2021-12-18 22:59:55 +00:00
#![ doc = include_str!( " ../README.md " ) ]
2022-05-13 01:13:30 +00:00
mod array ;
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
mod fields ;
2020-11-28 00:39:59 +00:00
mod list ;
mod map ;
mod path ;
mod reflect ;
mod struct_trait ;
2021-01-08 03:50:09 +00:00
mod tuple ;
2020-11-28 00:39:59 +00:00
mod tuple_struct ;
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
mod type_info ;
2020-11-28 00:39:59 +00:00
mod type_registry ;
mod type_uuid ;
mod impls {
#[ cfg(feature = " glam " ) ]
mod glam ;
2022-09-02 12:35:23 +00:00
#[ cfg(feature = " bevy_math " ) ]
mod rect ;
2020-11-28 00:39:59 +00:00
#[ cfg(feature = " smallvec " ) ]
mod smallvec ;
mod std ;
#[ cfg(feature = " glam " ) ]
pub use self ::glam ::* ;
2022-09-02 12:35:23 +00:00
#[ cfg(feature = " bevy_math " ) ]
pub use self ::rect ::* ;
2020-11-28 00:39:59 +00:00
#[ cfg(feature = " smallvec " ) ]
pub use self ::smallvec ::* ;
pub use self ::std ::* ;
}
bevy_reflect: Reflect enums (#4761)
# Objective
> This is a revival of #1347. Credit for the original PR should go to @Davier.
Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API.
## Solution
Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically:
```rust
#[derive(Reflect)]
enum Foo {
A,
B(usize),
C { value: f32 },
}
let mut foo = Foo::B(123);
assert_eq!("B", foo.variant_name());
assert_eq!(1, foo.field_len());
let new_value = DynamicEnum::from(Foo::C { value: 1.23 });
foo.apply(&new_value);
assert_eq!(Foo::C{value: 1.23}, foo);
```
### Features
#### Derive Macro
Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection.
```rust
#[derive(Reflect)]
enum TestEnum {
A,
// Uncomment to ignore all of `B`
// #[reflect(ignore)]
B(usize),
C {
// Uncomment to ignore only field `foo` of `C`
// #[reflect(ignore)]
foo: f32,
bar: bool,
},
}
```
#### Dynamic Enums
Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro.
```rust
let mut value = TestEnum::A;
// Create from a concrete instance
let dyn_enum = DynamicEnum::from(TestEnum::B(123));
value.apply(&dyn_enum);
assert_eq!(TestEnum::B(123), value);
// Create a purely dynamic instance
let dyn_enum = DynamicEnum::new("TestEnum", "A", ());
value.apply(&dyn_enum);
assert_eq!(TestEnum::A, value);
```
#### Variants
An enum value is always represented as one of its variants— never the enum in its entirety.
```rust
let value = TestEnum::A;
assert_eq!("A", value.variant_name());
// Since we are using the `A` variant, we cannot also be the `B` variant
assert_ne!("B", value.variant_name());
```
All variant types are representable within the `Enum` trait: unit, struct, and tuple.
You can get the current type like:
```rust
match value.variant_type() {
VariantType::Unit => println!("A unit variant!"),
VariantType::Struct => println!("A struct variant!"),
VariantType::Tuple => println!("A tuple variant!"),
}
```
> Notice that they don't contain any values representing the fields. These are purely tags.
If a variant has them, you can access the fields as well:
```rust
let mut value = TestEnum::C {
foo: 1.23,
bar: false
};
// Read/write specific fields
*value.field_mut("bar").unwrap() = true;
// Iterate over the entire collection of fields
for field in value.iter_fields() {
println!("{} = {:?}", field.name(), field.value());
}
```
#### Variant Swapping
It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them.
```rust
let mut value: Box<dyn Enum> = Box::new(TestEnum::A);
value.set(Box::new(TestEnum::B(123))).unwrap();
```
#### Serialization
Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized.
> Note, like the rest of reflection-based serialization, the order of the keys in these representations is important!
##### Unit
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "A"
}
}
```
##### Tuple
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "B",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
<details>
<summary>Effects on Option</summary>
This ends up making `Option` look a little ugly:
```json
{
"type": "core::option::Option<usize>",
"enum": {
"variant": "Some",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
</details>
##### Struct
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "C",
"struct": {
"foo": {
"type": "f32",
"value": 1.23
},
"bar": {
"type": "bool",
"value": false
}
}
}
}
```
## Design Decisions
<details>
<summary><strong>View Section</strong></summary>
This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future.
### Variant Representation
One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though.
#### Alternatives
##### 1. Variant Traits
One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like:
```rust
pub trait Enum: Reflect {
fn variant(&self) -> Variant;
}
pub enum Variant<'a> {
Unit,
Tuple(&'a dyn TupleVariant),
Struct(&'a dyn StructVariant),
}
pub trait TupleVariant {
fn field_len(&self) -> usize;
// ...
}
```
And then do things like:
```rust
fn get_tuple_len(foo: &dyn Enum) -> usize {
match foo.variant() {
Variant::Tuple(tuple) => tuple.field_len(),
_ => panic!("not a tuple variant!")
}
}
```
The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun:
```rust
let foo: Option<i32> = None;
let my_enum = Box::new(foo) as Box<dyn TupleVariant>;
```
Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants.
##### 2. Variant Structs
To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations.
Each variant struct would probably look something like:
```rust
pub trait Enum: Reflect {
fn variant_mut(&self) -> VariantMut;
}
pub enum VariantMut<'a> {
Unit,
Tuple(TupleVariantMut),
Struct(StructVariantMut),
}
struct StructVariantMut<'a> {
fields: Vec<&'a mut dyn Reflect>,
field_indices: HashMap<Cow<'static, str>, usize>
}
```
This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough.
##### 3. Generated Structs
The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant.
Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC.
In order to work properly, the enum had to be transmuted to the generated struct:
```rust
fn variant(&self) -> crate::EnumVariant<'_> {
match self {
Foo::Bar {value: i32} => {
let wrapper_ref = unsafe {
std::mem::transmute::<&Self, &FooBarWrapper>(self)
};
crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct)
}
}
}
```
This works because `FooBarWrapper` is defined as `repr(transparent)`.
Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because:
* To reduce generated code (which would hopefully speed up compile times)
* To avoid cluttering the code with generated structs not visible to the user
* To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems)
* To avoid additional unsafe blocks
* My own misunderstanding of @Davier's code
That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation.
#### Benefits of All-in-One
As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.).
The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't).
This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter):
```rust
let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123};
// We know it's the `Bar` variant
let field = dyn_enum.field("value").unwrap();
```
Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes.
Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums.
</details>
---
## Changelog
### Added
* Added `Enum` trait
* Added `Enum` impl to `Reflect` derive macro
* Added `DynamicEnum` struct
* Added `DynamicVariant`
* Added `EnumInfo`
* Added `VariantInfo`
* Added `StructVariantInfo`
* Added `TupleVariantInfo`
* Added `UnitVariantInfo`
* Added serializtion/deserialization support for enums
* Added `EnumSerializer`
* Added `VariantType`
* Added `VariantFieldIter`
* Added `VariantField`
* Added `enum_partial_eq(...)`
* Added `enum_hash(...)`
### Changed
* `Option<T>` now implements `Enum`
* `bevy_window` now depends on `bevy_reflect`
* Implemented `Reflect` and `FromReflect` for `WindowId`
* Derive `FromReflect` on `PerspectiveProjection`
* Derive `FromReflect` on `OrthographicProjection`
* Derive `FromReflect` on `WindowOrigin`
* Derive `FromReflect` on `ScalingMode`
* Derive `FromReflect` on `DepthCalculation`
## Migration Guide
* Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]`
* Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums.
---
Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated!
Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
mod enums ;
2020-11-28 00:39:59 +00:00
pub mod serde ;
2022-05-03 19:20:13 +00:00
pub mod std_traits ;
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
pub mod utility ;
2022-05-03 19:20:13 +00:00
2020-11-28 00:39:59 +00:00
pub mod prelude {
2022-05-03 19:20:13 +00:00
pub use crate ::std_traits ::* ;
2022-11-02 20:40:45 +00:00
#[ doc(hidden) ]
2020-11-28 00:39:59 +00:00
pub use crate ::{
2022-08-18 18:53:07 +00:00
reflect_trait , FromReflect , GetField , GetTupleStructField , Reflect , ReflectDeserialize ,
2022-06-20 17:18:58 +00:00
ReflectSerialize , Struct , TupleStruct ,
2020-11-28 00:39:59 +00:00
} ;
}
2022-05-13 01:13:30 +00:00
pub use array ::* ;
bevy_reflect: Reflect enums (#4761)
# Objective
> This is a revival of #1347. Credit for the original PR should go to @Davier.
Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API.
## Solution
Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically:
```rust
#[derive(Reflect)]
enum Foo {
A,
B(usize),
C { value: f32 },
}
let mut foo = Foo::B(123);
assert_eq!("B", foo.variant_name());
assert_eq!(1, foo.field_len());
let new_value = DynamicEnum::from(Foo::C { value: 1.23 });
foo.apply(&new_value);
assert_eq!(Foo::C{value: 1.23}, foo);
```
### Features
#### Derive Macro
Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection.
```rust
#[derive(Reflect)]
enum TestEnum {
A,
// Uncomment to ignore all of `B`
// #[reflect(ignore)]
B(usize),
C {
// Uncomment to ignore only field `foo` of `C`
// #[reflect(ignore)]
foo: f32,
bar: bool,
},
}
```
#### Dynamic Enums
Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro.
```rust
let mut value = TestEnum::A;
// Create from a concrete instance
let dyn_enum = DynamicEnum::from(TestEnum::B(123));
value.apply(&dyn_enum);
assert_eq!(TestEnum::B(123), value);
// Create a purely dynamic instance
let dyn_enum = DynamicEnum::new("TestEnum", "A", ());
value.apply(&dyn_enum);
assert_eq!(TestEnum::A, value);
```
#### Variants
An enum value is always represented as one of its variants— never the enum in its entirety.
```rust
let value = TestEnum::A;
assert_eq!("A", value.variant_name());
// Since we are using the `A` variant, we cannot also be the `B` variant
assert_ne!("B", value.variant_name());
```
All variant types are representable within the `Enum` trait: unit, struct, and tuple.
You can get the current type like:
```rust
match value.variant_type() {
VariantType::Unit => println!("A unit variant!"),
VariantType::Struct => println!("A struct variant!"),
VariantType::Tuple => println!("A tuple variant!"),
}
```
> Notice that they don't contain any values representing the fields. These are purely tags.
If a variant has them, you can access the fields as well:
```rust
let mut value = TestEnum::C {
foo: 1.23,
bar: false
};
// Read/write specific fields
*value.field_mut("bar").unwrap() = true;
// Iterate over the entire collection of fields
for field in value.iter_fields() {
println!("{} = {:?}", field.name(), field.value());
}
```
#### Variant Swapping
It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them.
```rust
let mut value: Box<dyn Enum> = Box::new(TestEnum::A);
value.set(Box::new(TestEnum::B(123))).unwrap();
```
#### Serialization
Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized.
> Note, like the rest of reflection-based serialization, the order of the keys in these representations is important!
##### Unit
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "A"
}
}
```
##### Tuple
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "B",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
<details>
<summary>Effects on Option</summary>
This ends up making `Option` look a little ugly:
```json
{
"type": "core::option::Option<usize>",
"enum": {
"variant": "Some",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
</details>
##### Struct
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "C",
"struct": {
"foo": {
"type": "f32",
"value": 1.23
},
"bar": {
"type": "bool",
"value": false
}
}
}
}
```
## Design Decisions
<details>
<summary><strong>View Section</strong></summary>
This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future.
### Variant Representation
One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though.
#### Alternatives
##### 1. Variant Traits
One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like:
```rust
pub trait Enum: Reflect {
fn variant(&self) -> Variant;
}
pub enum Variant<'a> {
Unit,
Tuple(&'a dyn TupleVariant),
Struct(&'a dyn StructVariant),
}
pub trait TupleVariant {
fn field_len(&self) -> usize;
// ...
}
```
And then do things like:
```rust
fn get_tuple_len(foo: &dyn Enum) -> usize {
match foo.variant() {
Variant::Tuple(tuple) => tuple.field_len(),
_ => panic!("not a tuple variant!")
}
}
```
The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun:
```rust
let foo: Option<i32> = None;
let my_enum = Box::new(foo) as Box<dyn TupleVariant>;
```
Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants.
##### 2. Variant Structs
To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations.
Each variant struct would probably look something like:
```rust
pub trait Enum: Reflect {
fn variant_mut(&self) -> VariantMut;
}
pub enum VariantMut<'a> {
Unit,
Tuple(TupleVariantMut),
Struct(StructVariantMut),
}
struct StructVariantMut<'a> {
fields: Vec<&'a mut dyn Reflect>,
field_indices: HashMap<Cow<'static, str>, usize>
}
```
This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough.
##### 3. Generated Structs
The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant.
Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC.
In order to work properly, the enum had to be transmuted to the generated struct:
```rust
fn variant(&self) -> crate::EnumVariant<'_> {
match self {
Foo::Bar {value: i32} => {
let wrapper_ref = unsafe {
std::mem::transmute::<&Self, &FooBarWrapper>(self)
};
crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct)
}
}
}
```
This works because `FooBarWrapper` is defined as `repr(transparent)`.
Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because:
* To reduce generated code (which would hopefully speed up compile times)
* To avoid cluttering the code with generated structs not visible to the user
* To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems)
* To avoid additional unsafe blocks
* My own misunderstanding of @Davier's code
That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation.
#### Benefits of All-in-One
As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.).
The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't).
This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter):
```rust
let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123};
// We know it's the `Bar` variant
let field = dyn_enum.field("value").unwrap();
```
Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes.
Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums.
</details>
---
## Changelog
### Added
* Added `Enum` trait
* Added `Enum` impl to `Reflect` derive macro
* Added `DynamicEnum` struct
* Added `DynamicVariant`
* Added `EnumInfo`
* Added `VariantInfo`
* Added `StructVariantInfo`
* Added `TupleVariantInfo`
* Added `UnitVariantInfo`
* Added serializtion/deserialization support for enums
* Added `EnumSerializer`
* Added `VariantType`
* Added `VariantFieldIter`
* Added `VariantField`
* Added `enum_partial_eq(...)`
* Added `enum_hash(...)`
### Changed
* `Option<T>` now implements `Enum`
* `bevy_window` now depends on `bevy_reflect`
* Implemented `Reflect` and `FromReflect` for `WindowId`
* Derive `FromReflect` on `PerspectiveProjection`
* Derive `FromReflect` on `OrthographicProjection`
* Derive `FromReflect` on `WindowOrigin`
* Derive `FromReflect` on `ScalingMode`
* Derive `FromReflect` on `DepthCalculation`
## Migration Guide
* Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]`
* Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums.
---
Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated!
Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
pub use enums ::* ;
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
pub use fields ::* ;
2020-11-28 00:39:59 +00:00
pub use impls ::* ;
pub use list ::* ;
pub use map ::* ;
pub use path ::* ;
pub use reflect ::* ;
pub use struct_trait ::* ;
2021-01-08 03:50:09 +00:00
pub use tuple ::* ;
2020-11-28 00:39:59 +00:00
pub use tuple_struct ::* ;
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
pub use type_info ::* ;
2020-11-28 00:39:59 +00:00
pub use type_registry ::* ;
pub use type_uuid ::* ;
pub use bevy_reflect_derive ::* ;
pub use erased_serde ;
2022-04-26 19:41:25 +00:00
#[ doc(hidden) ]
pub mod __macro_exports {
use crate ::Uuid ;
/// Generates a new UUID from the given UUIDs `a` and `b`,
/// where the bytes are generated by a bitwise `a ^ b.rotate_right(1)`.
/// The generated UUID will be a `UUIDv4` (meaning that the bytes should be random, not e.g. derived from the system time).
#[ allow(clippy::unusual_byte_groupings) ] // unusual byte grouping is meant to signal the relevant bits
pub const fn generate_composite_uuid ( a : Uuid , b : Uuid ) -> Uuid {
let mut new = [ 0 ; 16 ] ;
let mut i = 0 ;
while i < new . len ( ) {
// rotating ensures different uuids for A<B<C>> and B<A<C>> because: A ^ (B ^ C) = B ^ (A ^ C)
// notice that you have to rotate the second parameter: A.rr ^ (B.rr ^ C) = B.rr ^ (A.rr ^ C)
// Solution: A ^ (B ^ C.rr).rr != B ^ (A ^ C.rr).rr
new [ i ] = a . as_bytes ( ) [ i ] ^ b . as_bytes ( ) [ i ] . rotate_right ( 1 ) ;
i + = 1 ;
}
// Version: the most significant 4 bits in the 6th byte: 11110000
new [ 6 ] = new [ 6 ] & 0b0000_1111 | 0b0100_0000 ; // set version to v4
// Variant: the most significant 3 bits in the 8th byte: 11100000
new [ 8 ] = new [ 8 ] & 0b000_11111 | 0b100_00000 ; // set variant to rfc4122
Uuid ::from_bytes ( new )
}
}
2020-11-28 00:39:59 +00:00
#[ cfg(test) ]
2022-09-18 23:52:01 +00:00
#[ allow(clippy::disallowed_types, clippy::approx_constant) ]
2020-11-28 00:39:59 +00:00
mod tests {
2022-05-09 16:32:15 +00:00
#[ cfg(feature = " glam " ) ]
use ::glam ::{ vec3 , Vec3 } ;
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
use ::serde ::{ de ::DeserializeSeed , Deserialize , Serialize } ;
2020-11-28 00:39:59 +00:00
use bevy_utils ::HashMap ;
use ron ::{
ser ::{ to_string_pretty , PrettyConfig } ,
Deserializer ,
} ;
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
use std ::fmt ::{ Debug , Formatter } ;
2020-11-28 00:39:59 +00:00
bevy_reflect: Add `#[reflect(default)]` attribute for `FromReflect` (#4140)
# Objective
Currently, `FromReflect` makes a couple assumptions:
* Ignored fields must implement `Default`
* Active fields must implement `FromReflect`
* The reflected must be fully populated for active fields (can't use an empty `DynamicStruct`)
However, one or both of these requirements might be unachievable, such as for external types. In these cases, it might be nice to tell `FromReflect` to use a custom default.
## Solution
Added the `#[reflect(default)]` derive helper attribute. This attribute can be applied to any field (ignored or not) and will allow a default value to be specified in place of the regular `from_reflect()` call.
It takes two forms: `#[reflect(default)]` and `#[reflect(default = "some_func")]`. The former specifies that `Default::default()` should be used while the latter specifies that `some_func()` should be used. This is pretty much [how serde does it](https://serde.rs/field-attrs.html#default).
### Example
```rust
#[derive(Reflect, FromReflect)]
struct MyStruct {
// Use `Default::default()`
#[reflect(default)]
foo: String,
// Use `get_bar_default()`
#[reflect(default = "get_bar_default")]
#[reflect(ignore)]
bar: usize,
}
fn get_bar_default() -> usize {
123
}
```
### Active Fields
As an added benefit, this also allows active fields to be completely missing from their dynamic object. This is because the attribute tells `FromReflect` how to handle missing active fields (it still tries to use `from_reflect` first so the `FromReflect` trait is still required).
```rust
let dyn_struct = DynamicStruct::default();
// We can do this without actually including the active fields since they have `#[reflect(default)]`
let my_struct = <MyStruct as FromReflect>::from_reflect(&dyn_struct);
```
### Container Defaults
Also, with the addition of #3733, people will likely start adding `#[reflect(Default)]` to their types now. Just like with the fields, we can use this to mark the entire container as "defaultable". This grants us the ability to completely remove the field markers altogether if our type implements `Default` (and we're okay with fields using that instead of their own `Default` impls):
```rust
#[derive(Reflect, FromReflect)]
#[reflect(Default)]
struct MyStruct {
foo: String,
#[reflect(ignore)]
bar: usize,
}
impl Default for MyStruct {
fn default() -> Self {
Self {
foo: String::from("Hello"),
bar: 123,
}
}
}
// Again, we can now construct this from nothing pretty much
let dyn_struct = DynamicStruct::default();
let my_struct = <MyStruct as FromReflect>::from_reflect(&dyn_struct);
```
Now if _any_ field is missing when using `FromReflect`, we simply fallback onto the container's `Default` implementation.
This behavior can be completely overridden on a per-field basis, of course, by simply defining those same field attributes like before.
### Related
* #3733
* #1395
* #2377
---
## Changelog
* Added `#[reflect(default)]` field attribute for `FromReflect`
* Allows missing fields to be given a default value when using `FromReflect`
* `#[reflect(default)]` - Use the field's `Default` implementation
* `#[reflect(default = "some_fn")]` - Use a custom function to get the default value
* Allow `#[reflect(Default)]` to have a secondary usage as a container attribute
* Allows missing fields to be given a default value based on the container's `Default` impl when using `FromReflect`
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 19:06:25 +00:00
use super ::prelude ::* ;
2020-11-28 00:39:59 +00:00
use super ::* ;
2021-05-19 19:03:36 +00:00
use crate as bevy_reflect ;
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
use crate ::serde ::{ ReflectSerializer , UntypedReflectDeserializer } ;
2021-02-22 08:42:19 +00:00
2020-11-28 00:39:59 +00:00
#[ test ]
fn reflect_struct ( ) {
#[ derive(Reflect) ]
struct Foo {
a : u32 ,
b : f32 ,
c : Bar ,
}
#[ derive(Reflect) ]
struct Bar {
x : u32 ,
}
let mut foo = Foo {
a : 42 ,
b : 3.14 ,
c : Bar { x : 1 } ,
} ;
let a = * foo . get_field ::< u32 > ( " a " ) . unwrap ( ) ;
assert_eq! ( a , 42 ) ;
* foo . get_field_mut ::< u32 > ( " a " ) . unwrap ( ) + = 1 ;
assert_eq! ( foo . a , 43 ) ;
let bar = foo . get_field ::< Bar > ( " c " ) . unwrap ( ) ;
assert_eq! ( bar . x , 1 ) ;
// nested retrieval
let c = foo . field ( " c " ) . unwrap ( ) ;
if let ReflectRef ::Struct ( value ) = c . reflect_ref ( ) {
assert_eq! ( * value . get_field ::< u32 > ( " x " ) . unwrap ( ) , 1 ) ;
} else {
2020-12-02 19:31:16 +00:00
panic! ( " Expected a struct. " ) ;
2020-11-28 00:39:59 +00:00
}
// patch Foo with a dynamic struct
let mut dynamic_struct = DynamicStruct ::default ( ) ;
dynamic_struct . insert ( " a " , 123 u32 ) ;
dynamic_struct . insert ( " should_be_ignored " , 456 ) ;
foo . apply ( & dynamic_struct ) ;
assert_eq! ( foo . a , 123 ) ;
}
#[ test ]
fn reflect_map ( ) {
#[ derive(Reflect, Hash) ]
#[ reflect(Hash) ]
struct Foo {
a : u32 ,
b : String ,
}
let key_a = Foo {
a : 1 ,
b : " k1 " . to_string ( ) ,
} ;
let key_b = Foo {
a : 1 ,
b : " k1 " . to_string ( ) ,
} ;
let key_c = Foo {
a : 3 ,
b : " k3 " . to_string ( ) ,
} ;
let mut map = DynamicMap ::default ( ) ;
map . insert ( key_a , 10 u32 ) ;
assert_eq! ( 10 , * map . get ( & key_b ) . unwrap ( ) . downcast_ref ::< u32 > ( ) . unwrap ( ) ) ;
assert! ( map . get ( & key_c ) . is_none ( ) ) ;
* map . get_mut ( & key_b ) . unwrap ( ) . downcast_mut ::< u32 > ( ) . unwrap ( ) = 20 ;
assert_eq! ( 20 , * map . get ( & key_b ) . unwrap ( ) . downcast_ref ::< u32 > ( ) . unwrap ( ) ) ;
}
#[ test ]
2022-09-18 23:52:01 +00:00
#[ allow(clippy::disallowed_types) ]
2020-11-28 00:39:59 +00:00
fn reflect_unit_struct ( ) {
#[ derive(Reflect) ]
struct Foo ( u32 , u64 ) ;
let mut foo = Foo ( 1 , 2 ) ;
assert_eq! ( 1 , * foo . get_field ::< u32 > ( 0 ) . unwrap ( ) ) ;
assert_eq! ( 2 , * foo . get_field ::< u64 > ( 1 ) . unwrap ( ) ) ;
let mut patch = DynamicTupleStruct ::default ( ) ;
patch . insert ( 3 u32 ) ;
patch . insert ( 4 u64 ) ;
assert_eq! ( 3 , * patch . field ( 0 ) . unwrap ( ) . downcast_ref ::< u32 > ( ) . unwrap ( ) ) ;
assert_eq! ( 4 , * patch . field ( 1 ) . unwrap ( ) . downcast_ref ::< u64 > ( ) . unwrap ( ) ) ;
foo . apply ( & patch ) ;
assert_eq! ( 3 , foo . 0 ) ;
assert_eq! ( 4 , foo . 1 ) ;
let mut iter = patch . iter_fields ( ) ;
assert_eq! ( 3 , * iter . next ( ) . unwrap ( ) . downcast_ref ::< u32 > ( ) . unwrap ( ) ) ;
assert_eq! ( 4 , * iter . next ( ) . unwrap ( ) . downcast_ref ::< u64 > ( ) . unwrap ( ) ) ;
}
#[ test ]
#[ should_panic(expected = " the given key does not support hashing " ) ]
fn reflect_map_no_hash ( ) {
#[ derive(Reflect) ]
struct Foo {
a : u32 ,
}
let foo = Foo { a : 1 } ;
let mut map = DynamicMap ::default ( ) ;
map . insert ( foo , 10 u32 ) ;
}
#[ test ]
fn reflect_ignore ( ) {
#[ derive(Reflect) ]
struct Foo {
a : u32 ,
#[ reflect(ignore) ]
_b : u32 ,
}
let foo = Foo { a : 1 , _b : 2 } ;
let values : Vec < u32 > = foo
. iter_fields ( )
. map ( | value | * value . downcast_ref ::< u32 > ( ) . unwrap ( ) )
. collect ( ) ;
assert_eq! ( values , vec! [ 1 ] ) ;
}
bevy_reflect: Add `#[reflect(default)]` attribute for `FromReflect` (#4140)
# Objective
Currently, `FromReflect` makes a couple assumptions:
* Ignored fields must implement `Default`
* Active fields must implement `FromReflect`
* The reflected must be fully populated for active fields (can't use an empty `DynamicStruct`)
However, one or both of these requirements might be unachievable, such as for external types. In these cases, it might be nice to tell `FromReflect` to use a custom default.
## Solution
Added the `#[reflect(default)]` derive helper attribute. This attribute can be applied to any field (ignored or not) and will allow a default value to be specified in place of the regular `from_reflect()` call.
It takes two forms: `#[reflect(default)]` and `#[reflect(default = "some_func")]`. The former specifies that `Default::default()` should be used while the latter specifies that `some_func()` should be used. This is pretty much [how serde does it](https://serde.rs/field-attrs.html#default).
### Example
```rust
#[derive(Reflect, FromReflect)]
struct MyStruct {
// Use `Default::default()`
#[reflect(default)]
foo: String,
// Use `get_bar_default()`
#[reflect(default = "get_bar_default")]
#[reflect(ignore)]
bar: usize,
}
fn get_bar_default() -> usize {
123
}
```
### Active Fields
As an added benefit, this also allows active fields to be completely missing from their dynamic object. This is because the attribute tells `FromReflect` how to handle missing active fields (it still tries to use `from_reflect` first so the `FromReflect` trait is still required).
```rust
let dyn_struct = DynamicStruct::default();
// We can do this without actually including the active fields since they have `#[reflect(default)]`
let my_struct = <MyStruct as FromReflect>::from_reflect(&dyn_struct);
```
### Container Defaults
Also, with the addition of #3733, people will likely start adding `#[reflect(Default)]` to their types now. Just like with the fields, we can use this to mark the entire container as "defaultable". This grants us the ability to completely remove the field markers altogether if our type implements `Default` (and we're okay with fields using that instead of their own `Default` impls):
```rust
#[derive(Reflect, FromReflect)]
#[reflect(Default)]
struct MyStruct {
foo: String,
#[reflect(ignore)]
bar: usize,
}
impl Default for MyStruct {
fn default() -> Self {
Self {
foo: String::from("Hello"),
bar: 123,
}
}
}
// Again, we can now construct this from nothing pretty much
let dyn_struct = DynamicStruct::default();
let my_struct = <MyStruct as FromReflect>::from_reflect(&dyn_struct);
```
Now if _any_ field is missing when using `FromReflect`, we simply fallback onto the container's `Default` implementation.
This behavior can be completely overridden on a per-field basis, of course, by simply defining those same field attributes like before.
### Related
* #3733
* #1395
* #2377
---
## Changelog
* Added `#[reflect(default)]` field attribute for `FromReflect`
* Allows missing fields to be given a default value when using `FromReflect`
* `#[reflect(default)]` - Use the field's `Default` implementation
* `#[reflect(default = "some_fn")]` - Use a custom function to get the default value
* Allow `#[reflect(Default)]` to have a secondary usage as a container attribute
* Allows missing fields to be given a default value based on the container's `Default` impl when using `FromReflect`
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 19:06:25 +00:00
#[ test ]
fn from_reflect_should_use_default_field_attributes ( ) {
#[ derive(Reflect, FromReflect, Eq, PartialEq, Debug) ]
struct MyStruct {
// Use `Default::default()`
// Note that this isn't an ignored field
#[ reflect(default) ]
foo : String ,
// Use `get_bar_default()`
#[ reflect(default = " get_bar_default " ) ]
#[ reflect(ignore) ]
bar : usize ,
}
fn get_bar_default ( ) -> usize {
123
}
let expected = MyStruct {
foo : String ::default ( ) ,
bar : 123 ,
} ;
let dyn_struct = DynamicStruct ::default ( ) ;
let my_struct = < MyStruct as FromReflect > ::from_reflect ( & dyn_struct ) ;
assert_eq! ( Some ( expected ) , my_struct ) ;
}
#[ test ]
fn from_reflect_should_use_default_container_attribute ( ) {
#[ derive(Reflect, FromReflect, Eq, PartialEq, Debug) ]
#[ reflect(Default) ]
struct MyStruct {
foo : String ,
#[ reflect(ignore) ]
bar : usize ,
}
impl Default for MyStruct {
fn default ( ) -> Self {
Self {
foo : String ::from ( " Hello " ) ,
bar : 123 ,
}
}
}
let expected = MyStruct {
foo : String ::from ( " Hello " ) ,
bar : 123 ,
} ;
let dyn_struct = DynamicStruct ::default ( ) ;
let my_struct = < MyStruct as FromReflect > ::from_reflect ( & dyn_struct ) ;
assert_eq! ( Some ( expected ) , my_struct ) ;
}
2020-11-28 00:39:59 +00:00
#[ test ]
fn reflect_complex_patch ( ) {
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
#[ derive(Reflect, Eq, PartialEq, Debug, FromReflect) ]
Reflection cleanup (#1536)
This is an effort to provide the correct `#[reflect_value(...)]` attributes where they are needed.
Supersedes #1533 and resolves #1528.
---
I am working under the following assumptions (thanks to @bjorn3 and @Davier for advice here):
- Any `enum` that derives `Reflect` and one or more of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } needs a `#[reflect_value(...)]` attribute containing the same subset of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } that is present on the derive.
- Same as above for `struct` and `#[reflect(...)]`, respectively.
- If a `struct` is used as a component, it should also have `#[reflect(Component)]`
- All reflected types should be registered in their plugins
I treated the following as components (added `#[reflect(Component)]` if necessary):
- `bevy_render`
- `struct RenderLayers`
- `bevy_transform`
- `struct GlobalTransform`
- `struct Parent`
- `struct Transform`
- `bevy_ui`
- `struct Style`
Not treated as components:
- `bevy_math`
- `struct Size<T>`
- `struct Rect<T>`
- Note: The updates for `Size<T>` and `Rect<T>` in `bevy::math::geometry` required using @Davier's suggestion to add `+ PartialEq` to the trait bound. I then registered the specific types used over in `bevy_ui` such as `Size<Val>`, etc. in `bevy_ui`'s plugin, since `bevy::math` does not contain a plugin.
- `bevy_render`
- `struct Color`
- `struct PipelineSpecialization`
- `struct ShaderSpecialization`
- `enum PrimitiveTopology`
- `enum IndexFormat`
Not Addressed:
- I am not searching for components in Bevy that are _not_ reflected. So if there are components that are not reflected that should be reflected, that will need to be figured out in another PR.
- I only added `#[reflect(...)]` or `#[reflect_value(...)]` entries for the set of four traits { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } _if they were derived via `#[derive(...)]`_. I did not look for manual trait implementations of the same set of four, nor did I consider any traits outside the four. Are those other possibilities something that needs to be looked into?
2021-03-09 23:39:41 +00:00
#[ reflect(PartialEq) ]
2020-11-28 00:39:59 +00:00
struct Foo {
a : u32 ,
#[ reflect(ignore) ]
_b : u32 ,
c : Vec < isize > ,
d : HashMap < usize , i8 > ,
e : Bar ,
2021-01-08 03:50:09 +00:00
f : ( i32 , Vec < isize > , Bar ) ,
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
g : Vec < ( Baz , HashMap < usize , Bar > ) > ,
2022-05-13 01:13:30 +00:00
h : [ u32 ; 2 ] ,
2020-11-28 00:39:59 +00:00
}
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
#[ derive(Reflect, Eq, PartialEq, Clone, Debug, FromReflect) ]
Reflection cleanup (#1536)
This is an effort to provide the correct `#[reflect_value(...)]` attributes where they are needed.
Supersedes #1533 and resolves #1528.
---
I am working under the following assumptions (thanks to @bjorn3 and @Davier for advice here):
- Any `enum` that derives `Reflect` and one or more of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } needs a `#[reflect_value(...)]` attribute containing the same subset of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } that is present on the derive.
- Same as above for `struct` and `#[reflect(...)]`, respectively.
- If a `struct` is used as a component, it should also have `#[reflect(Component)]`
- All reflected types should be registered in their plugins
I treated the following as components (added `#[reflect(Component)]` if necessary):
- `bevy_render`
- `struct RenderLayers`
- `bevy_transform`
- `struct GlobalTransform`
- `struct Parent`
- `struct Transform`
- `bevy_ui`
- `struct Style`
Not treated as components:
- `bevy_math`
- `struct Size<T>`
- `struct Rect<T>`
- Note: The updates for `Size<T>` and `Rect<T>` in `bevy::math::geometry` required using @Davier's suggestion to add `+ PartialEq` to the trait bound. I then registered the specific types used over in `bevy_ui` such as `Size<Val>`, etc. in `bevy_ui`'s plugin, since `bevy::math` does not contain a plugin.
- `bevy_render`
- `struct Color`
- `struct PipelineSpecialization`
- `struct ShaderSpecialization`
- `enum PrimitiveTopology`
- `enum IndexFormat`
Not Addressed:
- I am not searching for components in Bevy that are _not_ reflected. So if there are components that are not reflected that should be reflected, that will need to be figured out in another PR.
- I only added `#[reflect(...)]` or `#[reflect_value(...)]` entries for the set of four traits { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } _if they were derived via `#[derive(...)]`_. I did not look for manual trait implementations of the same set of four, nor did I consider any traits outside the four. Are those other possibilities something that needs to be looked into?
2021-03-09 23:39:41 +00:00
#[ reflect(PartialEq) ]
2020-11-28 00:39:59 +00:00
struct Bar {
x : u32 ,
}
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
#[ derive(Reflect, Eq, PartialEq, Debug, FromReflect) ]
struct Baz ( String ) ;
2020-11-28 00:39:59 +00:00
let mut hash_map = HashMap ::default ( ) ;
hash_map . insert ( 1 , 1 ) ;
hash_map . insert ( 2 , 2 ) ;
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
let mut hash_map_baz = HashMap ::default ( ) ;
hash_map_baz . insert ( 1 , Bar { x : 0 } ) ;
2020-11-28 00:39:59 +00:00
let mut foo = Foo {
a : 1 ,
_b : 1 ,
c : vec ! [ 1 , 2 ] ,
d : hash_map ,
e : Bar { x : 1 } ,
2021-01-08 03:50:09 +00:00
f : ( 1 , vec! [ 1 , 2 ] , Bar { x : 1 } ) ,
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
g : vec ! [ ( Baz ( " string " . to_string ( ) ) , hash_map_baz ) ] ,
2022-05-13 01:13:30 +00:00
h : [ 2 ; 2 ] ,
2020-11-28 00:39:59 +00:00
} ;
let mut foo_patch = DynamicStruct ::default ( ) ;
foo_patch . insert ( " a " , 2 u32 ) ;
foo_patch . insert ( " b " , 2 u32 ) ; // this should be ignored
let mut list = DynamicList ::default ( ) ;
list . push ( 3 isize ) ;
list . push ( 4 isize ) ;
list . push ( 5 isize ) ;
2022-05-13 01:13:30 +00:00
foo_patch . insert ( " c " , List ::clone_dynamic ( & list ) ) ;
2020-11-28 00:39:59 +00:00
let mut map = DynamicMap ::default ( ) ;
map . insert ( 2 usize , 3 i8 ) ;
2022-07-04 13:04:19 +00:00
map . insert ( 3 usize , 4 i8 ) ;
2020-11-28 00:39:59 +00:00
foo_patch . insert ( " d " , map ) ;
let mut bar_patch = DynamicStruct ::default ( ) ;
bar_patch . insert ( " x " , 2 u32 ) ;
2021-01-08 03:50:09 +00:00
foo_patch . insert ( " e " , bar_patch . clone_dynamic ( ) ) ;
let mut tuple = DynamicTuple ::default ( ) ;
tuple . insert ( 2 i32 ) ;
tuple . insert ( list ) ;
tuple . insert ( bar_patch ) ;
foo_patch . insert ( " f " , tuple ) ;
2020-11-28 00:39:59 +00:00
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
let mut composite = DynamicList ::default ( ) ;
composite . push ( {
let mut tuple = DynamicTuple ::default ( ) ;
tuple . insert ( {
let mut tuple_struct = DynamicTupleStruct ::default ( ) ;
tuple_struct . insert ( " new_string " . to_string ( ) ) ;
tuple_struct
} ) ;
tuple . insert ( {
let mut map = DynamicMap ::default ( ) ;
map . insert ( 1 usize , {
let mut struct_ = DynamicStruct ::default ( ) ;
struct_ . insert ( " x " , 7 u32 ) ;
struct_
} ) ;
map
} ) ;
tuple
} ) ;
foo_patch . insert ( " g " , composite ) ;
2022-05-13 01:13:30 +00:00
let array = DynamicArray ::from_vec ( vec! [ 2 u32 , 2 u32 ] ) ;
foo_patch . insert ( " h " , array ) ;
2020-11-28 00:39:59 +00:00
foo . apply ( & foo_patch ) ;
let mut hash_map = HashMap ::default ( ) ;
hash_map . insert ( 1 , 1 ) ;
hash_map . insert ( 2 , 3 ) ;
2022-07-04 13:04:19 +00:00
hash_map . insert ( 3 , 4 ) ;
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
let mut hash_map_baz = HashMap ::default ( ) ;
hash_map_baz . insert ( 1 , Bar { x : 7 } ) ;
2020-11-28 00:39:59 +00:00
let expected_foo = Foo {
a : 2 ,
_b : 1 ,
c : vec ! [ 3 , 4 , 5 ] ,
d : hash_map ,
e : Bar { x : 2 } ,
2021-01-08 03:50:09 +00:00
f : ( 2 , vec! [ 3 , 4 , 5 ] , Bar { x : 2 } ) ,
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
g : vec ! [ ( Baz ( " new_string " . to_string ( ) ) , hash_map_baz . clone ( ) ) ] ,
2022-05-13 01:13:30 +00:00
h : [ 2 ; 2 ] ,
2020-11-28 00:39:59 +00:00
} ;
assert_eq! ( foo , expected_foo ) ;
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
let new_foo = Foo ::from_reflect ( & foo_patch )
. expect ( " error while creating a concrete type from a dynamic type " ) ;
let mut hash_map = HashMap ::default ( ) ;
hash_map . insert ( 2 , 3 ) ;
2022-07-04 13:04:19 +00:00
hash_map . insert ( 3 , 4 ) ;
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
let expected_new_foo = Foo {
a : 2 ,
_b : 0 ,
c : vec ! [ 3 , 4 , 5 ] ,
d : hash_map ,
e : Bar { x : 2 } ,
f : ( 2 , vec! [ 3 , 4 , 5 ] , Bar { x : 2 } ) ,
g : vec ! [ ( Baz ( " new_string " . to_string ( ) ) , hash_map_baz ) ] ,
2022-05-13 01:13:30 +00:00
h : [ 2 ; 2 ] ,
Add FromReflect trait to convert dynamic types to concrete types (#1395)
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-26 18:49:01 +00:00
} ;
assert_eq! ( new_foo , expected_new_foo ) ;
2020-11-28 00:39:59 +00:00
}
#[ test ]
fn reflect_serialize ( ) {
#[ derive(Reflect) ]
struct Foo {
a : u32 ,
#[ reflect(ignore) ]
_b : u32 ,
c : Vec < isize > ,
d : HashMap < usize , i8 > ,
e : Bar ,
f : String ,
2021-01-08 03:50:09 +00:00
g : ( i32 , Vec < isize > , Bar ) ,
2022-05-13 01:13:30 +00:00
h : [ u32 ; 2 ] ,
2020-11-28 00:39:59 +00:00
}
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
#[ derive(Reflect, Serialize, Deserialize) ]
#[ reflect(Serialize, Deserialize) ]
2020-11-28 00:39:59 +00:00
struct Bar {
x : u32 ,
}
let mut hash_map = HashMap ::default ( ) ;
hash_map . insert ( 1 , 1 ) ;
hash_map . insert ( 2 , 2 ) ;
let foo = Foo {
a : 1 ,
_b : 1 ,
c : vec ! [ 1 , 2 ] ,
d : hash_map ,
e : Bar { x : 1 } ,
f : " hi " . to_string ( ) ,
2021-01-08 03:50:09 +00:00
g : ( 1 , vec! [ 1 , 2 ] , Bar { x : 1 } ) ,
2022-05-13 01:13:30 +00:00
h : [ 2 ; 2 ] ,
2020-11-28 00:39:59 +00:00
} ;
let mut registry = TypeRegistry ::default ( ) ;
registry . register ::< u32 > ( ) ;
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
registry . register ::< i8 > ( ) ;
registry . register ::< i32 > ( ) ;
2020-11-28 00:39:59 +00:00
registry . register ::< usize > ( ) ;
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
registry . register ::< isize > ( ) ;
registry . register ::< Foo > ( ) ;
2020-11-28 00:39:59 +00:00
registry . register ::< Bar > ( ) ;
registry . register ::< String > ( ) ;
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
registry . register ::< Vec < isize > > ( ) ;
registry . register ::< HashMap < usize , i8 > > ( ) ;
registry . register ::< ( i32 , Vec < isize > , Bar ) > ( ) ;
registry . register ::< [ u32 ; 2 ] > ( ) ;
2020-11-28 00:39:59 +00:00
let serializer = ReflectSerializer ::new ( & foo , & registry ) ;
let serialized = to_string_pretty ( & serializer , PrettyConfig ::default ( ) ) . unwrap ( ) ;
let mut deserializer = Deserializer ::from_str ( & serialized ) . unwrap ( ) ;
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
let reflect_deserializer = UntypedReflectDeserializer ::new ( & registry ) ;
2020-11-28 00:39:59 +00:00
let value = reflect_deserializer . deserialize ( & mut deserializer ) . unwrap ( ) ;
let dynamic_struct = value . take ::< DynamicStruct > ( ) . unwrap ( ) ;
2020-12-01 19:15:07 +00:00
assert! ( foo . reflect_partial_eq ( & dynamic_struct ) . unwrap ( ) ) ;
2020-11-28 00:39:59 +00:00
}
Make `Reflect` safe to implement (#5010)
# Objective
Currently, `Reflect` is unsafe to implement because of a contract in which `any` and `any_mut` must return `self`, or `downcast` will cause UB. This PR makes `Reflect` safe, makes `downcast` not use unsafe, and eliminates this contract.
## Solution
This PR adds a method to `Reflect`, `any`. It also renames the old `any` to `as_any`.
`any` now takes a `Box<Self>` and returns a `Box<dyn Any>`.
---
## Changelog
### Added:
- `any()` method
- `represents()` method
### Changed:
- `Reflect` is now a safe trait
- `downcast()` is now safe
- The old `any` is now called `as_any`, and `any_mut` is now `as_mut_any`
## Migration Guide
- Reflect derives should not have to change anything
- Manual reflect impls will need to remove the `unsafe` keyword, add `any()` implementations, and rename the old `any` and `any_mut` to `as_any` and `as_mut_any`.
- Calls to `any`/`any_mut` must be changed to `as_any`/`as_mut_any`
## Points of discussion:
- Should renaming `any` be avoided and instead name the new method `any_box`?
- ~~Could there be a performance regression from avoiding the unsafe? I doubt it, but this change does seem to introduce redundant checks.~~
- ~~Could/should `is` and `type_id()` be implemented differently? For example, moving `is` onto `Reflect` as an `fn(&self, TypeId) -> bool`~~
Co-authored-by: PROMETHIA-27 <42193387+PROMETHIA-27@users.noreply.github.com>
2022-06-27 16:52:25 +00:00
#[ test ]
fn reflect_downcast ( ) {
#[ derive(Reflect, Clone, Debug, PartialEq) ]
struct Bar {
y : u8 ,
}
#[ derive(Reflect, Clone, Debug, PartialEq) ]
struct Foo {
x : i32 ,
s : String ,
b : Bar ,
u : usize ,
2022-07-04 14:17:46 +00:00
t : ( [ f32 ; 3 ] , String ) ,
Make `Reflect` safe to implement (#5010)
# Objective
Currently, `Reflect` is unsafe to implement because of a contract in which `any` and `any_mut` must return `self`, or `downcast` will cause UB. This PR makes `Reflect` safe, makes `downcast` not use unsafe, and eliminates this contract.
## Solution
This PR adds a method to `Reflect`, `any`. It also renames the old `any` to `as_any`.
`any` now takes a `Box<Self>` and returns a `Box<dyn Any>`.
---
## Changelog
### Added:
- `any()` method
- `represents()` method
### Changed:
- `Reflect` is now a safe trait
- `downcast()` is now safe
- The old `any` is now called `as_any`, and `any_mut` is now `as_mut_any`
## Migration Guide
- Reflect derives should not have to change anything
- Manual reflect impls will need to remove the `unsafe` keyword, add `any()` implementations, and rename the old `any` and `any_mut` to `as_any` and `as_mut_any`.
- Calls to `any`/`any_mut` must be changed to `as_any`/`as_mut_any`
## Points of discussion:
- Should renaming `any` be avoided and instead name the new method `any_box`?
- ~~Could there be a performance regression from avoiding the unsafe? I doubt it, but this change does seem to introduce redundant checks.~~
- ~~Could/should `is` and `type_id()` be implemented differently? For example, moving `is` onto `Reflect` as an `fn(&self, TypeId) -> bool`~~
Co-authored-by: PROMETHIA-27 <42193387+PROMETHIA-27@users.noreply.github.com>
2022-06-27 16:52:25 +00:00
}
let foo = Foo {
x : 123 ,
s : " String " . to_string ( ) ,
2022-07-04 14:17:46 +00:00
b : Bar { y : 255 } ,
Make `Reflect` safe to implement (#5010)
# Objective
Currently, `Reflect` is unsafe to implement because of a contract in which `any` and `any_mut` must return `self`, or `downcast` will cause UB. This PR makes `Reflect` safe, makes `downcast` not use unsafe, and eliminates this contract.
## Solution
This PR adds a method to `Reflect`, `any`. It also renames the old `any` to `as_any`.
`any` now takes a `Box<Self>` and returns a `Box<dyn Any>`.
---
## Changelog
### Added:
- `any()` method
- `represents()` method
### Changed:
- `Reflect` is now a safe trait
- `downcast()` is now safe
- The old `any` is now called `as_any`, and `any_mut` is now `as_mut_any`
## Migration Guide
- Reflect derives should not have to change anything
- Manual reflect impls will need to remove the `unsafe` keyword, add `any()` implementations, and rename the old `any` and `any_mut` to `as_any` and `as_mut_any`.
- Calls to `any`/`any_mut` must be changed to `as_any`/`as_mut_any`
## Points of discussion:
- Should renaming `any` be avoided and instead name the new method `any_box`?
- ~~Could there be a performance regression from avoiding the unsafe? I doubt it, but this change does seem to introduce redundant checks.~~
- ~~Could/should `is` and `type_id()` be implemented differently? For example, moving `is` onto `Reflect` as an `fn(&self, TypeId) -> bool`~~
Co-authored-by: PROMETHIA-27 <42193387+PROMETHIA-27@users.noreply.github.com>
2022-06-27 16:52:25 +00:00
u : 1111111111111 ,
2022-07-04 14:17:46 +00:00
t : ( [ 3.0 , 2.0 , 1.0 ] , " Tuple String " . to_string ( ) ) ,
Make `Reflect` safe to implement (#5010)
# Objective
Currently, `Reflect` is unsafe to implement because of a contract in which `any` and `any_mut` must return `self`, or `downcast` will cause UB. This PR makes `Reflect` safe, makes `downcast` not use unsafe, and eliminates this contract.
## Solution
This PR adds a method to `Reflect`, `any`. It also renames the old `any` to `as_any`.
`any` now takes a `Box<Self>` and returns a `Box<dyn Any>`.
---
## Changelog
### Added:
- `any()` method
- `represents()` method
### Changed:
- `Reflect` is now a safe trait
- `downcast()` is now safe
- The old `any` is now called `as_any`, and `any_mut` is now `as_mut_any`
## Migration Guide
- Reflect derives should not have to change anything
- Manual reflect impls will need to remove the `unsafe` keyword, add `any()` implementations, and rename the old `any` and `any_mut` to `as_any` and `as_mut_any`.
- Calls to `any`/`any_mut` must be changed to `as_any`/`as_mut_any`
## Points of discussion:
- Should renaming `any` be avoided and instead name the new method `any_box`?
- ~~Could there be a performance regression from avoiding the unsafe? I doubt it, but this change does seem to introduce redundant checks.~~
- ~~Could/should `is` and `type_id()` be implemented differently? For example, moving `is` onto `Reflect` as an `fn(&self, TypeId) -> bool`~~
Co-authored-by: PROMETHIA-27 <42193387+PROMETHIA-27@users.noreply.github.com>
2022-06-27 16:52:25 +00:00
} ;
let foo2 : Box < dyn Reflect > = Box ::new ( foo . clone ( ) ) ;
assert_eq! ( foo , * foo2 . downcast ::< Foo > ( ) . unwrap ( ) ) ;
}
bevy_reflect: Get owned fields (#5728)
# Objective
Sometimes it's useful to be able to retrieve all the fields of a container type so that they may be processed separately. With reflection, however, we typically only have access to references.
The only alternative is to "clone" the value using `Reflect::clone_value`. This, however, returns a Dynamic type in most cases. The solution there would be to use `FromReflect` instead, but this also has a problem in that it means we need to add `FromReflect` as an additional bound.
## Solution
Add a `drain` method to all container traits. This returns a `Vec<Box<dyn Reflect>>` (except for `Map` which returns `Vec<(Box<dyn Reflect>, Box<dyn Reflect>)>`).
This allows us to do things a lot simpler. For example, if we finished processing a struct and just need a particular value:
```rust
// === OLD === //
/// May or may not return a Dynamic*** value (even if `container` wasn't a `DynamicStruct`)
fn get_output(container: Box<dyn Struct>, output_index: usize) -> Box<dyn Reflect> {
container.field_at(output_index).unwrap().clone_value()
}
// === NEW === //
/// Returns _exactly_ whatever was in the given struct
fn get_output(container: Box<dyn Struct>, output_index: usize) -> Box<dyn Reflect> {
container.drain().remove(output_index).unwrap()
}
```
### Discussion
* Is `drain` the best method name? It makes sense that it "drains" all the fields and that it consumes the container in the process, but I'm open to alternatives.
---
## Changelog
* Added a `drain` method to the following traits:
* `Struct`
* `TupleStruct`
* `Tuple`
* `Array`
* `List`
* `Map`
* `Enum`
2022-08-30 21:20:58 +00:00
#[ test ]
fn should_drain_fields ( ) {
let array_value : Box < dyn Array > = Box ::new ( [ 123_ i32 , 321_ i32 ] ) ;
let fields = array_value . drain ( ) ;
assert! ( fields [ 0 ] . reflect_partial_eq ( & 123_ i32 ) . unwrap_or_default ( ) ) ;
assert! ( fields [ 1 ] . reflect_partial_eq ( & 321_ i32 ) . unwrap_or_default ( ) ) ;
let list_value : Box < dyn List > = Box ::new ( vec! [ 123_ i32 , 321_ i32 ] ) ;
let fields = list_value . drain ( ) ;
assert! ( fields [ 0 ] . reflect_partial_eq ( & 123_ i32 ) . unwrap_or_default ( ) ) ;
assert! ( fields [ 1 ] . reflect_partial_eq ( & 321_ i32 ) . unwrap_or_default ( ) ) ;
let tuple_value : Box < dyn Tuple > = Box ::new ( ( 123_ i32 , 321_ i32 ) ) ;
let fields = tuple_value . drain ( ) ;
assert! ( fields [ 0 ] . reflect_partial_eq ( & 123_ i32 ) . unwrap_or_default ( ) ) ;
assert! ( fields [ 1 ] . reflect_partial_eq ( & 321_ i32 ) . unwrap_or_default ( ) ) ;
let map_value : Box < dyn Map > = Box ::new ( HashMap ::from ( [ ( 123_ i32 , 321_ i32 ) ] ) ) ;
let fields = map_value . drain ( ) ;
assert! ( fields [ 0 ] . 0. reflect_partial_eq ( & 123_ i32 ) . unwrap_or_default ( ) ) ;
assert! ( fields [ 0 ] . 1. reflect_partial_eq ( & 321_ i32 ) . unwrap_or_default ( ) ) ;
}
2020-11-28 00:39:59 +00:00
#[ test ]
fn reflect_take ( ) {
#[ derive(Reflect, Debug, PartialEq) ]
Reflection cleanup (#1536)
This is an effort to provide the correct `#[reflect_value(...)]` attributes where they are needed.
Supersedes #1533 and resolves #1528.
---
I am working under the following assumptions (thanks to @bjorn3 and @Davier for advice here):
- Any `enum` that derives `Reflect` and one or more of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } needs a `#[reflect_value(...)]` attribute containing the same subset of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } that is present on the derive.
- Same as above for `struct` and `#[reflect(...)]`, respectively.
- If a `struct` is used as a component, it should also have `#[reflect(Component)]`
- All reflected types should be registered in their plugins
I treated the following as components (added `#[reflect(Component)]` if necessary):
- `bevy_render`
- `struct RenderLayers`
- `bevy_transform`
- `struct GlobalTransform`
- `struct Parent`
- `struct Transform`
- `bevy_ui`
- `struct Style`
Not treated as components:
- `bevy_math`
- `struct Size<T>`
- `struct Rect<T>`
- Note: The updates for `Size<T>` and `Rect<T>` in `bevy::math::geometry` required using @Davier's suggestion to add `+ PartialEq` to the trait bound. I then registered the specific types used over in `bevy_ui` such as `Size<Val>`, etc. in `bevy_ui`'s plugin, since `bevy::math` does not contain a plugin.
- `bevy_render`
- `struct Color`
- `struct PipelineSpecialization`
- `struct ShaderSpecialization`
- `enum PrimitiveTopology`
- `enum IndexFormat`
Not Addressed:
- I am not searching for components in Bevy that are _not_ reflected. So if there are components that are not reflected that should be reflected, that will need to be figured out in another PR.
- I only added `#[reflect(...)]` or `#[reflect_value(...)]` entries for the set of four traits { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } _if they were derived via `#[derive(...)]`_. I did not look for manual trait implementations of the same set of four, nor did I consider any traits outside the four. Are those other possibilities something that needs to be looked into?
2021-03-09 23:39:41 +00:00
#[ reflect(PartialEq) ]
2020-11-28 00:39:59 +00:00
struct Bar {
x : u32 ,
}
let x : Box < dyn Reflect > = Box ::new ( Bar { x : 2 } ) ;
let y = x . take ::< Bar > ( ) . unwrap ( ) ;
assert_eq! ( y , Bar { x : 2 } ) ;
}
2021-02-02 21:57:26 +00:00
#[ test ]
fn dynamic_names ( ) {
let list = Vec ::< usize > ::new ( ) ;
2022-05-13 01:13:30 +00:00
let dyn_list = List ::clone_dynamic ( & list ) ;
2021-02-02 21:57:26 +00:00
assert_eq! ( dyn_list . type_name ( ) , std ::any ::type_name ::< Vec < usize > > ( ) ) ;
2022-05-13 01:13:30 +00:00
let array = [ b '0' ; 4 ] ;
let dyn_array = Array ::clone_dynamic ( & array ) ;
assert_eq! ( dyn_array . type_name ( ) , std ::any ::type_name ::< [ u8 ; 4 ] > ( ) ) ;
2021-02-02 21:57:26 +00:00
let map = HashMap ::< usize , String > ::default ( ) ;
let dyn_map = map . clone_dynamic ( ) ;
assert_eq! (
dyn_map . type_name ( ) ,
std ::any ::type_name ::< HashMap < usize , String > > ( )
) ;
let tuple = ( 0 usize , " 1 " . to_string ( ) , 2.0 f32 ) ;
let mut dyn_tuple = tuple . clone_dynamic ( ) ;
dyn_tuple . insert ::< usize > ( 3 ) ;
assert_eq! (
dyn_tuple . type_name ( ) ,
std ::any ::type_name ::< ( usize , String , f32 , usize ) > ( )
) ;
#[ derive(Reflect) ]
struct TestStruct {
a : usize ,
}
let struct_ = TestStruct { a : 0 } ;
let dyn_struct = struct_ . clone_dynamic ( ) ;
assert_eq! ( dyn_struct . type_name ( ) , std ::any ::type_name ::< TestStruct > ( ) ) ;
#[ derive(Reflect) ]
struct TestTupleStruct ( usize ) ;
let tuple_struct = TestTupleStruct ( 0 ) ;
let dyn_tuple_struct = tuple_struct . clone_dynamic ( ) ;
assert_eq! (
dyn_tuple_struct . type_name ( ) ,
std ::any ::type_name ::< TestTupleStruct > ( )
) ;
}
2022-04-25 13:54:48 +00:00
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective
> Resolves #4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField::new::<T>()];
let info = TupleStructInfo::new::<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e7736a6f8252e10e543e52722107649d3f) and main (c309acd4322b1c3b2089e247a2d28b938eb7b56d).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-06-09 21:18:15 +00:00
#[ test ]
fn reflect_type_info ( ) {
// TypeInfo
let info = i32 ::type_info ( ) ;
assert_eq! ( std ::any ::type_name ::< i32 > ( ) , info . type_name ( ) ) ;
assert_eq! ( std ::any ::TypeId ::of ::< i32 > ( ) , info . type_id ( ) ) ;
// TypeInfo (unsized)
assert_eq! (
std ::any ::TypeId ::of ::< dyn Reflect > ( ) ,
< dyn Reflect as Typed > ::type_info ( ) . type_id ( )
) ;
// TypeInfo (instance)
let value : & dyn Reflect = & 123_ i32 ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< i32 > ( ) ) ;
// Struct
#[ derive(Reflect) ]
struct MyStruct {
foo : i32 ,
bar : usize ,
}
let info = MyStruct ::type_info ( ) ;
if let TypeInfo ::Struct ( info ) = info {
assert! ( info . is ::< MyStruct > ( ) ) ;
assert_eq! ( std ::any ::type_name ::< MyStruct > ( ) , info . type_name ( ) ) ;
assert_eq! (
std ::any ::type_name ::< i32 > ( ) ,
info . field ( " foo " ) . unwrap ( ) . type_name ( )
) ;
assert_eq! (
std ::any ::TypeId ::of ::< i32 > ( ) ,
info . field ( " foo " ) . unwrap ( ) . type_id ( )
) ;
assert! ( info . field ( " foo " ) . unwrap ( ) . is ::< i32 > ( ) ) ;
assert_eq! ( " foo " , info . field ( " foo " ) . unwrap ( ) . name ( ) ) ;
assert_eq! (
std ::any ::type_name ::< usize > ( ) ,
info . field_at ( 1 ) . unwrap ( ) . type_name ( )
) ;
} else {
panic! ( " Expected `TypeInfo::Struct` " ) ;
}
let value : & dyn Reflect = & MyStruct { foo : 123 , bar : 321 } ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< MyStruct > ( ) ) ;
// Struct (generic)
#[ derive(Reflect) ]
struct MyGenericStruct < T : Reflect > {
foo : T ,
bar : usize ,
}
let info = < MyGenericStruct < i32 > > ::type_info ( ) ;
if let TypeInfo ::Struct ( info ) = info {
assert! ( info . is ::< MyGenericStruct < i32 > > ( ) ) ;
assert_eq! (
std ::any ::type_name ::< MyGenericStruct < i32 > > ( ) ,
info . type_name ( )
) ;
assert_eq! (
std ::any ::type_name ::< i32 > ( ) ,
info . field ( " foo " ) . unwrap ( ) . type_name ( )
) ;
assert_eq! ( " foo " , info . field ( " foo " ) . unwrap ( ) . name ( ) ) ;
assert_eq! (
std ::any ::type_name ::< usize > ( ) ,
info . field_at ( 1 ) . unwrap ( ) . type_name ( )
) ;
} else {
panic! ( " Expected `TypeInfo::Struct` " ) ;
}
let value : & dyn Reflect = & MyGenericStruct {
foo : String ::from ( " Hello! " ) ,
bar : 321 ,
} ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< MyGenericStruct < String > > ( ) ) ;
// Tuple Struct
#[ derive(Reflect) ]
struct MyTupleStruct ( usize , i32 , MyStruct ) ;
let info = MyTupleStruct ::type_info ( ) ;
if let TypeInfo ::TupleStruct ( info ) = info {
assert! ( info . is ::< MyTupleStruct > ( ) ) ;
assert_eq! ( std ::any ::type_name ::< MyTupleStruct > ( ) , info . type_name ( ) ) ;
assert_eq! (
std ::any ::type_name ::< i32 > ( ) ,
info . field_at ( 1 ) . unwrap ( ) . type_name ( )
) ;
assert! ( info . field_at ( 1 ) . unwrap ( ) . is ::< i32 > ( ) ) ;
} else {
panic! ( " Expected `TypeInfo::TupleStruct` " ) ;
}
// Tuple
type MyTuple = ( u32 , f32 , String ) ;
let info = MyTuple ::type_info ( ) ;
if let TypeInfo ::Tuple ( info ) = info {
assert! ( info . is ::< MyTuple > ( ) ) ;
assert_eq! ( std ::any ::type_name ::< MyTuple > ( ) , info . type_name ( ) ) ;
assert_eq! (
std ::any ::type_name ::< f32 > ( ) ,
info . field_at ( 1 ) . unwrap ( ) . type_name ( )
) ;
} else {
panic! ( " Expected `TypeInfo::Tuple` " ) ;
}
let value : & dyn Reflect = & ( 123_ u32 , 1.23_ f32 , String ::from ( " Hello! " ) ) ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< MyTuple > ( ) ) ;
// List
type MyList = Vec < usize > ;
let info = MyList ::type_info ( ) ;
if let TypeInfo ::List ( info ) = info {
assert! ( info . is ::< MyList > ( ) ) ;
assert! ( info . item_is ::< usize > ( ) ) ;
assert_eq! ( std ::any ::type_name ::< MyList > ( ) , info . type_name ( ) ) ;
assert_eq! ( std ::any ::type_name ::< usize > ( ) , info . item_type_name ( ) ) ;
} else {
panic! ( " Expected `TypeInfo::List` " ) ;
}
let value : & dyn Reflect = & vec! [ 123_ usize ] ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< MyList > ( ) ) ;
// List (SmallVec)
#[ cfg(feature = " smallvec " ) ]
{
type MySmallVec = smallvec ::SmallVec < [ String ; 2 ] > ;
let info = MySmallVec ::type_info ( ) ;
if let TypeInfo ::List ( info ) = info {
assert! ( info . is ::< MySmallVec > ( ) ) ;
assert! ( info . item_is ::< String > ( ) ) ;
assert_eq! ( std ::any ::type_name ::< MySmallVec > ( ) , info . type_name ( ) ) ;
assert_eq! ( std ::any ::type_name ::< String > ( ) , info . item_type_name ( ) ) ;
} else {
panic! ( " Expected `TypeInfo::List` " ) ;
}
let value : MySmallVec = smallvec ::smallvec! [ String ::default ( ) ; 2 ] ;
let value : & dyn Reflect = & value ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< MySmallVec > ( ) ) ;
}
// Array
type MyArray = [ usize ; 3 ] ;
let info = MyArray ::type_info ( ) ;
if let TypeInfo ::Array ( info ) = info {
assert! ( info . is ::< MyArray > ( ) ) ;
assert! ( info . item_is ::< usize > ( ) ) ;
assert_eq! ( std ::any ::type_name ::< MyArray > ( ) , info . type_name ( ) ) ;
assert_eq! ( std ::any ::type_name ::< usize > ( ) , info . item_type_name ( ) ) ;
assert_eq! ( 3 , info . capacity ( ) ) ;
} else {
panic! ( " Expected `TypeInfo::Array` " ) ;
}
let value : & dyn Reflect = & [ 1 usize , 2 usize , 3 usize ] ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< MyArray > ( ) ) ;
// Map
type MyMap = HashMap < usize , f32 > ;
let info = MyMap ::type_info ( ) ;
if let TypeInfo ::Map ( info ) = info {
assert! ( info . is ::< MyMap > ( ) ) ;
assert! ( info . key_is ::< usize > ( ) ) ;
assert! ( info . value_is ::< f32 > ( ) ) ;
assert_eq! ( std ::any ::type_name ::< MyMap > ( ) , info . type_name ( ) ) ;
assert_eq! ( std ::any ::type_name ::< usize > ( ) , info . key_type_name ( ) ) ;
assert_eq! ( std ::any ::type_name ::< f32 > ( ) , info . value_type_name ( ) ) ;
} else {
panic! ( " Expected `TypeInfo::Map` " ) ;
}
let value : & dyn Reflect = & MyMap ::new ( ) ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< MyMap > ( ) ) ;
// Value
type MyValue = String ;
let info = MyValue ::type_info ( ) ;
if let TypeInfo ::Value ( info ) = info {
assert! ( info . is ::< MyValue > ( ) ) ;
assert_eq! ( std ::any ::type_name ::< MyValue > ( ) , info . type_name ( ) ) ;
} else {
panic! ( " Expected `TypeInfo::Value` " ) ;
}
let value : & dyn Reflect = & String ::from ( " Hello! " ) ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< MyValue > ( ) ) ;
// Dynamic
type MyDynamic = DynamicList ;
let info = MyDynamic ::type_info ( ) ;
if let TypeInfo ::Dynamic ( info ) = info {
assert! ( info . is ::< MyDynamic > ( ) ) ;
assert_eq! ( std ::any ::type_name ::< MyDynamic > ( ) , info . type_name ( ) ) ;
} else {
panic! ( " Expected `TypeInfo::Dynamic` " ) ;
}
let value : & dyn Reflect = & DynamicList ::default ( ) ;
let info = value . get_type_info ( ) ;
assert! ( info . is ::< MyDynamic > ( ) ) ;
}
2022-10-18 13:49:57 +00:00
#[ cfg(feature = " documentation " ) ]
mod docstrings {
use super ::* ;
#[ test ]
fn should_not_contain_docs ( ) {
// Regular comments do not count as doc comments,
// and are therefore not reflected.
#[ derive(Reflect) ]
struct SomeStruct ;
let info = < SomeStruct as Typed > ::type_info ( ) ;
assert_eq! ( None , info . docs ( ) ) ;
/*
* Block comments do not count as doc comments ,
* and are therefore not reflected .
* /
#[ derive(Reflect) ]
struct SomeOtherStruct ;
let info = < SomeOtherStruct as Typed > ::type_info ( ) ;
assert_eq! ( None , info . docs ( ) ) ;
}
#[ test ]
fn should_contain_docs ( ) {
/// Some struct.
///
/// # Example
///
/// ```ignore
/// let some_struct = SomeStruct;
/// ```
#[ derive(Reflect) ]
struct SomeStruct ;
let info = < SomeStruct as Typed > ::type_info ( ) ;
assert_eq! (
Some ( " Some struct. \n \n # Example \n \n ```ignore \n let some_struct = SomeStruct; \n ``` " ) ,
info . docs ( )
) ;
#[ doc = " The compiler automatically converts `///`-style comments into `#[doc]` attributes. " ]
#[ doc = " Of course, you _could_ use the attribute directly if you wanted to. " ]
#[ doc = " Both will be reflected. " ]
#[ derive(Reflect) ]
struct SomeOtherStruct ;
let info = < SomeOtherStruct as Typed > ::type_info ( ) ;
assert_eq! (
Some ( " The compiler automatically converts `///`-style comments into `#[doc]` attributes. \n Of course, you _could_ use the attribute directly if you wanted to. \n Both will be reflected. " ) ,
info . docs ( )
) ;
/// Some tuple struct.
#[ derive(Reflect) ]
struct SomeTupleStruct ( usize ) ;
let info = < SomeTupleStruct as Typed > ::type_info ( ) ;
assert_eq! ( Some ( " Some tuple struct. " ) , info . docs ( ) ) ;
/// Some enum.
#[ derive(Reflect) ]
enum SomeEnum {
Foo ,
}
let info = < SomeEnum as Typed > ::type_info ( ) ;
assert_eq! ( Some ( " Some enum. " ) , info . docs ( ) ) ;
#[ derive(Clone) ]
struct SomePrimitive ;
impl_reflect_value! (
/// Some primitive for which we have attributed custom documentation.
SomePrimitive
) ;
let info = < SomePrimitive as Typed > ::type_info ( ) ;
assert_eq! (
Some ( " Some primitive for which we have attributed custom documentation. " ) ,
info . docs ( )
) ;
}
#[ test ]
fn fields_should_contain_docs ( ) {
#[ derive(Reflect) ]
struct SomeStruct {
/// The name
name : String ,
/// The index
index : usize ,
// Not documented...
data : Vec < i32 > ,
}
let info = < SomeStruct as Typed > ::type_info ( ) ;
if let TypeInfo ::Struct ( info ) = info {
let mut fields = info . iter ( ) ;
assert_eq! ( Some ( " The name " ) , fields . next ( ) . unwrap ( ) . docs ( ) ) ;
assert_eq! ( Some ( " The index " ) , fields . next ( ) . unwrap ( ) . docs ( ) ) ;
assert_eq! ( None , fields . next ( ) . unwrap ( ) . docs ( ) ) ;
} else {
panic! ( " expected struct info " ) ;
}
}
#[ test ]
fn variants_should_contain_docs ( ) {
#[ derive(Reflect) ]
enum SomeEnum {
// Not documented...
Nothing ,
/// Option A
A (
/// Index
usize ,
) ,
/// Option B
B {
/// Name
name : String ,
} ,
}
let info = < SomeEnum as Typed > ::type_info ( ) ;
if let TypeInfo ::Enum ( info ) = info {
let mut variants = info . iter ( ) ;
assert_eq! ( None , variants . next ( ) . unwrap ( ) . docs ( ) ) ;
let variant = variants . next ( ) . unwrap ( ) ;
assert_eq! ( Some ( " Option A " ) , variant . docs ( ) ) ;
if let VariantInfo ::Tuple ( variant ) = variant {
let field = variant . field_at ( 0 ) . unwrap ( ) ;
assert_eq! ( Some ( " Index " ) , field . docs ( ) ) ;
} else {
panic! ( " expected tuple variant " )
}
let variant = variants . next ( ) . unwrap ( ) ;
assert_eq! ( Some ( " Option B " ) , variant . docs ( ) ) ;
if let VariantInfo ::Struct ( variant ) = variant {
let field = variant . field_at ( 0 ) . unwrap ( ) ;
assert_eq! ( Some ( " Name " ) , field . docs ( ) ) ;
} else {
panic! ( " expected struct variant " )
}
} else {
panic! ( " expected enum info " ) ;
}
}
}
2022-04-25 13:54:48 +00:00
#[ test ]
fn as_reflect ( ) {
trait TestTrait : Reflect { }
#[ derive(Reflect) ]
struct TestStruct ;
impl TestTrait for TestStruct { }
let trait_object : Box < dyn TestTrait > = Box ::new ( TestStruct ) ;
// Should compile:
let _ = trait_object . as_reflect ( ) ;
}
2022-05-09 16:32:15 +00:00
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
#[ test ]
fn should_reflect_debug ( ) {
#[ derive(Reflect) ]
struct Test {
value : usize ,
list : Vec < String > ,
array : [ f32 ; 3 ] ,
map : HashMap < i32 , f32 > ,
a_struct : SomeStruct ,
a_tuple_struct : SomeTupleStruct ,
bevy_reflect: Reflect enums (#4761)
# Objective
> This is a revival of #1347. Credit for the original PR should go to @Davier.
Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API.
## Solution
Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically:
```rust
#[derive(Reflect)]
enum Foo {
A,
B(usize),
C { value: f32 },
}
let mut foo = Foo::B(123);
assert_eq!("B", foo.variant_name());
assert_eq!(1, foo.field_len());
let new_value = DynamicEnum::from(Foo::C { value: 1.23 });
foo.apply(&new_value);
assert_eq!(Foo::C{value: 1.23}, foo);
```
### Features
#### Derive Macro
Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection.
```rust
#[derive(Reflect)]
enum TestEnum {
A,
// Uncomment to ignore all of `B`
// #[reflect(ignore)]
B(usize),
C {
// Uncomment to ignore only field `foo` of `C`
// #[reflect(ignore)]
foo: f32,
bar: bool,
},
}
```
#### Dynamic Enums
Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro.
```rust
let mut value = TestEnum::A;
// Create from a concrete instance
let dyn_enum = DynamicEnum::from(TestEnum::B(123));
value.apply(&dyn_enum);
assert_eq!(TestEnum::B(123), value);
// Create a purely dynamic instance
let dyn_enum = DynamicEnum::new("TestEnum", "A", ());
value.apply(&dyn_enum);
assert_eq!(TestEnum::A, value);
```
#### Variants
An enum value is always represented as one of its variants— never the enum in its entirety.
```rust
let value = TestEnum::A;
assert_eq!("A", value.variant_name());
// Since we are using the `A` variant, we cannot also be the `B` variant
assert_ne!("B", value.variant_name());
```
All variant types are representable within the `Enum` trait: unit, struct, and tuple.
You can get the current type like:
```rust
match value.variant_type() {
VariantType::Unit => println!("A unit variant!"),
VariantType::Struct => println!("A struct variant!"),
VariantType::Tuple => println!("A tuple variant!"),
}
```
> Notice that they don't contain any values representing the fields. These are purely tags.
If a variant has them, you can access the fields as well:
```rust
let mut value = TestEnum::C {
foo: 1.23,
bar: false
};
// Read/write specific fields
*value.field_mut("bar").unwrap() = true;
// Iterate over the entire collection of fields
for field in value.iter_fields() {
println!("{} = {:?}", field.name(), field.value());
}
```
#### Variant Swapping
It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them.
```rust
let mut value: Box<dyn Enum> = Box::new(TestEnum::A);
value.set(Box::new(TestEnum::B(123))).unwrap();
```
#### Serialization
Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized.
> Note, like the rest of reflection-based serialization, the order of the keys in these representations is important!
##### Unit
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "A"
}
}
```
##### Tuple
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "B",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
<details>
<summary>Effects on Option</summary>
This ends up making `Option` look a little ugly:
```json
{
"type": "core::option::Option<usize>",
"enum": {
"variant": "Some",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
</details>
##### Struct
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "C",
"struct": {
"foo": {
"type": "f32",
"value": 1.23
},
"bar": {
"type": "bool",
"value": false
}
}
}
}
```
## Design Decisions
<details>
<summary><strong>View Section</strong></summary>
This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future.
### Variant Representation
One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though.
#### Alternatives
##### 1. Variant Traits
One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like:
```rust
pub trait Enum: Reflect {
fn variant(&self) -> Variant;
}
pub enum Variant<'a> {
Unit,
Tuple(&'a dyn TupleVariant),
Struct(&'a dyn StructVariant),
}
pub trait TupleVariant {
fn field_len(&self) -> usize;
// ...
}
```
And then do things like:
```rust
fn get_tuple_len(foo: &dyn Enum) -> usize {
match foo.variant() {
Variant::Tuple(tuple) => tuple.field_len(),
_ => panic!("not a tuple variant!")
}
}
```
The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun:
```rust
let foo: Option<i32> = None;
let my_enum = Box::new(foo) as Box<dyn TupleVariant>;
```
Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants.
##### 2. Variant Structs
To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations.
Each variant struct would probably look something like:
```rust
pub trait Enum: Reflect {
fn variant_mut(&self) -> VariantMut;
}
pub enum VariantMut<'a> {
Unit,
Tuple(TupleVariantMut),
Struct(StructVariantMut),
}
struct StructVariantMut<'a> {
fields: Vec<&'a mut dyn Reflect>,
field_indices: HashMap<Cow<'static, str>, usize>
}
```
This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough.
##### 3. Generated Structs
The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant.
Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC.
In order to work properly, the enum had to be transmuted to the generated struct:
```rust
fn variant(&self) -> crate::EnumVariant<'_> {
match self {
Foo::Bar {value: i32} => {
let wrapper_ref = unsafe {
std::mem::transmute::<&Self, &FooBarWrapper>(self)
};
crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct)
}
}
}
```
This works because `FooBarWrapper` is defined as `repr(transparent)`.
Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because:
* To reduce generated code (which would hopefully speed up compile times)
* To avoid cluttering the code with generated structs not visible to the user
* To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems)
* To avoid additional unsafe blocks
* My own misunderstanding of @Davier's code
That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation.
#### Benefits of All-in-One
As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.).
The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't).
This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter):
```rust
let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123};
// We know it's the `Bar` variant
let field = dyn_enum.field("value").unwrap();
```
Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes.
Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums.
</details>
---
## Changelog
### Added
* Added `Enum` trait
* Added `Enum` impl to `Reflect` derive macro
* Added `DynamicEnum` struct
* Added `DynamicVariant`
* Added `EnumInfo`
* Added `VariantInfo`
* Added `StructVariantInfo`
* Added `TupleVariantInfo`
* Added `UnitVariantInfo`
* Added serializtion/deserialization support for enums
* Added `EnumSerializer`
* Added `VariantType`
* Added `VariantFieldIter`
* Added `VariantField`
* Added `enum_partial_eq(...)`
* Added `enum_hash(...)`
### Changed
* `Option<T>` now implements `Enum`
* `bevy_window` now depends on `bevy_reflect`
* Implemented `Reflect` and `FromReflect` for `WindowId`
* Derive `FromReflect` on `PerspectiveProjection`
* Derive `FromReflect` on `OrthographicProjection`
* Derive `FromReflect` on `WindowOrigin`
* Derive `FromReflect` on `ScalingMode`
* Derive `FromReflect` on `DepthCalculation`
## Migration Guide
* Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]`
* Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums.
---
Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated!
Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
enum_unit : SomeEnum ,
enum_tuple : SomeEnum ,
enum_struct : SomeEnum ,
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
custom : CustomDebug ,
#[ reflect(ignore) ]
#[ allow(dead_code) ]
ignored : isize ,
}
#[ derive(Reflect) ]
struct SomeStruct {
foo : String ,
}
bevy_reflect: Reflect enums (#4761)
# Objective
> This is a revival of #1347. Credit for the original PR should go to @Davier.
Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API.
## Solution
Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically:
```rust
#[derive(Reflect)]
enum Foo {
A,
B(usize),
C { value: f32 },
}
let mut foo = Foo::B(123);
assert_eq!("B", foo.variant_name());
assert_eq!(1, foo.field_len());
let new_value = DynamicEnum::from(Foo::C { value: 1.23 });
foo.apply(&new_value);
assert_eq!(Foo::C{value: 1.23}, foo);
```
### Features
#### Derive Macro
Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection.
```rust
#[derive(Reflect)]
enum TestEnum {
A,
// Uncomment to ignore all of `B`
// #[reflect(ignore)]
B(usize),
C {
// Uncomment to ignore only field `foo` of `C`
// #[reflect(ignore)]
foo: f32,
bar: bool,
},
}
```
#### Dynamic Enums
Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro.
```rust
let mut value = TestEnum::A;
// Create from a concrete instance
let dyn_enum = DynamicEnum::from(TestEnum::B(123));
value.apply(&dyn_enum);
assert_eq!(TestEnum::B(123), value);
// Create a purely dynamic instance
let dyn_enum = DynamicEnum::new("TestEnum", "A", ());
value.apply(&dyn_enum);
assert_eq!(TestEnum::A, value);
```
#### Variants
An enum value is always represented as one of its variants— never the enum in its entirety.
```rust
let value = TestEnum::A;
assert_eq!("A", value.variant_name());
// Since we are using the `A` variant, we cannot also be the `B` variant
assert_ne!("B", value.variant_name());
```
All variant types are representable within the `Enum` trait: unit, struct, and tuple.
You can get the current type like:
```rust
match value.variant_type() {
VariantType::Unit => println!("A unit variant!"),
VariantType::Struct => println!("A struct variant!"),
VariantType::Tuple => println!("A tuple variant!"),
}
```
> Notice that they don't contain any values representing the fields. These are purely tags.
If a variant has them, you can access the fields as well:
```rust
let mut value = TestEnum::C {
foo: 1.23,
bar: false
};
// Read/write specific fields
*value.field_mut("bar").unwrap() = true;
// Iterate over the entire collection of fields
for field in value.iter_fields() {
println!("{} = {:?}", field.name(), field.value());
}
```
#### Variant Swapping
It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them.
```rust
let mut value: Box<dyn Enum> = Box::new(TestEnum::A);
value.set(Box::new(TestEnum::B(123))).unwrap();
```
#### Serialization
Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized.
> Note, like the rest of reflection-based serialization, the order of the keys in these representations is important!
##### Unit
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "A"
}
}
```
##### Tuple
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "B",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
<details>
<summary>Effects on Option</summary>
This ends up making `Option` look a little ugly:
```json
{
"type": "core::option::Option<usize>",
"enum": {
"variant": "Some",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
</details>
##### Struct
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "C",
"struct": {
"foo": {
"type": "f32",
"value": 1.23
},
"bar": {
"type": "bool",
"value": false
}
}
}
}
```
## Design Decisions
<details>
<summary><strong>View Section</strong></summary>
This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future.
### Variant Representation
One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though.
#### Alternatives
##### 1. Variant Traits
One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like:
```rust
pub trait Enum: Reflect {
fn variant(&self) -> Variant;
}
pub enum Variant<'a> {
Unit,
Tuple(&'a dyn TupleVariant),
Struct(&'a dyn StructVariant),
}
pub trait TupleVariant {
fn field_len(&self) -> usize;
// ...
}
```
And then do things like:
```rust
fn get_tuple_len(foo: &dyn Enum) -> usize {
match foo.variant() {
Variant::Tuple(tuple) => tuple.field_len(),
_ => panic!("not a tuple variant!")
}
}
```
The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun:
```rust
let foo: Option<i32> = None;
let my_enum = Box::new(foo) as Box<dyn TupleVariant>;
```
Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants.
##### 2. Variant Structs
To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations.
Each variant struct would probably look something like:
```rust
pub trait Enum: Reflect {
fn variant_mut(&self) -> VariantMut;
}
pub enum VariantMut<'a> {
Unit,
Tuple(TupleVariantMut),
Struct(StructVariantMut),
}
struct StructVariantMut<'a> {
fields: Vec<&'a mut dyn Reflect>,
field_indices: HashMap<Cow<'static, str>, usize>
}
```
This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough.
##### 3. Generated Structs
The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant.
Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC.
In order to work properly, the enum had to be transmuted to the generated struct:
```rust
fn variant(&self) -> crate::EnumVariant<'_> {
match self {
Foo::Bar {value: i32} => {
let wrapper_ref = unsafe {
std::mem::transmute::<&Self, &FooBarWrapper>(self)
};
crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct)
}
}
}
```
This works because `FooBarWrapper` is defined as `repr(transparent)`.
Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because:
* To reduce generated code (which would hopefully speed up compile times)
* To avoid cluttering the code with generated structs not visible to the user
* To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems)
* To avoid additional unsafe blocks
* My own misunderstanding of @Davier's code
That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation.
#### Benefits of All-in-One
As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.).
The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't).
This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter):
```rust
let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123};
// We know it's the `Bar` variant
let field = dyn_enum.field("value").unwrap();
```
Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes.
Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums.
</details>
---
## Changelog
### Added
* Added `Enum` trait
* Added `Enum` impl to `Reflect` derive macro
* Added `DynamicEnum` struct
* Added `DynamicVariant`
* Added `EnumInfo`
* Added `VariantInfo`
* Added `StructVariantInfo`
* Added `TupleVariantInfo`
* Added `UnitVariantInfo`
* Added serializtion/deserialization support for enums
* Added `EnumSerializer`
* Added `VariantType`
* Added `VariantFieldIter`
* Added `VariantField`
* Added `enum_partial_eq(...)`
* Added `enum_hash(...)`
### Changed
* `Option<T>` now implements `Enum`
* `bevy_window` now depends on `bevy_reflect`
* Implemented `Reflect` and `FromReflect` for `WindowId`
* Derive `FromReflect` on `PerspectiveProjection`
* Derive `FromReflect` on `OrthographicProjection`
* Derive `FromReflect` on `WindowOrigin`
* Derive `FromReflect` on `ScalingMode`
* Derive `FromReflect` on `DepthCalculation`
## Migration Guide
* Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]`
* Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums.
---
Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated!
Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
#[ derive(Reflect) ]
enum SomeEnum {
A ,
B ( usize ) ,
C { value : i32 } ,
}
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
#[ derive(Reflect) ]
struct SomeTupleStruct ( String ) ;
#[ derive(Reflect) ]
#[ reflect(Debug) ]
struct CustomDebug ;
impl Debug for CustomDebug {
fn fmt ( & self , f : & mut Formatter < '_ > ) -> std ::fmt ::Result {
f . write_str ( " Cool debug! " )
}
}
let mut map = HashMap ::new ( ) ;
map . insert ( 123 , 1.23 ) ;
let test = Test {
value : 123 ,
list : vec ! [ String ::from ( " A " ) , String ::from ( " B " ) , String ::from ( " C " ) ] ,
array : [ 1.0 , 2.0 , 3.0 ] ,
map ,
a_struct : SomeStruct {
foo : String ::from ( " A Struct! " ) ,
} ,
a_tuple_struct : SomeTupleStruct ( String ::from ( " A Tuple Struct! " ) ) ,
bevy_reflect: Reflect enums (#4761)
# Objective
> This is a revival of #1347. Credit for the original PR should go to @Davier.
Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API.
## Solution
Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically:
```rust
#[derive(Reflect)]
enum Foo {
A,
B(usize),
C { value: f32 },
}
let mut foo = Foo::B(123);
assert_eq!("B", foo.variant_name());
assert_eq!(1, foo.field_len());
let new_value = DynamicEnum::from(Foo::C { value: 1.23 });
foo.apply(&new_value);
assert_eq!(Foo::C{value: 1.23}, foo);
```
### Features
#### Derive Macro
Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection.
```rust
#[derive(Reflect)]
enum TestEnum {
A,
// Uncomment to ignore all of `B`
// #[reflect(ignore)]
B(usize),
C {
// Uncomment to ignore only field `foo` of `C`
// #[reflect(ignore)]
foo: f32,
bar: bool,
},
}
```
#### Dynamic Enums
Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro.
```rust
let mut value = TestEnum::A;
// Create from a concrete instance
let dyn_enum = DynamicEnum::from(TestEnum::B(123));
value.apply(&dyn_enum);
assert_eq!(TestEnum::B(123), value);
// Create a purely dynamic instance
let dyn_enum = DynamicEnum::new("TestEnum", "A", ());
value.apply(&dyn_enum);
assert_eq!(TestEnum::A, value);
```
#### Variants
An enum value is always represented as one of its variants— never the enum in its entirety.
```rust
let value = TestEnum::A;
assert_eq!("A", value.variant_name());
// Since we are using the `A` variant, we cannot also be the `B` variant
assert_ne!("B", value.variant_name());
```
All variant types are representable within the `Enum` trait: unit, struct, and tuple.
You can get the current type like:
```rust
match value.variant_type() {
VariantType::Unit => println!("A unit variant!"),
VariantType::Struct => println!("A struct variant!"),
VariantType::Tuple => println!("A tuple variant!"),
}
```
> Notice that they don't contain any values representing the fields. These are purely tags.
If a variant has them, you can access the fields as well:
```rust
let mut value = TestEnum::C {
foo: 1.23,
bar: false
};
// Read/write specific fields
*value.field_mut("bar").unwrap() = true;
// Iterate over the entire collection of fields
for field in value.iter_fields() {
println!("{} = {:?}", field.name(), field.value());
}
```
#### Variant Swapping
It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them.
```rust
let mut value: Box<dyn Enum> = Box::new(TestEnum::A);
value.set(Box::new(TestEnum::B(123))).unwrap();
```
#### Serialization
Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized.
> Note, like the rest of reflection-based serialization, the order of the keys in these representations is important!
##### Unit
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "A"
}
}
```
##### Tuple
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "B",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
<details>
<summary>Effects on Option</summary>
This ends up making `Option` look a little ugly:
```json
{
"type": "core::option::Option<usize>",
"enum": {
"variant": "Some",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
</details>
##### Struct
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "C",
"struct": {
"foo": {
"type": "f32",
"value": 1.23
},
"bar": {
"type": "bool",
"value": false
}
}
}
}
```
## Design Decisions
<details>
<summary><strong>View Section</strong></summary>
This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future.
### Variant Representation
One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though.
#### Alternatives
##### 1. Variant Traits
One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like:
```rust
pub trait Enum: Reflect {
fn variant(&self) -> Variant;
}
pub enum Variant<'a> {
Unit,
Tuple(&'a dyn TupleVariant),
Struct(&'a dyn StructVariant),
}
pub trait TupleVariant {
fn field_len(&self) -> usize;
// ...
}
```
And then do things like:
```rust
fn get_tuple_len(foo: &dyn Enum) -> usize {
match foo.variant() {
Variant::Tuple(tuple) => tuple.field_len(),
_ => panic!("not a tuple variant!")
}
}
```
The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun:
```rust
let foo: Option<i32> = None;
let my_enum = Box::new(foo) as Box<dyn TupleVariant>;
```
Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants.
##### 2. Variant Structs
To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations.
Each variant struct would probably look something like:
```rust
pub trait Enum: Reflect {
fn variant_mut(&self) -> VariantMut;
}
pub enum VariantMut<'a> {
Unit,
Tuple(TupleVariantMut),
Struct(StructVariantMut),
}
struct StructVariantMut<'a> {
fields: Vec<&'a mut dyn Reflect>,
field_indices: HashMap<Cow<'static, str>, usize>
}
```
This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough.
##### 3. Generated Structs
The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant.
Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC.
In order to work properly, the enum had to be transmuted to the generated struct:
```rust
fn variant(&self) -> crate::EnumVariant<'_> {
match self {
Foo::Bar {value: i32} => {
let wrapper_ref = unsafe {
std::mem::transmute::<&Self, &FooBarWrapper>(self)
};
crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct)
}
}
}
```
This works because `FooBarWrapper` is defined as `repr(transparent)`.
Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because:
* To reduce generated code (which would hopefully speed up compile times)
* To avoid cluttering the code with generated structs not visible to the user
* To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems)
* To avoid additional unsafe blocks
* My own misunderstanding of @Davier's code
That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation.
#### Benefits of All-in-One
As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.).
The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't).
This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter):
```rust
let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123};
// We know it's the `Bar` variant
let field = dyn_enum.field("value").unwrap();
```
Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes.
Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums.
</details>
---
## Changelog
### Added
* Added `Enum` trait
* Added `Enum` impl to `Reflect` derive macro
* Added `DynamicEnum` struct
* Added `DynamicVariant`
* Added `EnumInfo`
* Added `VariantInfo`
* Added `StructVariantInfo`
* Added `TupleVariantInfo`
* Added `UnitVariantInfo`
* Added serializtion/deserialization support for enums
* Added `EnumSerializer`
* Added `VariantType`
* Added `VariantFieldIter`
* Added `VariantField`
* Added `enum_partial_eq(...)`
* Added `enum_hash(...)`
### Changed
* `Option<T>` now implements `Enum`
* `bevy_window` now depends on `bevy_reflect`
* Implemented `Reflect` and `FromReflect` for `WindowId`
* Derive `FromReflect` on `PerspectiveProjection`
* Derive `FromReflect` on `OrthographicProjection`
* Derive `FromReflect` on `WindowOrigin`
* Derive `FromReflect` on `ScalingMode`
* Derive `FromReflect` on `DepthCalculation`
## Migration Guide
* Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]`
* Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums.
---
Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated!
Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
enum_unit : SomeEnum ::A ,
enum_tuple : SomeEnum ::B ( 123 ) ,
enum_struct : SomeEnum ::C { value : 321 } ,
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
custom : CustomDebug ,
ignored : 321 ,
} ;
let reflected : & dyn Reflect = & test ;
let expected = r #"
bevy_reflect ::tests ::should_reflect_debug ::Test {
value : 123 ,
list : [
" A " ,
" B " ,
" C " ,
] ,
array : [
1.0 ,
2.0 ,
3.0 ,
] ,
map : {
123 : 1.23 ,
} ,
a_struct : bevy_reflect ::tests ::should_reflect_debug ::SomeStruct {
foo : " A Struct! " ,
} ,
a_tuple_struct : bevy_reflect ::tests ::should_reflect_debug ::SomeTupleStruct (
" A Tuple Struct! " ,
) ,
bevy_reflect: Reflect enums (#4761)
# Objective
> This is a revival of #1347. Credit for the original PR should go to @Davier.
Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API.
## Solution
Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically:
```rust
#[derive(Reflect)]
enum Foo {
A,
B(usize),
C { value: f32 },
}
let mut foo = Foo::B(123);
assert_eq!("B", foo.variant_name());
assert_eq!(1, foo.field_len());
let new_value = DynamicEnum::from(Foo::C { value: 1.23 });
foo.apply(&new_value);
assert_eq!(Foo::C{value: 1.23}, foo);
```
### Features
#### Derive Macro
Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection.
```rust
#[derive(Reflect)]
enum TestEnum {
A,
// Uncomment to ignore all of `B`
// #[reflect(ignore)]
B(usize),
C {
// Uncomment to ignore only field `foo` of `C`
// #[reflect(ignore)]
foo: f32,
bar: bool,
},
}
```
#### Dynamic Enums
Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro.
```rust
let mut value = TestEnum::A;
// Create from a concrete instance
let dyn_enum = DynamicEnum::from(TestEnum::B(123));
value.apply(&dyn_enum);
assert_eq!(TestEnum::B(123), value);
// Create a purely dynamic instance
let dyn_enum = DynamicEnum::new("TestEnum", "A", ());
value.apply(&dyn_enum);
assert_eq!(TestEnum::A, value);
```
#### Variants
An enum value is always represented as one of its variants— never the enum in its entirety.
```rust
let value = TestEnum::A;
assert_eq!("A", value.variant_name());
// Since we are using the `A` variant, we cannot also be the `B` variant
assert_ne!("B", value.variant_name());
```
All variant types are representable within the `Enum` trait: unit, struct, and tuple.
You can get the current type like:
```rust
match value.variant_type() {
VariantType::Unit => println!("A unit variant!"),
VariantType::Struct => println!("A struct variant!"),
VariantType::Tuple => println!("A tuple variant!"),
}
```
> Notice that they don't contain any values representing the fields. These are purely tags.
If a variant has them, you can access the fields as well:
```rust
let mut value = TestEnum::C {
foo: 1.23,
bar: false
};
// Read/write specific fields
*value.field_mut("bar").unwrap() = true;
// Iterate over the entire collection of fields
for field in value.iter_fields() {
println!("{} = {:?}", field.name(), field.value());
}
```
#### Variant Swapping
It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them.
```rust
let mut value: Box<dyn Enum> = Box::new(TestEnum::A);
value.set(Box::new(TestEnum::B(123))).unwrap();
```
#### Serialization
Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized.
> Note, like the rest of reflection-based serialization, the order of the keys in these representations is important!
##### Unit
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "A"
}
}
```
##### Tuple
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "B",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
<details>
<summary>Effects on Option</summary>
This ends up making `Option` look a little ugly:
```json
{
"type": "core::option::Option<usize>",
"enum": {
"variant": "Some",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
</details>
##### Struct
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "C",
"struct": {
"foo": {
"type": "f32",
"value": 1.23
},
"bar": {
"type": "bool",
"value": false
}
}
}
}
```
## Design Decisions
<details>
<summary><strong>View Section</strong></summary>
This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future.
### Variant Representation
One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though.
#### Alternatives
##### 1. Variant Traits
One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like:
```rust
pub trait Enum: Reflect {
fn variant(&self) -> Variant;
}
pub enum Variant<'a> {
Unit,
Tuple(&'a dyn TupleVariant),
Struct(&'a dyn StructVariant),
}
pub trait TupleVariant {
fn field_len(&self) -> usize;
// ...
}
```
And then do things like:
```rust
fn get_tuple_len(foo: &dyn Enum) -> usize {
match foo.variant() {
Variant::Tuple(tuple) => tuple.field_len(),
_ => panic!("not a tuple variant!")
}
}
```
The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun:
```rust
let foo: Option<i32> = None;
let my_enum = Box::new(foo) as Box<dyn TupleVariant>;
```
Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants.
##### 2. Variant Structs
To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c)](https://github.com/bevyengine/bevy/pull/4761/commits/71d27ab3c6871bb188d8b46512db3b0922a56a0c) due to concerns about allocations.
Each variant struct would probably look something like:
```rust
pub trait Enum: Reflect {
fn variant_mut(&self) -> VariantMut;
}
pub enum VariantMut<'a> {
Unit,
Tuple(TupleVariantMut),
Struct(StructVariantMut),
}
struct StructVariantMut<'a> {
fields: Vec<&'a mut dyn Reflect>,
field_indices: HashMap<Cow<'static, str>, usize>
}
```
This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough.
##### 3. Generated Structs
The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant.
Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC.
In order to work properly, the enum had to be transmuted to the generated struct:
```rust
fn variant(&self) -> crate::EnumVariant<'_> {
match self {
Foo::Bar {value: i32} => {
let wrapper_ref = unsafe {
std::mem::transmute::<&Self, &FooBarWrapper>(self)
};
crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct)
}
}
}
```
This works because `FooBarWrapper` is defined as `repr(transparent)`.
Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because:
* To reduce generated code (which would hopefully speed up compile times)
* To avoid cluttering the code with generated structs not visible to the user
* To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems)
* To avoid additional unsafe blocks
* My own misunderstanding of @Davier's code
That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation.
#### Benefits of All-in-One
As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.).
The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't).
This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter):
```rust
let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123};
// We know it's the `Bar` variant
let field = dyn_enum.field("value").unwrap();
```
Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes.
Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums.
</details>
---
## Changelog
### Added
* Added `Enum` trait
* Added `Enum` impl to `Reflect` derive macro
* Added `DynamicEnum` struct
* Added `DynamicVariant`
* Added `EnumInfo`
* Added `VariantInfo`
* Added `StructVariantInfo`
* Added `TupleVariantInfo`
* Added `UnitVariantInfo`
* Added serializtion/deserialization support for enums
* Added `EnumSerializer`
* Added `VariantType`
* Added `VariantFieldIter`
* Added `VariantField`
* Added `enum_partial_eq(...)`
* Added `enum_hash(...)`
### Changed
* `Option<T>` now implements `Enum`
* `bevy_window` now depends on `bevy_reflect`
* Implemented `Reflect` and `FromReflect` for `WindowId`
* Derive `FromReflect` on `PerspectiveProjection`
* Derive `FromReflect` on `OrthographicProjection`
* Derive `FromReflect` on `WindowOrigin`
* Derive `FromReflect` on `ScalingMode`
* Derive `FromReflect` on `DepthCalculation`
## Migration Guide
* Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]`
* Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums.
---
Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated!
Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
enum_unit : A ,
enum_tuple : B (
123 ,
) ,
enum_struct : C {
value : 321 ,
} ,
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
custom : Cool debug ! ,
} " #;
2022-10-28 21:03:01 +00:00
assert_eq! ( expected , format! ( " \n {reflected:#?} " ) ) ;
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2022-05-30 16:41:31 +00:00
}
Support multiple `#[reflect]`/`#[reflect_value]` + improve error messages (#6237)
# Objective
Currently, surprising behavior happens when specifying `#[reflect(...)]` or `#[reflect_value(...)]` multiple times. Rather than merging the traits lists from all attributes, only the trait list from the last attribute is used. For example, in the following code, only the `Debug` and `Hash` traits are reflected and not `Default` or `PartialEq`:
```rs
#[derive(Debug, PartialEq, Hash, Default, Reflect)]
#[reflect(PartialEq, Default)]
#[reflect(Debug, Hash)]
struct Foo;
```
This is especially important when some traits should only be reflected under certain circumstances. For example, this previously had surprisingly behavior when the "serialize" feature is enabled:
```rs
#[derive(Debug, Hash, Reflect)]
#[reflect(Debug, Hash)]
#[cfg_attr(
feature = "serialize",
derive(Serialize, Deserialize),
reflect(Serialize, Deserialize)
]
struct Foo;
```
In addition, compile error messages generated from using the derive macro often point to the `#[derive(Reflect)]` rather than to the source of the error. It would be a lot more helpful if the compiler errors pointed to what specifically caused the error rather than just to the derive macro itself.
## Solution
Merge the trait lists in all `#[reflect(...)]` and `#[reflect_value(...)]` attributes. Additionally, make `#[reflect]` and `#[reflect_value]` mutually exclusive.
Additionally, span information is carried throughout some parts of the code now to ensure that error messages point to more useful places and better indicate what caused those errors. For example, `#[reflect(Hash, Hash)]` points to the second `Hash` as the source of an error. Also, in the following example, the compiler error now points to the `Hash` in `#[reflect(Hash)]` rather than to the derive macro:
```rs
#[derive(Reflect)]
#[reflect(Hash)] // <-- compiler error points to `Hash` for lack of a `Hash` implementation
struct Foo;
```
---
## Changelog
Changed
- Using multiple `#[reflect(...)]` or `#[reflect_value(...)]` attributes now merges the trait lists. For example, `#[reflect(Debug, Hash)] #[reflect(PartialEq, Default)]` is equivalent to `#[reflect(Debug, Hash, PartialEq, Default)]`.
- Multiple `#[reflect(...)]` and `#[reflect_value(...)]` attributes were previously accepted, but only the last attribute was respected.
- Using both `#[reflect(...)]` and `#[reflect_value(...)]` was previously accepted, but had surprising behavior. This is no longer accepted.
- Improved error messages for `#[derive(Reflect)]` by propagating useful span information. Many errors should now point to the source of those errors rather than to the derive macro.
2022-10-17 14:38:56 +00:00
#[ test ]
fn multiple_reflect_lists ( ) {
#[ derive(Hash, PartialEq, Reflect) ]
#[ reflect(Debug, Hash) ]
#[ reflect(PartialEq) ]
struct Foo ( i32 ) ;
impl Debug for Foo {
fn fmt ( & self , f : & mut Formatter < '_ > ) -> std ::fmt ::Result {
write! ( f , " Foo " )
}
}
let foo = Foo ( 123 ) ;
let foo : & dyn Reflect = & foo ;
assert! ( foo . reflect_hash ( ) . is_some ( ) ) ;
assert_eq! ( Some ( true ) , foo . reflect_partial_eq ( foo ) ) ;
assert_eq! ( " Foo " . to_string ( ) , format! ( " {foo:?} " ) ) ;
}
#[ test ]
fn multiple_reflect_value_lists ( ) {
#[ derive(Clone, Hash, PartialEq, Reflect) ]
#[ reflect_value(Debug, Hash) ]
#[ reflect_value(PartialEq) ]
struct Foo ( i32 ) ;
impl Debug for Foo {
fn fmt ( & self , f : & mut Formatter < '_ > ) -> std ::fmt ::Result {
write! ( f , " Foo " )
}
}
let foo = Foo ( 123 ) ;
let foo : & dyn Reflect = & foo ;
assert! ( foo . reflect_hash ( ) . is_some ( ) ) ;
assert_eq! ( Some ( true ) , foo . reflect_partial_eq ( foo ) ) ;
assert_eq! ( " Foo " . to_string ( ) , format! ( " {foo:?} " ) ) ;
}
2022-05-09 16:32:15 +00:00
#[ cfg(feature = " glam " ) ]
mod glam {
use super ::* ;
#[ test ]
fn vec3_serialization ( ) {
let v = vec3 ( 12.0 , 3.0 , - 6.9 ) ;
let mut registry = TypeRegistry ::default ( ) ;
2022-06-20 17:18:58 +00:00
registry . register ::< f32 > ( ) ;
registry . register ::< Vec3 > ( ) ;
2022-05-09 16:32:15 +00:00
let ser = ReflectSerializer ::new ( & v , & registry ) ;
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
let config = PrettyConfig ::default ( )
. new_line ( String ::from ( " \n " ) )
. indentor ( String ::from ( " " ) ) ;
let output = to_string_pretty ( & ser , config ) . unwrap ( ) ;
let expected = r #"
{
" glam::f32::vec3::Vec3 " : (
x : 12.0 ,
y : 3.0 ,
z : - 6.9 ,
) ,
} " #;
2022-05-09 16:32:15 +00:00
2022-10-28 21:03:01 +00:00
assert_eq! ( expected , format! ( " \n {output} " ) ) ;
2022-05-09 16:32:15 +00:00
}
#[ test ]
fn vec3_deserialization ( ) {
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
let data = r #"
{
" glam::f32::vec3::Vec3 " : (
x : 12.0 ,
y : 3.0 ,
z : - 6.9 ,
) ,
} " #;
2022-05-09 16:32:15 +00:00
let mut registry = TypeRegistry ::default ( ) ;
registry . add_registration ( Vec3 ::get_type_registration ( ) ) ;
registry . add_registration ( f32 ::get_type_registration ( ) ) ;
bevy_reflect: Improve serialization format even more (#5723)
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
2022-09-20 19:38:18 +00:00
let de = UntypedReflectDeserializer ::new ( & registry ) ;
2022-05-09 16:32:15 +00:00
let mut deserializer =
ron ::de ::Deserializer ::from_str ( data ) . expect ( " Failed to acquire deserializer " ) ;
let dynamic_struct = de
. deserialize ( & mut deserializer )
. expect ( " Failed to deserialize " ) ;
let mut result = Vec3 ::default ( ) ;
result . apply ( & * dynamic_struct ) ;
assert_eq! ( result , vec3 ( 12.0 , 3.0 , - 6.9 ) ) ;
}
#[ test ]
fn vec3_field_access ( ) {
let mut v = vec3 ( 1.0 , 2.0 , 3.0 ) ;
assert_eq! ( * v . get_field ::< f32 > ( " x " ) . unwrap ( ) , 1.0 ) ;
* v . get_field_mut ::< f32 > ( " y " ) . unwrap ( ) = 6.0 ;
assert_eq! ( v . y , 6.0 ) ;
}
#[ test ]
fn vec3_path_access ( ) {
let mut v = vec3 ( 1.0 , 2.0 , 3.0 ) ;
assert_eq! ( * v . path ( " x " ) . unwrap ( ) . downcast_ref ::< f32 > ( ) . unwrap ( ) , 1.0 ) ;
* v . path_mut ( " y " ) . unwrap ( ) . downcast_mut ::< f32 > ( ) . unwrap ( ) = 6.0 ;
assert_eq! ( v . y , 6.0 ) ;
}
#[ test ]
fn vec3_apply_dynamic ( ) {
let mut v = vec3 ( 3.0 , 3.0 , 3.0 ) ;
let mut d = DynamicStruct ::default ( ) ;
d . insert ( " x " , 4.0 f32 ) ;
d . insert ( " y " , 2.0 f32 ) ;
d . insert ( " z " , 1.0 f32 ) ;
v . apply ( & d ) ;
assert_eq! ( v , vec3 ( 4.0 , 2.0 , 1.0 ) ) ;
}
}
2020-11-28 00:39:59 +00:00
}