2023-06-18 23:43:10 +00:00
//! Definitions for [`Component`] reflection.
//!
//! This module exports two types: [`ReflectComponentFns`] and [`ReflectComponent`].
//!
//! # Architecture
//!
//! [`ReflectComponent`] wraps a [`ReflectComponentFns`]. In fact, each method on
//! [`ReflectComponent`] wraps a call to a function pointer field in `ReflectComponentFns`.
//!
//! ## Who creates `ReflectComponent`s?
//!
//! When a user adds the `#[reflect(Component)]` attribute to their `#[derive(Reflect)]`
//! type, it tells the derive macro for `Reflect` to add the following single line to its
//! [`get_type_registration`] method (see the relevant code[^1]).
//!
//! ```ignore
//! registration.insert::<ReflectComponent>(FromType::<Self>::from_type());
//! ```
//!
//! This line adds a `ReflectComponent` to the registration data for the type in question.
//! The user can access the `ReflectComponent` for type `T` through the type registry,
//! as per the `trait_reflection.rs` example.
//!
//! The `FromType::<Self>::from_type()` in the previous line calls the `FromType<C>`
//! implementation of `ReflectComponent`.
//!
//! The `FromType<C>` impl creates a function per field of [`ReflectComponentFns`].
//! In those functions, we call generic methods on [`World`] and [`EntityMut`].
//!
//! The result is a `ReflectComponent` completely independent of `C`, yet capable
//! of using generic ECS methods such as `entity.get::<C>()` to get `&dyn Reflect`
//! with underlying type `C`, without the `C` appearing in the type signature.
//!
//! ## A note on code generation
//!
//! A downside of this approach is that monomorphized code (ie: concrete code
//! for generics) is generated **unconditionally**, regardless of whether it ends
//! up used or not.
//!
//! Adding `N` fields on `ReflectComponentFns` will generate `N × M` additional
//! functions, where `M` is how many types derive `#[reflect(Component)]`.
//!
//! Those functions will increase the size of the final app binary.
//!
//! [^1]: `crates/bevy_reflect/bevy_reflect_derive/src/registration.rs`
//!
//! [`get_type_registration`]: bevy_reflect::GetTypeRegistration::get_type_registration
use crate ::{
change_detection ::Mut ,
component ::Component ,
entity ::Entity ,
world ::{ unsafe_world_cell ::UnsafeEntityCell , EntityMut , EntityRef , FromWorld , World } ,
} ;
use bevy_reflect ::{ FromType , Reflect } ;
/// A struct used to operate on reflected [`Component`] of a type.
///
/// A [`ReflectComponent`] for type `T` can be obtained via
/// [`bevy_reflect::TypeRegistration::data`].
#[ derive(Clone) ]
pub struct ReflectComponent ( ReflectComponentFns ) ;
/// The raw function pointers needed to make up a [`ReflectComponent`].
///
/// This is used when creating custom implementations of [`ReflectComponent`] with
/// [`ReflectComponent::new()`].
///
/// > **Note:**
/// > Creating custom implementations of [`ReflectComponent`] is an advanced feature that most users
/// > will not need.
/// > Usually a [`ReflectComponent`] is created for a type by deriving [`Reflect`]
/// > and adding the `#[reflect(Component)]` attribute.
/// > After adding the component to the [`TypeRegistry`][bevy_reflect::TypeRegistry],
/// > its [`ReflectComponent`] can then be retrieved when needed.
///
/// Creating a custom [`ReflectComponent`] may be useful if you need to create new component types
/// at runtime, for example, for scripting implementations.
///
/// By creating a custom [`ReflectComponent`] and inserting it into a type's
/// [`TypeRegistration`][bevy_reflect::TypeRegistration],
/// you can modify the way that reflected components of that type will be inserted into the Bevy
/// world.
#[ derive(Clone) ]
pub struct ReflectComponentFns {
/// Function pointer implementing [`ReflectComponent::from_world()`].
pub from_world : fn ( & mut World ) -> Box < dyn Reflect > ,
/// Function pointer implementing [`ReflectComponent::insert()`].
pub insert : fn ( & mut EntityMut , & dyn Reflect ) ,
/// Function pointer implementing [`ReflectComponent::apply()`].
pub apply : fn ( & mut EntityMut , & dyn Reflect ) ,
/// Function pointer implementing [`ReflectComponent::apply_or_insert()`].
pub apply_or_insert : fn ( & mut EntityMut , & dyn Reflect ) ,
/// Function pointer implementing [`ReflectComponent::remove()`].
pub remove : fn ( & mut EntityMut ) ,
/// Function pointer implementing [`ReflectComponent::contains()`].
pub contains : fn ( EntityRef ) -> bool ,
/// Function pointer implementing [`ReflectComponent::reflect()`].
pub reflect : fn ( EntityRef ) -> Option < & dyn Reflect > ,
/// Function pointer implementing [`ReflectComponent::reflect_mut()`].
pub reflect_mut : for < ' a > fn ( & ' a mut EntityMut < '_ > ) -> Option < Mut < ' a , dyn Reflect > > ,
/// Function pointer implementing [`ReflectComponent::reflect_unchecked_mut()`].
///
/// # Safety
/// The function may only be called with an [`UnsafeEntityCell`] that can be used to mutably access the relevant component on the given entity.
pub reflect_unchecked_mut : unsafe fn ( UnsafeEntityCell < '_ > ) -> Option < Mut < '_ , dyn Reflect > > ,
/// Function pointer implementing [`ReflectComponent::copy()`].
pub copy : fn ( & World , & mut World , Entity , Entity ) ,
}
impl ReflectComponentFns {
/// Get the default set of [`ReflectComponentFns`] for a specific component type using its
/// [`FromType`] implementation.
///
/// This is useful if you want to start with the default implementation before overriding some
/// of the functions to create a custom implementation.
pub fn new < T : Component + Reflect + FromWorld > ( ) -> Self {
< ReflectComponent as FromType < T > > ::from_type ( ) . 0
}
}
impl ReflectComponent {
/// Constructs default reflected [`Component`] from world using [`from_world()`](FromWorld::from_world).
pub fn from_world ( & self , world : & mut World ) -> Box < dyn Reflect > {
( self . 0. from_world ) ( world )
}
/// Insert a reflected [`Component`] into the entity like [`insert()`](crate::world::EntityMut::insert).
pub fn insert ( & self , entity : & mut EntityMut , component : & dyn Reflect ) {
( self . 0. insert ) ( entity , component ) ;
}
/// Uses reflection to set the value of this [`Component`] type in the entity to the given value.
///
/// # Panics
///
/// Panics if there is no [`Component`] of the given type.
pub fn apply ( & self , entity : & mut EntityMut , component : & dyn Reflect ) {
( self . 0. apply ) ( entity , component ) ;
}
/// Uses reflection to set the value of this [`Component`] type in the entity to the given value or insert a new one if it does not exist.
pub fn apply_or_insert ( & self , entity : & mut EntityMut , component : & dyn Reflect ) {
( self . 0. apply_or_insert ) ( entity , component ) ;
}
/// Removes this [`Component`] type from the entity. Does nothing if it doesn't exist.
pub fn remove ( & self , entity : & mut EntityMut ) {
( self . 0. remove ) ( entity ) ;
}
/// Returns whether entity contains this [`Component`]
pub fn contains ( & self , entity : EntityRef ) -> bool {
( self . 0. contains ) ( entity )
}
/// Gets the value of this [`Component`] type from the entity as a reflected reference.
pub fn reflect < ' a > ( & self , entity : EntityRef < ' a > ) -> Option < & ' a dyn Reflect > {
( self . 0. reflect ) ( entity )
}
/// Gets the value of this [`Component`] type from the entity as a mutable reflected reference.
pub fn reflect_mut < ' a > ( & self , entity : & ' a mut EntityMut < '_ > ) -> Option < Mut < ' a , dyn Reflect > > {
( self . 0. reflect_mut ) ( entity )
}
/// # Safety
/// This method does not prevent you from having two mutable pointers to the same data,
/// violating Rust's aliasing rules. To avoid this:
/// * Only call this method with a [`UnsafeEntityCell`] that may be used to mutably access the component on the entity `entity`
/// * Don't call this method more than once in the same scope for a given [`Component`].
pub unsafe fn reflect_unchecked_mut < ' a > (
& self ,
entity : UnsafeEntityCell < ' a > ,
) -> Option < Mut < ' a , dyn Reflect > > {
// SAFETY: safety requirements deferred to caller
( self . 0. reflect_unchecked_mut ) ( entity )
}
/// Gets the value of this [`Component`] type from entity from `source_world` and [applies](Self::apply()) it to the value of this [`Component`] type in entity in `destination_world`.
///
/// # Panics
///
/// Panics if there is no [`Component`] of the given type or either entity does not exist.
pub fn copy (
& self ,
source_world : & World ,
destination_world : & mut World ,
source_entity : Entity ,
destination_entity : Entity ,
) {
( self . 0. copy ) (
source_world ,
destination_world ,
source_entity ,
destination_entity ,
) ;
}
/// Create a custom implementation of [`ReflectComponent`].
///
/// This is an advanced feature,
/// useful for scripting implementations,
/// that should not be used by most users
/// unless you know what you are doing.
///
/// Usually you should derive [`Reflect`] and add the `#[reflect(Component)]` component
/// to generate a [`ReflectComponent`] implementation automatically.
///
/// See [`ReflectComponentFns`] for more information.
pub fn new ( fns : ReflectComponentFns ) -> Self {
Self ( fns )
}
2023-06-19 14:06:58 +00:00
/// The underlying function pointers implementing methods on `ReflectComponent`.
///
/// This is useful when you want to keep track locally of an individual
/// function pointer.
///
/// Calling [`TypeRegistry::get`] followed by
/// [`TypeRegistration::data::<ReflectComponent>`] can be costly if done several
/// times per frame. Consider cloning [`ReflectComponent`] and keeping it
/// between frames, cloning a `ReflectComponent` is very cheap.
///
/// If you only need a subset of the methods on `ReflectComponent`,
/// use `fn_pointers` to get the underlying [`ReflectComponentFns`]
/// and copy the subset of function pointers you care about.
///
/// [`TypeRegistration::data::<ReflectComponent>`]: bevy_reflect::TypeRegistration::data
/// [`TypeRegistry::get`]: bevy_reflect::TypeRegistry::get
pub fn fn_pointers ( & self ) -> & ReflectComponentFns {
& self . 0
}
2023-06-18 23:43:10 +00:00
}
impl < C : Component + Reflect + FromWorld > FromType < C > for ReflectComponent {
fn from_type ( ) -> Self {
ReflectComponent ( ReflectComponentFns {
from_world : | world | Box ::new ( C ::from_world ( world ) ) ,
insert : | entity , reflected_component | {
let mut component = entity . world_scope ( | world | C ::from_world ( world ) ) ;
component . apply ( reflected_component ) ;
entity . insert ( component ) ;
} ,
apply : | entity , reflected_component | {
let mut component = entity . get_mut ::< C > ( ) . unwrap ( ) ;
component . apply ( reflected_component ) ;
} ,
apply_or_insert : | entity , reflected_component | {
if let Some ( mut component ) = entity . get_mut ::< C > ( ) {
component . apply ( reflected_component ) ;
} else {
let mut component = entity . world_scope ( | world | C ::from_world ( world ) ) ;
component . apply ( reflected_component ) ;
entity . insert ( component ) ;
}
} ,
remove : | entity | {
entity . remove ::< C > ( ) ;
} ,
contains : | entity | entity . contains ::< C > ( ) ,
copy : | source_world , destination_world , source_entity , destination_entity | {
let source_component = source_world . get ::< C > ( source_entity ) . unwrap ( ) ;
let mut destination_component = C ::from_world ( destination_world ) ;
destination_component . apply ( source_component ) ;
destination_world
. entity_mut ( destination_entity )
. insert ( destination_component ) ;
} ,
reflect : | entity | entity . get ::< C > ( ) . map ( | c | c as & dyn Reflect ) ,
reflect_mut : | entity | {
entity . get_mut ::< C > ( ) . map ( | c | Mut {
value : c . value as & mut dyn Reflect ,
ticks : c . ticks ,
} )
} ,
reflect_unchecked_mut : | entity | {
// SAFETY: reflect_unchecked_mut is an unsafe function pointer used by
// `reflect_unchecked_mut` which must be called with an UnsafeEntityCell with access to the the component `C` on the `entity`
unsafe {
entity . get_mut ::< C > ( ) . map ( | c | Mut {
value : c . value as & mut dyn Reflect ,
ticks : c . ticks ,
} )
}
} ,
} )
}
}