bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
|
|
|
use crate::utility::NonGenericTypeInfoCell;
|
|
|
|
use crate::{DynamicInfo, Reflect, ReflectMut, ReflectRef, TypeInfo, Typed, UnnamedField};
|
|
|
|
use std::any::{Any, TypeId};
|
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
|
|
|
use std::fmt::{Debug, Formatter};
|
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
|
|
|
use std::slice::Iter;
|
2020-11-28 00:39:59 +00:00
|
|
|
|
2022-01-08 20:45:24 +00:00
|
|
|
/// A reflected Rust tuple struct.
|
|
|
|
///
|
|
|
|
/// Implementors of this trait allow their tuple fields to be addressed by
|
|
|
|
/// index.
|
|
|
|
///
|
|
|
|
/// This trait is automatically implemented for tuple struct types when using
|
|
|
|
/// `#[derive(Reflect)]`.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use bevy_reflect::{Reflect, TupleStruct};
|
|
|
|
///
|
|
|
|
/// #[derive(Reflect)]
|
|
|
|
/// struct Foo(String);
|
|
|
|
///
|
|
|
|
/// # fn main() {
|
|
|
|
/// let foo = Foo("Hello, world!".to_string());
|
|
|
|
///
|
|
|
|
/// assert_eq!(foo.field_len(), 1);
|
|
|
|
///
|
|
|
|
/// let first = foo.field(0).unwrap();
|
|
|
|
/// assert_eq!(first.downcast_ref::<String>(), Some(&"Hello, world!".to_string()));
|
|
|
|
/// # }
|
|
|
|
/// ```
|
2020-11-28 00:39:59 +00:00
|
|
|
pub trait TupleStruct: Reflect {
|
2022-01-08 20:45:24 +00:00
|
|
|
/// Returns a reference to the value of the field with index `index` as a
|
|
|
|
/// `&dyn Reflect`.
|
2020-11-28 00:39:59 +00:00
|
|
|
fn field(&self, index: usize) -> Option<&dyn Reflect>;
|
2022-01-08 20:45:24 +00:00
|
|
|
|
|
|
|
/// Returns a mutable reference to the value of the field with index `index`
|
|
|
|
/// as a `&mut dyn Reflect`.
|
2020-11-28 00:39:59 +00:00
|
|
|
fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect>;
|
2022-01-08 20:45:24 +00:00
|
|
|
|
|
|
|
/// Returns the number of fields in the tuple struct.
|
2020-11-28 00:39:59 +00:00
|
|
|
fn field_len(&self) -> usize;
|
2022-01-08 20:45:24 +00:00
|
|
|
|
|
|
|
/// Returns an iterator over the values of the tuple struct's fields.
|
2020-11-28 00:39:59 +00:00
|
|
|
fn iter_fields(&self) -> TupleStructFieldIter;
|
2022-01-08 20:45:24 +00:00
|
|
|
|
|
|
|
/// Clones the struct into a [`DynamicTupleStruct`].
|
2020-11-28 00:39:59 +00:00
|
|
|
fn clone_dynamic(&self) -> DynamicTupleStruct;
|
|
|
|
}
|
|
|
|
|
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
|
|
|
/// A container for compile-time tuple struct info.
|
|
|
|
#[derive(Clone, Debug)]
|
|
|
|
pub struct TupleStructInfo {
|
|
|
|
type_name: &'static str,
|
|
|
|
type_id: TypeId,
|
|
|
|
fields: Box<[UnnamedField]>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl TupleStructInfo {
|
|
|
|
/// Create a new [`TupleStructInfo`].
|
|
|
|
///
|
|
|
|
/// # Arguments
|
|
|
|
///
|
|
|
|
/// * `fields`: The fields of this struct in the order they are defined
|
|
|
|
///
|
|
|
|
pub fn new<T: Reflect>(fields: &[UnnamedField]) -> Self {
|
|
|
|
Self {
|
|
|
|
type_name: std::any::type_name::<T>(),
|
|
|
|
type_id: TypeId::of::<T>(),
|
|
|
|
fields: fields.to_vec().into_boxed_slice(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Get the field at the given index.
|
|
|
|
pub fn field_at(&self, index: usize) -> Option<&UnnamedField> {
|
|
|
|
self.fields.get(index)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Iterate over the fields of this struct.
|
|
|
|
pub fn iter(&self) -> Iter<'_, UnnamedField> {
|
|
|
|
self.fields.iter()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The total number of fields in this struct.
|
|
|
|
pub fn field_len(&self) -> usize {
|
|
|
|
self.fields.len()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The [type name] of the tuple struct.
|
|
|
|
///
|
|
|
|
/// [type name]: std::any::type_name
|
|
|
|
pub fn type_name(&self) -> &'static str {
|
|
|
|
self.type_name
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The [`TypeId`] of the tuple struct.
|
|
|
|
pub fn type_id(&self) -> TypeId {
|
|
|
|
self.type_id
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Check if the given type matches the tuple struct type.
|
|
|
|
pub fn is<T: Any>(&self) -> bool {
|
|
|
|
TypeId::of::<T>() == self.type_id
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-01-08 20:45:24 +00:00
|
|
|
/// An iterator over the field values of a tuple struct.
|
2020-11-28 00:39:59 +00:00
|
|
|
pub struct TupleStructFieldIter<'a> {
|
|
|
|
pub(crate) tuple_struct: &'a dyn TupleStruct,
|
|
|
|
pub(crate) index: usize,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a> TupleStructFieldIter<'a> {
|
|
|
|
pub fn new(value: &'a dyn TupleStruct) -> Self {
|
|
|
|
TupleStructFieldIter {
|
|
|
|
tuple_struct: value,
|
|
|
|
index: 0,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a> Iterator for TupleStructFieldIter<'a> {
|
|
|
|
type Item = &'a dyn Reflect;
|
|
|
|
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
|
|
let value = self.tuple_struct.field(self.index);
|
|
|
|
self.index += 1;
|
|
|
|
value
|
|
|
|
}
|
2021-04-13 01:28:14 +00:00
|
|
|
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
|
|
let size = self.tuple_struct.field_len();
|
|
|
|
(size, Some(size))
|
|
|
|
}
|
2020-11-28 00:39:59 +00:00
|
|
|
}
|
|
|
|
|
2021-04-13 01:28:14 +00:00
|
|
|
impl<'a> ExactSizeIterator for TupleStructFieldIter<'a> {}
|
|
|
|
|
2022-01-08 20:45:24 +00:00
|
|
|
/// A convenience trait which combines fetching and downcasting of tuple
|
|
|
|
/// struct fields.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use bevy_reflect::{GetTupleStructField, Reflect};
|
|
|
|
///
|
|
|
|
/// #[derive(Reflect)]
|
|
|
|
/// struct Foo(String);
|
|
|
|
///
|
|
|
|
/// # fn main() {
|
|
|
|
/// let mut foo = Foo("Hello, world!".to_string());
|
|
|
|
///
|
|
|
|
/// foo.get_field_mut::<String>(0).unwrap().truncate(5);
|
|
|
|
/// assert_eq!(foo.get_field::<String>(0), Some(&"Hello".to_string()));
|
|
|
|
/// # }
|
|
|
|
/// ```
|
2020-11-28 00:39:59 +00:00
|
|
|
pub trait GetTupleStructField {
|
2022-01-08 20:45:24 +00:00
|
|
|
/// Returns a reference to the value of the field with index `index`,
|
|
|
|
/// downcast to `T`.
|
2020-11-28 00:39:59 +00:00
|
|
|
fn get_field<T: Reflect>(&self, index: usize) -> Option<&T>;
|
2022-01-08 20:45:24 +00:00
|
|
|
|
|
|
|
/// Returns a mutable reference to the value of the field with index
|
|
|
|
/// `index`, downcast to `T`.
|
2020-11-28 00:39:59 +00:00
|
|
|
fn get_field_mut<T: Reflect>(&mut self, index: usize) -> Option<&mut T>;
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<S: TupleStruct> GetTupleStructField for S {
|
|
|
|
fn get_field<T: Reflect>(&self, index: usize) -> Option<&T> {
|
|
|
|
self.field(index)
|
|
|
|
.and_then(|value| value.downcast_ref::<T>())
|
|
|
|
}
|
|
|
|
|
|
|
|
fn get_field_mut<T: Reflect>(&mut self, index: usize) -> Option<&mut T> {
|
|
|
|
self.field_mut(index)
|
|
|
|
.and_then(|value| value.downcast_mut::<T>())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl GetTupleStructField for dyn TupleStruct {
|
|
|
|
fn get_field<T: Reflect>(&self, index: usize) -> Option<&T> {
|
|
|
|
self.field(index)
|
|
|
|
.and_then(|value| value.downcast_ref::<T>())
|
|
|
|
}
|
|
|
|
|
|
|
|
fn get_field_mut<T: Reflect>(&mut self, index: usize) -> Option<&mut T> {
|
|
|
|
self.field_mut(index)
|
|
|
|
.and_then(|value| value.downcast_mut::<T>())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-01-08 20:45:24 +00:00
|
|
|
/// A tuple struct which allows fields to be added at runtime.
|
2020-11-28 00:39:59 +00:00
|
|
|
#[derive(Default)]
|
|
|
|
pub struct DynamicTupleStruct {
|
|
|
|
name: String,
|
|
|
|
fields: Vec<Box<dyn Reflect>>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl DynamicTupleStruct {
|
2022-01-14 19:09:44 +00:00
|
|
|
/// Returns the type name of the tuple struct.
|
2020-11-28 00:39:59 +00:00
|
|
|
pub fn name(&self) -> &str {
|
|
|
|
&self.name
|
|
|
|
}
|
|
|
|
|
2022-01-14 19:09:44 +00:00
|
|
|
/// Sets the type name of the tuple struct.
|
2020-11-28 00:39:59 +00:00
|
|
|
pub fn set_name(&mut self, name: String) {
|
|
|
|
self.name = name;
|
|
|
|
}
|
|
|
|
|
2022-01-08 20:45:24 +00:00
|
|
|
/// Appends an element with value `value` to the tuple struct.
|
2020-11-28 00:39:59 +00:00
|
|
|
pub fn insert_boxed(&mut self, value: Box<dyn Reflect>) {
|
|
|
|
self.fields.push(value);
|
|
|
|
}
|
|
|
|
|
2022-01-08 20:45:24 +00:00
|
|
|
/// Appends a typed element with value `value` to the tuple struct.
|
2020-11-28 00:39:59 +00:00
|
|
|
pub fn insert<T: Reflect>(&mut self, value: T) {
|
|
|
|
self.insert_boxed(Box::new(value));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl TupleStruct for DynamicTupleStruct {
|
|
|
|
#[inline]
|
|
|
|
fn field(&self, index: usize) -> Option<&dyn Reflect> {
|
|
|
|
self.fields.get(index).map(|field| &**field)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> {
|
|
|
|
self.fields.get_mut(index).map(|field| &mut **field)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn field_len(&self) -> usize {
|
|
|
|
self.fields.len()
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn iter_fields(&self) -> TupleStructFieldIter {
|
|
|
|
TupleStructFieldIter {
|
|
|
|
tuple_struct: self,
|
|
|
|
index: 0,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn clone_dynamic(&self) -> DynamicTupleStruct {
|
|
|
|
DynamicTupleStruct {
|
|
|
|
name: self.name.clone(),
|
|
|
|
fields: self
|
|
|
|
.fields
|
|
|
|
.iter()
|
|
|
|
.map(|value| value.clone_value())
|
|
|
|
.collect(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-17 22:46:46 +00:00
|
|
|
// SAFE: any and any_mut both return self
|
|
|
|
unsafe impl Reflect for DynamicTupleStruct {
|
2020-11-28 00:39:59 +00:00
|
|
|
#[inline]
|
|
|
|
fn type_name(&self) -> &str {
|
2021-02-02 21:57:26 +00:00
|
|
|
self.name.as_str()
|
2020-11-28 00:39:59 +00:00
|
|
|
}
|
|
|
|
|
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
|
|
|
#[inline]
|
|
|
|
fn get_type_info(&self) -> &'static TypeInfo {
|
|
|
|
<Self as Typed>::type_info()
|
|
|
|
}
|
|
|
|
|
2020-11-28 00:39:59 +00:00
|
|
|
#[inline]
|
|
|
|
fn any(&self) -> &dyn Any {
|
|
|
|
self
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn any_mut(&mut self) -> &mut dyn Any {
|
|
|
|
self
|
|
|
|
}
|
|
|
|
|
2022-04-25 13:54:48 +00:00
|
|
|
#[inline]
|
|
|
|
fn as_reflect(&self) -> &dyn Reflect {
|
|
|
|
self
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn as_reflect_mut(&mut self) -> &mut dyn Reflect {
|
|
|
|
self
|
|
|
|
}
|
|
|
|
|
2020-11-28 00:39:59 +00:00
|
|
|
#[inline]
|
|
|
|
fn clone_value(&self) -> Box<dyn Reflect> {
|
|
|
|
Box::new(self.clone_dynamic())
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn reflect_ref(&self) -> ReflectRef {
|
|
|
|
ReflectRef::TupleStruct(self)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn reflect_mut(&mut self) -> ReflectMut {
|
|
|
|
ReflectMut::TupleStruct(self)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn apply(&mut self, value: &dyn Reflect) {
|
|
|
|
if let ReflectRef::TupleStruct(tuple_struct) = value.reflect_ref() {
|
|
|
|
for (i, value) in tuple_struct.iter_fields().enumerate() {
|
|
|
|
if let Some(v) = self.field_mut(i) {
|
2022-02-13 22:33:55 +00:00
|
|
|
v.apply(value);
|
2020-11-28 00:39:59 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
2020-12-02 19:31:16 +00:00
|
|
|
panic!("Attempted to apply non-TupleStruct type to TupleStruct type.");
|
2020-11-28 00:39:59 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> {
|
|
|
|
*self = value.take()?;
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
2020-12-01 19:15:07 +00:00
|
|
|
fn reflect_partial_eq(&self, value: &dyn Reflect) -> Option<bool> {
|
2020-11-28 00:39:59 +00:00
|
|
|
tuple_struct_partial_eq(self, value)
|
|
|
|
}
|
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
|
|
|
|
|
|
|
fn debug(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
|
|
|
write!(f, "DynamicTupleStruct(")?;
|
|
|
|
tuple_struct_debug(self, f)?;
|
|
|
|
write!(f, ")")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Debug for DynamicTupleStruct {
|
|
|
|
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
|
|
|
self.debug(f)
|
|
|
|
}
|
2020-11-28 00:39:59 +00:00
|
|
|
}
|
|
|
|
|
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
|
|
|
impl Typed for DynamicTupleStruct {
|
|
|
|
fn type_info() -> &'static TypeInfo {
|
|
|
|
static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
|
|
|
|
CELL.get_or_set(|| TypeInfo::Dynamic(DynamicInfo::new::<Self>()))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-01-14 19:09:44 +00:00
|
|
|
/// Compares a [`TupleStruct`] with a [`Reflect`] value.
|
|
|
|
///
|
|
|
|
/// Returns true if and only if all of the following are true:
|
|
|
|
/// - `b` is a tuple struct;
|
|
|
|
/// - `b` has the same number of fields as `a`;
|
|
|
|
/// - [`Reflect::reflect_partial_eq`] returns `Some(true)` for pairwise fields of `a` and `b`.
|
2020-11-28 00:39:59 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn tuple_struct_partial_eq<S: TupleStruct>(a: &S, b: &dyn Reflect) -> Option<bool> {
|
|
|
|
let tuple_struct = if let ReflectRef::TupleStruct(tuple_struct) = b.reflect_ref() {
|
|
|
|
tuple_struct
|
|
|
|
} else {
|
|
|
|
return Some(false);
|
|
|
|
};
|
|
|
|
|
|
|
|
if a.field_len() != tuple_struct.field_len() {
|
|
|
|
return Some(false);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i, value) in tuple_struct.iter_fields().enumerate() {
|
|
|
|
if let Some(field_value) = a.field(i) {
|
2020-12-01 19:15:07 +00:00
|
|
|
if let Some(false) | None = field_value.reflect_partial_eq(value) {
|
2020-11-28 00:39:59 +00:00
|
|
|
return Some(false);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
return Some(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Some(true)
|
|
|
|
}
|
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
|
|
|
|
|
|
|
/// The default debug formatter for [`TupleStruct`] types.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
/// ```
|
|
|
|
/// use bevy_reflect::Reflect;
|
|
|
|
/// #[derive(Reflect)]
|
|
|
|
/// struct MyTupleStruct(usize);
|
|
|
|
///
|
|
|
|
/// let my_tuple_struct: &dyn Reflect = &MyTupleStruct(123);
|
|
|
|
/// println!("{:#?}", my_tuple_struct);
|
|
|
|
///
|
|
|
|
/// // Output:
|
|
|
|
///
|
|
|
|
/// // MyTupleStruct (
|
|
|
|
/// // 123,
|
|
|
|
/// // )
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
pub fn tuple_struct_debug(
|
|
|
|
dyn_tuple_struct: &dyn TupleStruct,
|
|
|
|
f: &mut std::fmt::Formatter<'_>,
|
|
|
|
) -> std::fmt::Result {
|
|
|
|
let mut debug = f.debug_tuple(dyn_tuple_struct.type_name());
|
|
|
|
for field in dyn_tuple_struct.iter_fields() {
|
|
|
|
debug.field(&field as &dyn Debug);
|
|
|
|
}
|
|
|
|
debug.finish()
|
|
|
|
}
|