer | 8 | Not only does this not tell anonymous functions from named ones, but it struggles with pretty much all of them. My second then was to differentiate based on type name: | Category | `type_name` | | ------------------ | ----------------------- | | Named function | `foo::bar::baz` | | Closure | `foo::bar::{{closure}}` | | Anonymous function | `fn() -> String` | | Function pointer | `fn() -> String` | This is much better. While it can't distinguish between function pointers and anonymous functions, this doesn't matter too much since we only care about whether we can _name_ the function. So why didn't we implement this in #14098? #### Relying on `type_name` While this solution was known about while working on #14098, it was left out from that PR due to it being potentially controversial. The [docs](https://doc.rust-lang.org/stable/std/any/fn.type_name.html) for `std::any::type_name` state: > The returned string must not be considered to be a unique identifier of a type as multiple types may map to the same type name. Similarly, there is no guarantee that all parts of a type will appear in the returned string: for example, lifetime specifiers are currently not included. In addition, the output may change between versions of the compiler. So that's it then? We can't use `type_name`? Well, this statement isn't so much a rule as it is a guideline. And Bevy is no stranger to bending the rules to make things work or to improve ergonomics. Remember that before `TypePath`, Bevy's scene system was entirely dependent on `type_name`. Not to mention that `type_name` is being used as a key into both the `TypeRegistry` and the `FunctionRegistry`. Bevy's practices aside, can we reliably use `type_name` for this? My answer would be "yes". Anonymous functions are anonymous. They have no name. There's nothing Rust could do to give them a name apart from generating a random string of characters. But remember that this is a diagnostic tool, it doesn't make sense to obfuscate the type by randomizing the output. So changing it to be anything other than what it is now is very unlikely. The only changes that I could potentially see happening are: 1. Closures replace `{{closure}}` with the name of their variable 2. Lifetimes are included in the output I don't think the first is likely to happen, but if it does then it actually works out in our favor: closures are now named! The second point is probably the likeliest. However, adding lifetimes doesn't mean we can't still rely on `type_name` to determine whether or not a function is named. So we should be okay in this case as well. ## Solution Parse the `type_name` of the function in the `TypedFunction` impl to determine if the function is named or anonymous. This once again makes `FunctionInfo::name` optional. For manual constructions of `DynamicFunction`, `FunctionInfo::named` or ``FunctionInfo::anonymous` can be used. The `FunctionRegistry` API has also been reworked to account for this change. `FunctionRegistry::register` no longer takes a name and instead takes it from the supplied function, returning a `FunctionRegistrationError::MissingName` error if the name is `None`. This also doubles as a replacement for the old `FunctionRegistry::register_dynamic` method, which has been removed. To handle anonymous functions, a `FunctionRegistry::register_with_name` method has been added. This works in the same way `FunctionRegistry::register` used to work before this PR. The overwriting methods have been updated in a similar manner, with modifications to `FunctionRegistry::overwrite_registration`, the removal of `FunctionRegistry::overwrite_registration_dynamic`, and the addition of `FunctionRegistry::overwrite_registration_with_name`. This PR also updates the methods on `App` in a similar way: `App::register_function` no longer requires a name argument and `App::register_function_with_name` has been added to handle anonymous functions (and eventually closures). ## Testing You can run the tests locally by running: ``` cargo test --package bevy_reflect --features functions ``` --- ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. > [!note] > This list is not exhaustive. It only contains some of the most important changes. `FunctionRegistry::register` no longer requires a name string for named functions. Anonymous functions, however, need to be registered using `FunctionRegistry::register_with_name`. ```rust // BEFORE registry .register(std::any::type_name_of_val(&foo), foo)? .register("bar", || println!("Hello world!")); // AFTER registry .register(foo)? .register_with_name("bar", || println!("Hello world!")); ``` `FunctionInfo::name` is now optional. Anonymous functions and closures will now have their name set to `None` by default. Additionally, `FunctionInfo::new` has been renamed to `FunctionInfo::named`.
2024-08-07 03:11:08 +00:00
{
let registry = self.world.resource_mut::<AppFunctionRegistry>();
registry.write().register(function).unwrap();
self
}
/// See [`App::register_function_with_name`].
#[cfg(feature = "reflect_functions")]
pub fn register_function_with_name<F, Marker>(
bevy_reflect: Function registry (#14098) # Objective #13152 added support for reflecting functions. Now, we need a way to register those functions such that they may be accessed anywhere within the ECS. ## Solution Added a `FunctionRegistry` type similar to `TypeRegistry`. This allows a function to be registered and retrieved by name. ```rust fn foo() -> i32 { 123 } let mut registry = FunctionRegistry::default(); registry.register("my_function", foo); let function = registry.get_mut("my_function").unwrap(); let value = function.call(ArgList::new()).unwrap().unwrap_owned(); assert_eq!(value.downcast_ref::<i32>(), Some(&123)); ``` Additionally, I added an `AppFunctionRegistry` resource which wraps a `FunctionRegistryArc`. Functions can be registered into this resource using `App::register_function` or by getting a mutable reference to the resource itself. ### Limitations #### `Send + Sync` In order to get this registry to work across threads, it needs to be `Send + Sync`. This means that `DynamicFunction` needs to be `Send + Sync`, which means that its internal function also needs to be `Send + Sync`. In most cases, this won't be an issue because standard Rust functions (the type most likely to be registered) are always `Send + Sync`. Additionally, closures tend to be `Send + Sync` as well, granted they don't capture any `!Send` or `!Sync` variables. This PR adds this `Send + Sync` requirement, but as mentioned above, it hopefully shouldn't be too big of an issue. #### Closures Unfortunately, closures can't be registered yet. This will likely be explored and added in a followup PR. ### Future Work Besides addressing the limitations listed above, another thing we could look into is improving the lookup of registered functions. One aspect is in the performance of hashing strings. The other is in the developer experience of having to call `std::any::type_name_of_val` to get the name of their function (assuming they didn't give it a custom name). ## Testing You can run the tests locally with: ``` cargo test --package bevy_reflect ``` --- ## Changelog - Added `FunctionRegistry` - Added `AppFunctionRegistry` (a `Resource` available from `bevy_ecs`) - Added `FunctionRegistryArc` - Added `FunctionRegistrationError` - Added `reflect_functions` feature to `bevy_ecs` and `bevy_app` - `FunctionInfo` is no longer `Default` - `DynamicFunction` now requires its wrapped function be `Send + Sync` ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. `DynamicFunction` (both those created manually and those created with `IntoFunction`), now require `Send + Sync`. All standard Rust functions should meet that requirement. Closures, on the other hand, may not if they capture any `!Send` or `!Sync` variables from its environment.
2024-08-06 01:09:48 +00:00
&mut self,
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
name: impl Into<alloc::borrow::Cow<'static, str>>,
bevy_reflect: Function registry (#14098) # Objective #13152 added support for reflecting functions. Now, we need a way to register those functions such that they may be accessed anywhere within the ECS. ## Solution Added a `FunctionRegistry` type similar to `TypeRegistry`. This allows a function to be registered and retrieved by name. ```rust fn foo() -> i32 { 123 } let mut registry = FunctionRegistry::default(); registry.register("my_function", foo); let function = registry.get_mut("my_function").unwrap(); let value = function.call(ArgList::new()).unwrap().unwrap_owned(); assert_eq!(value.downcast_ref::<i32>(), Some(&123)); ``` Additionally, I added an `AppFunctionRegistry` resource which wraps a `FunctionRegistryArc`. Functions can be registered into this resource using `App::register_function` or by getting a mutable reference to the resource itself. ### Limitations #### `Send + Sync` In order to get this registry to work across threads, it needs to be `Send + Sync`. This means that `DynamicFunction` needs to be `Send + Sync`, which means that its internal function also needs to be `Send + Sync`. In most cases, this won't be an issue because standard Rust functions (the type most likely to be registered) are always `Send + Sync`. Additionally, closures tend to be `Send + Sync` as well, granted they don't capture any `!Send` or `!Sync` variables. This PR adds this `Send + Sync` requirement, but as mentioned above, it hopefully shouldn't be too big of an issue. #### Closures Unfortunately, closures can't be registered yet. This will likely be explored and added in a followup PR. ### Future Work Besides addressing the limitations listed above, another thing we could look into is improving the lookup of registered functions. One aspect is in the performance of hashing strings. The other is in the developer experience of having to call `std::any::type_name_of_val` to get the name of their function (assuming they didn't give it a custom name). ## Testing You can run the tests locally with: ``` cargo test --package bevy_reflect ``` --- ## Changelog - Added `FunctionRegistry` - Added `AppFunctionRegistry` (a `Resource` available from `bevy_ecs`) - Added `FunctionRegistryArc` - Added `FunctionRegistrationError` - Added `reflect_functions` feature to `bevy_ecs` and `bevy_app` - `FunctionInfo` is no longer `Default` - `DynamicFunction` now requires its wrapped function be `Send + Sync` ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. `DynamicFunction` (both those created manually and those created with `IntoFunction`), now require `Send + Sync`. All standard Rust functions should meet that requirement. Closures, on the other hand, may not if they capture any `!Send` or `!Sync` variables from its environment.
2024-08-06 01:09:48 +00:00
function: F,
) -> &mut Self
where
bevy_reflect: Function reflection terminology refactor (#14813) # Objective One of the changes in #14704 made `DynamicFunction` effectively the same as `DynamicClosure<'static>`. This change meant that the de facto function type would likely be `DynamicClosure<'static>` instead of the intended `DynamicFunction`, since the former is much more flexible. We _could_ explore ways of making `DynamicFunction` implement `Copy` using some unsafe code, but it likely wouldn't be worth it. And users would likely still reach for the convenience of `DynamicClosure<'static>` over the copy-ability of `DynamicFunction`. The goal of this PR is to fix this confusion between the two types. ## Solution Firstly, the `DynamicFunction` type was removed. Again, it was no different than `DynamicClosure<'static>` so it wasn't a huge deal to remove. Secondly, `DynamicClosure<'env>` and `DynamicClosureMut<'env>` were renamed to `DynamicFunction<'env>` and `DynamicFunctionMut<'env>`, respectively. Yes, we still ultimately kept the naming of `DynamicFunction`, but changed its behavior to that of `DynamicClosure<'env>`. We need a term to refer to both functions and closures, and "function" was the best option. [Originally](https://discord.com/channels/691052431525675048/1002362493634629796/1274091992162242710), I was going to go with "callable" as the replacement term to encompass both functions and closures (e.g. `DynamciCallable<'env>`). However, it was [suggested](https://discord.com/channels/691052431525675048/1002362493634629796/1274653581777047625) by @SkiFire13 that the simpler "function" term could be used instead. While "callable" is perhaps the better umbrella term—being truly ambiguous over functions and closures— "function" is more familiar, used more often, easier to discover, and is subjectively just "better-sounding". ## Testing Most changes are purely swapping type names or updating documentation, but you can verify everything still works by running the following command: ``` cargo test --package bevy_reflect ```
2024-08-19 21:52:36 +00:00
F: bevy_reflect::func::IntoFunction<'static, Marker> + 'static,
bevy_reflect: Function registry (#14098) # Objective #13152 added support for reflecting functions. Now, we need a way to register those functions such that they may be accessed anywhere within the ECS. ## Solution Added a `FunctionRegistry` type similar to `TypeRegistry`. This allows a function to be registered and retrieved by name. ```rust fn foo() -> i32 { 123 } let mut registry = FunctionRegistry::default(); registry.register("my_function", foo); let function = registry.get_mut("my_function").unwrap(); let value = function.call(ArgList::new()).unwrap().unwrap_owned(); assert_eq!(value.downcast_ref::<i32>(), Some(&123)); ``` Additionally, I added an `AppFunctionRegistry` resource which wraps a `FunctionRegistryArc`. Functions can be registered into this resource using `App::register_function` or by getting a mutable reference to the resource itself. ### Limitations #### `Send + Sync` In order to get this registry to work across threads, it needs to be `Send + Sync`. This means that `DynamicFunction` needs to be `Send + Sync`, which means that its internal function also needs to be `Send + Sync`. In most cases, this won't be an issue because standard Rust functions (the type most likely to be registered) are always `Send + Sync`. Additionally, closures tend to be `Send + Sync` as well, granted they don't capture any `!Send` or `!Sync` variables. This PR adds this `Send + Sync` requirement, but as mentioned above, it hopefully shouldn't be too big of an issue. #### Closures Unfortunately, closures can't be registered yet. This will likely be explored and added in a followup PR. ### Future Work Besides addressing the limitations listed above, another thing we could look into is improving the lookup of registered functions. One aspect is in the performance of hashing strings. The other is in the developer experience of having to call `std::any::type_name_of_val` to get the name of their function (assuming they didn't give it a custom name). ## Testing You can run the tests locally with: ``` cargo test --package bevy_reflect ``` --- ## Changelog - Added `FunctionRegistry` - Added `AppFunctionRegistry` (a `Resource` available from `bevy_ecs`) - Added `FunctionRegistryArc` - Added `FunctionRegistrationError` - Added `reflect_functions` feature to `bevy_ecs` and `bevy_app` - `FunctionInfo` is no longer `Default` - `DynamicFunction` now requires its wrapped function be `Send + Sync` ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. `DynamicFunction` (both those created manually and those created with `IntoFunction`), now require `Send + Sync`. All standard Rust functions should meet that requirement. Closures, on the other hand, may not if they capture any `!Send` or `!Sync` variables from its environment.
2024-08-06 01:09:48 +00:00
{
let registry = self.world.resource_mut::<AppFunctionRegistry>();
bevy_reflect: Anonymous function parsing (#14641) # Objective ### TL;DR #14098 added the `FunctionRegistry` but had some last minute complications due to anonymous functions. It ended up going with a "required name" approach to ensure anonymous functions would always have a name. However, this approach isn't ideal for named functions since, by definition, they will always have a name. Therefore, this PR aims to modify function reflection such that we can make function registration easier for named functions, while still allowing anonymous functions to be registered as well. ### Context Function registration (#14098) ran into a little problem: anonymous functions. Anonymous functions, including function pointers, have very non-unique type names. For example, the anonymous function `|a: i32, b: i32| a + b` has the type name of `fn(i32, i32) -> i32`. This obviously means we'd conflict with another function like `|a: i32, b: i32| a - b`. The solution that #14098 landed on was to always require a name during function registration. The downside with this is that named functions (e.g. `fn add(a: i32, b: i32) -> i32 { a + b }`) had to redundantly provide a name. Additionally, manually constructed `DynamicFunction`s also ran into this ergonomics issue. I don't entirely know how the function registry will be used, but I have a strong suspicion that most of its registrations will either be named functions or manually constructed `DynamicFunction`s, with anonymous functions only being used here and there for quick prototyping or adding small functionality. Why then should the API prioritize the anonymous function use case by always requiring a name during registration? #### Telling Functions Apart Rust doesn't provide a lot of out-of-the-box tools for reflecting functions. One of the biggest hurdles in attempting to solve the problem outlined above would be to somehow tell the different kinds of functions apart. Let's briefly recap on the categories of functions in Rust: | Category | Example | | ------------------ | ----------------------------------------- | | Named function | `fn add(a: i32, b: i32) -> i32 { a + b }` | | Closure | `\|a: i32\| a + captured_variable` | | Anonymous function | `\|a: i32, b: i32\| a + b` | | Function pointer | `fn(i32, i32) -> i32` | My first thought was to try and differentiate these categories based on their size. However, we can see that this doesn't quite work: | Category | `size_of` | | ------------------ | --------- | | Named function | 0 | | Closure | 0+ | | Anonymous function | 0 | | Function pointer | 8 | Not only does this not tell anonymous functions from named ones, but it struggles with pretty much all of them. My second then was to differentiate based on type name: | Category | `type_name` | | ------------------ | ----------------------- | | Named function | `foo::bar::baz` | | Closure | `foo::bar::{{closure}}` | | Anonymous function | `fn() -> String` | | Function pointer | `fn() -> String` | This is much better. While it can't distinguish between function pointers and anonymous functions, this doesn't matter too much since we only care about whether we can _name_ the function. So why didn't we implement this in #14098? #### Relying on `type_name` While this solution was known about while working on #14098, it was left out from that PR due to it being potentially controversial. The [docs](https://doc.rust-lang.org/stable/std/any/fn.type_name.html) for `std::any::type_name` state: > The returned string must not be considered to be a unique identifier of a type as multiple types may map to the same type name. Similarly, there is no guarantee that all parts of a type will appear in the returned string: for example, lifetime specifiers are currently not included. In addition, the output may change between versions of the compiler. So that's it then? We can't use `type_name`? Well, this statement isn't so much a rule as it is a guideline. And Bevy is no stranger to bending the rules to make things work or to improve ergonomics. Remember that before `TypePath`, Bevy's scene system was entirely dependent on `type_name`. Not to mention that `type_name` is being used as a key into both the `TypeRegistry` and the `FunctionRegistry`. Bevy's practices aside, can we reliably use `type_name` for this? My answer would be "yes". Anonymous functions are anonymous. They have no name. There's nothing Rust could do to give them a name apart from generating a random string of characters. But remember that this is a diagnostic tool, it doesn't make sense to obfuscate the type by randomizing the output. So changing it to be anything other than what it is now is very unlikely. The only changes that I could potentially see happening are: 1. Closures replace `{{closure}}` with the name of their variable 2. Lifetimes are included in the output I don't think the first is likely to happen, but if it does then it actually works out in our favor: closures are now named! The second point is probably the likeliest. However, adding lifetimes doesn't mean we can't still rely on `type_name` to determine whether or not a function is named. So we should be okay in this case as well. ## Solution Parse the `type_name` of the function in the `TypedFunction` impl to determine if the function is named or anonymous. This once again makes `FunctionInfo::name` optional. For manual constructions of `DynamicFunction`, `FunctionInfo::named` or ``FunctionInfo::anonymous` can be used. The `FunctionRegistry` API has also been reworked to account for this change. `FunctionRegistry::register` no longer takes a name and instead takes it from the supplied function, returning a `FunctionRegistrationError::MissingName` error if the name is `None`. This also doubles as a replacement for the old `FunctionRegistry::register_dynamic` method, which has been removed. To handle anonymous functions, a `FunctionRegistry::register_with_name` method has been added. This works in the same way `FunctionRegistry::register` used to work before this PR. The overwriting methods have been updated in a similar manner, with modifications to `FunctionRegistry::overwrite_registration`, the removal of `FunctionRegistry::overwrite_registration_dynamic`, and the addition of `FunctionRegistry::overwrite_registration_with_name`. This PR also updates the methods on `App` in a similar way: `App::register_function` no longer requires a name argument and `App::register_function_with_name` has been added to handle anonymous functions (and eventually closures). ## Testing You can run the tests locally by running: ``` cargo test --package bevy_reflect --features functions ``` --- ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. > [!note] > This list is not exhaustive. It only contains some of the most important changes. `FunctionRegistry::register` no longer requires a name string for named functions. Anonymous functions, however, need to be registered using `FunctionRegistry::register_with_name`. ```rust // BEFORE registry .register(std::any::type_name_of_val(&foo), foo)? .register("bar", || println!("Hello world!")); // AFTER registry .register(foo)? .register_with_name("bar", || println!("Hello world!")); ``` `FunctionInfo::name` is now optional. Anonymous functions and closures will now have their name set to `None` by default. Additionally, `FunctionInfo::new` has been renamed to `FunctionInfo::named`.
2024-08-07 03:11:08 +00:00
registry.write().register_with_name(name, function).unwrap();
bevy_reflect: Function registry (#14098) # Objective #13152 added support for reflecting functions. Now, we need a way to register those functions such that they may be accessed anywhere within the ECS. ## Solution Added a `FunctionRegistry` type similar to `TypeRegistry`. This allows a function to be registered and retrieved by name. ```rust fn foo() -> i32 { 123 } let mut registry = FunctionRegistry::default(); registry.register("my_function", foo); let function = registry.get_mut("my_function").unwrap(); let value = function.call(ArgList::new()).unwrap().unwrap_owned(); assert_eq!(value.downcast_ref::<i32>(), Some(&123)); ``` Additionally, I added an `AppFunctionRegistry` resource which wraps a `FunctionRegistryArc`. Functions can be registered into this resource using `App::register_function` or by getting a mutable reference to the resource itself. ### Limitations #### `Send + Sync` In order to get this registry to work across threads, it needs to be `Send + Sync`. This means that `DynamicFunction` needs to be `Send + Sync`, which means that its internal function also needs to be `Send + Sync`. In most cases, this won't be an issue because standard Rust functions (the type most likely to be registered) are always `Send + Sync`. Additionally, closures tend to be `Send + Sync` as well, granted they don't capture any `!Send` or `!Sync` variables. This PR adds this `Send + Sync` requirement, but as mentioned above, it hopefully shouldn't be too big of an issue. #### Closures Unfortunately, closures can't be registered yet. This will likely be explored and added in a followup PR. ### Future Work Besides addressing the limitations listed above, another thing we could look into is improving the lookup of registered functions. One aspect is in the performance of hashing strings. The other is in the developer experience of having to call `std::any::type_name_of_val` to get the name of their function (assuming they didn't give it a custom name). ## Testing You can run the tests locally with: ``` cargo test --package bevy_reflect ``` --- ## Changelog - Added `FunctionRegistry` - Added `AppFunctionRegistry` (a `Resource` available from `bevy_ecs`) - Added `FunctionRegistryArc` - Added `FunctionRegistrationError` - Added `reflect_functions` feature to `bevy_ecs` and `bevy_app` - `FunctionInfo` is no longer `Default` - `DynamicFunction` now requires its wrapped function be `Send + Sync` ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. `DynamicFunction` (both those created manually and those created with `IntoFunction`), now require `Send + Sync`. All standard Rust functions should meet that requirement. Closures, on the other hand, may not if they capture any `!Send` or `!Sync` variables from its environment.
2024-08-06 01:09:48 +00:00
self
}
}
/// The collection of sub-apps that belong to an [`App`].
#[derive(Default)]
pub struct SubApps {
/// The primary sub-app that contains the "main" world.
pub main: SubApp,
/// Other, labeled sub-apps.
pub sub_apps: HashMap<InternedAppLabel, SubApp>,
}
impl SubApps {
/// Calls [`update`](SubApp::update) for the main sub-app, and then calls
/// [`extract`](SubApp::extract) and [`update`](SubApp::update) for the rest.
pub fn update(&mut self) {
#[cfg(feature = "trace")]
let _bevy_update_span = info_span!("update").entered();
{
#[cfg(feature = "trace")]
let _bevy_frame_update_span = info_span!("main app").entered();
2024-06-10 18:06:05 +00:00
self.main.run_default_schedule();
}
for (_label, sub_app) in self.sub_apps.iter_mut() {
#[cfg(feature = "trace")]
let _sub_app_span = info_span!("sub app", name = ?_label).entered();
sub_app.extract(&mut self.main.world);
sub_app.update();
}
self.main.world.clear_trackers();
}
/// Returns an iterator over the sub-apps (starting with the main one).
pub fn iter(&self) -> impl Iterator<Item = &SubApp> + '_ {
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
core::iter::once(&self.main).chain(self.sub_apps.values())
}
/// Returns a mutable iterator over the sub-apps (starting with the main one).
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut SubApp> + '_ {
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
core::iter::once(&mut self.main).chain(self.sub_apps.values_mut())
}
/// Extract data from the main world into the [`SubApp`] with the given label and perform an update if it exists.
pub fn update_subapp_by_label(&mut self, label: impl AppLabel) {
if let Some(sub_app) = self.sub_apps.get_mut(&label.intern()) {
sub_app.extract(&mut self.main.world);
sub_app.update();
}
}
}