bevy/crates/bevy_ecs/src/schedule_v3/schedule.rs

1102 lines
38 KiB
Rust
Raw Normal View History

use std::{
fmt::{Debug, Write},
result::Result,
};
use bevy_utils::default;
#[cfg(feature = "trace")]
use bevy_utils::tracing::info_span;
use bevy_utils::{
petgraph::{algo::tarjan_scc, prelude::*},
thiserror::Error,
tracing::{error, info, warn},
HashMap, HashSet,
};
use fixedbitset::FixedBitSet;
use crate::{
self as bevy_ecs,
component::ComponentId,
schedule_v3::*,
system::{BoxedSystem, Resource},
world::World,
};
/// Resource that stores [`Schedule`]s mapped to [`ScheduleLabel`]s.
#[derive(Default, Resource)]
pub struct Schedules {
inner: HashMap<BoxedScheduleLabel, Schedule>,
}
impl Schedules {
/// Constructs an empty `Schedules` with zero initial capacity.
pub fn new() -> Self {
Self {
inner: HashMap::new(),
}
}
/// Inserts a labeled schedule into the map.
///
/// If the map already had an entry for `label`, `schedule` is inserted,
/// and the old schedule is returned. Otherwise, `None` is returned.
pub fn insert(&mut self, label: impl ScheduleLabel, schedule: Schedule) -> Option<Schedule> {
let label: Box<dyn ScheduleLabel> = Box::new(label);
if self.inner.contains_key(&label) {
warn!("schedule with label {:?} already exists", label);
}
self.inner.insert(label, schedule)
}
/// Removes the schedule corresponding to the `label` from the map, returning it if it existed.
pub fn remove(&mut self, label: &dyn ScheduleLabel) -> Option<Schedule> {
if !self.inner.contains_key(label) {
warn!("schedule with label {:?} not found", label);
}
self.inner.remove(label)
}
/// Returns a reference to the schedule associated with `label`, if it exists.
pub fn get(&self, label: &dyn ScheduleLabel) -> Option<&Schedule> {
self.inner.get(label)
}
/// Returns a mutable reference to the schedule associated with `label`, if it exists.
pub fn get_mut(&mut self, label: &dyn ScheduleLabel) -> Option<&mut Schedule> {
self.inner.get_mut(label)
}
/// Iterates the change ticks of all systems in all stored schedules and clamps any older than
/// [`MAX_CHANGE_AGE`](crate::change_detection::MAX_CHANGE_AGE).
/// This prevents overflow and thus prevents false positives.
pub(crate) fn check_change_ticks(&mut self, change_tick: u32) {
#[cfg(feature = "trace")]
let _all_span = info_span!("check stored schedule ticks").entered();
// label used when trace feature is enabled
#[allow(unused_variables)]
for (label, schedule) in self.inner.iter_mut() {
#[cfg(feature = "trace")]
let name = format!("{label:?}");
#[cfg(feature = "trace")]
let _one_span = info_span!("check schedule ticks", name = &name).entered();
schedule.check_change_ticks(change_tick);
}
}
}
/// A collection of systems, and the metadata and executor needed to run them
/// in a certain order under certain conditions.
pub struct Schedule {
graph: ScheduleGraph,
executable: SystemSchedule,
executor: Box<dyn SystemExecutor>,
executor_initialized: bool,
}
impl Default for Schedule {
fn default() -> Self {
Self::new()
}
}
impl Schedule {
/// Constructs an empty `Schedule`.
pub fn new() -> Self {
Self {
graph: ScheduleGraph::new(),
executable: SystemSchedule::new(),
executor: Box::new(MultiThreadedExecutor::new()),
executor_initialized: false,
}
}
/// Add a system to the schedule.
pub fn add_system<P>(&mut self, system: impl IntoSystemConfig<P>) -> &mut Self {
self.graph.add_system(system);
self
}
/// Add a collection of systems to the schedule.
pub fn add_systems<P>(&mut self, systems: impl IntoSystemConfigs<P>) -> &mut Self {
self.graph.add_systems(systems);
self
}
/// Configure a system set in this schedule.
pub fn configure_set(&mut self, set: impl IntoSystemSetConfig) -> &mut Self {
self.graph.configure_set(set);
self
}
/// Configure a collection of system sets in this schedule.
pub fn configure_sets(&mut self, sets: impl IntoSystemSetConfigs) -> &mut Self {
self.graph.configure_sets(sets);
self
}
/// Changes the system set that new systems and system sets will join by default
/// if they aren't already part of one.
pub fn set_default_set(&mut self, set: impl SystemSet) -> &mut Self {
self.graph.set_default_set(set);
self
}
/// Changes miscellaneous build settings.
pub fn set_build_settings(&mut self, settings: ScheduleBuildSettings) -> &mut Self {
self.graph.settings = settings;
self
}
/// Returns the schedule's current execution strategy.
pub fn get_executor_kind(&self) -> ExecutorKind {
self.executor.kind()
}
/// Sets the schedule's execution strategy.
pub fn set_executor_kind(&mut self, executor: ExecutorKind) -> &mut Self {
if executor != self.executor.kind() {
self.executor = match executor {
ExecutorKind::Simple => Box::new(SimpleExecutor::new()),
ExecutorKind::SingleThreaded => Box::new(SingleThreadedExecutor::new()),
ExecutorKind::MultiThreaded => Box::new(MultiThreadedExecutor::new()),
};
self.executor_initialized = false;
}
self
}
/// Runs all systems in this schedule on the `world`, using its current execution strategy.
pub fn run(&mut self, world: &mut World) {
world.check_change_ticks();
self.initialize(world).unwrap();
// TODO: label
#[cfg(feature = "trace")]
let _span = info_span!("schedule").entered();
self.executor.run(&mut self.executable, world);
}
/// Initializes any newly-added systems and conditions, rebuilds the executable schedule,
/// and re-initializes the executor.
pub fn initialize(&mut self, world: &mut World) -> Result<(), ScheduleBuildError> {
if self.graph.changed {
self.graph.initialize(world);
self.graph.update_schedule(&mut self.executable)?;
self.graph.changed = false;
self.executor_initialized = false;
}
if !self.executor_initialized {
self.executor.init(&self.executable);
self.executor_initialized = true;
}
Ok(())
}
/// Iterates the change ticks of all systems in the schedule and clamps any older than
/// [`MAX_CHANGE_AGE`](crate::change_detection::MAX_CHANGE_AGE).
/// This prevents overflow and thus prevents false positives.
pub(crate) fn check_change_ticks(&mut self, change_tick: u32) {
for system in &mut self.executable.systems {
system.check_change_tick(change_tick);
}
for conditions in &mut self.executable.system_conditions {
for system in conditions.iter_mut() {
system.check_change_tick(change_tick);
}
}
for conditions in &mut self.executable.set_conditions {
for system in conditions.iter_mut() {
system.check_change_tick(change_tick);
}
}
}
}
/// A directed acylic graph structure.
#[derive(Default)]
struct Dag {
/// A directed graph.
graph: DiGraphMap<NodeId, ()>,
/// A cached topological ordering of the graph.
topsort: Vec<NodeId>,
}
impl Dag {
fn new() -> Self {
Self {
graph: DiGraphMap::new(),
topsort: Vec::new(),
}
}
}
/// A [`SystemSet`] with metadata, stored in a [`ScheduleGraph`].
struct SystemSetNode {
inner: BoxedSystemSet,
/// `true` if this system set was modified with `configure_set`
configured: bool,
}
impl SystemSetNode {
pub fn new(set: BoxedSystemSet) -> Self {
Self {
inner: set,
configured: false,
}
}
pub fn name(&self) -> String {
format!("{:?}", &self.inner)
}
pub fn is_system_type(&self) -> bool {
self.inner.is_system_type()
}
}
/// Metadata for a [`Schedule`].
#[derive(Default)]
struct ScheduleGraph {
systems: Vec<Option<BoxedSystem>>,
system_conditions: Vec<Option<Vec<BoxedCondition>>>,
system_sets: Vec<SystemSetNode>,
system_set_conditions: Vec<Option<Vec<BoxedCondition>>>,
system_set_ids: HashMap<BoxedSystemSet, NodeId>,
uninit: Vec<(NodeId, usize)>,
hierarchy: Dag,
dependency: Dag,
dependency_flattened: Dag,
ambiguous_with: UnGraphMap<NodeId, ()>,
ambiguous_with_flattened: UnGraphMap<NodeId, ()>,
ambiguous_with_all: HashSet<NodeId>,
default_set: Option<BoxedSystemSet>,
changed: bool,
settings: ScheduleBuildSettings,
}
impl ScheduleGraph {
pub fn new() -> Self {
Self {
systems: Vec::new(),
system_conditions: Vec::new(),
system_sets: Vec::new(),
system_set_conditions: Vec::new(),
system_set_ids: HashMap::new(),
uninit: Vec::new(),
hierarchy: Dag::new(),
dependency: Dag::new(),
dependency_flattened: Dag::new(),
ambiguous_with: UnGraphMap::new(),
ambiguous_with_flattened: UnGraphMap::new(),
ambiguous_with_all: HashSet::new(),
default_set: None,
changed: false,
settings: default(),
}
}
fn set_default_set(&mut self, set: impl SystemSet) {
assert!(
!set.is_system_type(),
"adding arbitrary systems to a system type set is not allowed"
);
self.default_set = Some(Box::new(set));
}
fn add_systems<P>(&mut self, systems: impl IntoSystemConfigs<P>) {
let SystemConfigs { systems, chained } = systems.into_configs();
let mut system_iter = systems.into_iter();
if chained {
let Some(prev) = system_iter.next() else { return };
let mut prev_id = self.add_system_inner(prev).unwrap();
for next in system_iter {
let next_id = self.add_system_inner(next).unwrap();
self.dependency.graph.add_edge(prev_id, next_id, ());
prev_id = next_id;
}
} else {
for system in system_iter {
self.add_system_inner(system).unwrap();
}
}
}
fn add_system<P>(&mut self, system: impl IntoSystemConfig<P>) {
self.add_system_inner(system).unwrap();
}
fn add_system_inner<P>(
&mut self,
system: impl IntoSystemConfig<P>,
) -> Result<NodeId, ScheduleBuildError> {
let SystemConfig {
system,
mut graph_info,
conditions,
} = system.into_config();
let id = NodeId::System(self.systems.len());
if let [single_set] = graph_info.sets.as_slice() {
if single_set.is_system_type() {
if let Some(default) = self.default_set.as_ref() {
graph_info.sets.push(default.dyn_clone());
}
}
}
// graph updates are immediate
self.update_graphs(id, graph_info)?;
// system init has to be deferred (need `&mut World`)
self.uninit.push((id, 0));
self.systems.push(Some(system));
self.system_conditions.push(Some(conditions));
Ok(id)
}
fn configure_sets(&mut self, sets: impl IntoSystemSetConfigs) {
let SystemSetConfigs { sets, chained } = sets.into_configs();
let mut set_iter = sets.into_iter();
if chained {
let Some(prev) = set_iter.next() else { return };
let mut prev_id = self.configure_set_inner(prev).unwrap();
for next in set_iter {
let next_id = self.configure_set_inner(next).unwrap();
self.dependency.graph.add_edge(prev_id, next_id, ());
prev_id = next_id;
}
} else {
for set in set_iter {
self.configure_set_inner(set).unwrap();
}
}
}
fn configure_set(&mut self, set: impl IntoSystemSetConfig) {
self.configure_set_inner(set).unwrap();
}
fn configure_set_inner(
&mut self,
set: impl IntoSystemSetConfig,
) -> Result<NodeId, ScheduleBuildError> {
let SystemSetConfig {
set,
mut graph_info,
mut conditions,
} = set.into_config();
let id = match self.system_set_ids.get(&set) {
Some(&id) => id,
None => self.add_set(set.dyn_clone()),
};
let meta = &mut self.system_sets[id.index()];
let already_configured = std::mem::replace(&mut meta.configured, true);
// a system set can be configured multiple times, so this "default check"
// should only happen the first time `configure_set` is called on it
if !already_configured && graph_info.sets.is_empty() {
if let Some(default) = self.default_set.as_ref() {
info!("adding system set `{:?}` to default: `{:?}`", set, default);
graph_info.sets.push(default.dyn_clone());
}
}
// graph updates are immediate
self.update_graphs(id, graph_info)?;
// system init has to be deferred (need `&mut World`)
let system_set_conditions =
self.system_set_conditions[id.index()].get_or_insert_with(Vec::new);
self.uninit.push((id, system_set_conditions.len()));
system_set_conditions.append(&mut conditions);
Ok(id)
}
fn add_set(&mut self, set: BoxedSystemSet) -> NodeId {
let id = NodeId::Set(self.system_sets.len());
self.system_sets.push(SystemSetNode::new(set.dyn_clone()));
self.system_set_conditions.push(None);
self.system_set_ids.insert(set, id);
id
}
fn check_sets(
&mut self,
id: &NodeId,
graph_info: &GraphInfo,
) -> Result<(), ScheduleBuildError> {
for set in &graph_info.sets {
match self.system_set_ids.get(set) {
Some(set_id) => {
if id == set_id {
return Err(ScheduleBuildError::HierarchyLoop(set.dyn_clone()));
}
}
None => {
self.add_set(set.dyn_clone());
}
}
}
Ok(())
}
fn check_edges(
&mut self,
id: &NodeId,
graph_info: &GraphInfo,
) -> Result<(), ScheduleBuildError> {
for Dependency { kind: _, set } in &graph_info.dependencies {
match self.system_set_ids.get(set) {
Some(set_id) => {
if id == set_id {
return Err(ScheduleBuildError::DependencyLoop(set.dyn_clone()));
}
}
None => {
self.add_set(set.dyn_clone());
}
}
}
if let Ambiguity::IgnoreWithSet(ambiguous_with) = &graph_info.ambiguous_with {
for set in ambiguous_with {
if !self.system_set_ids.contains_key(set) {
self.add_set(set.dyn_clone());
}
}
}
Ok(())
}
fn update_graphs(
&mut self,
id: NodeId,
graph_info: GraphInfo,
) -> Result<(), ScheduleBuildError> {
self.check_sets(&id, &graph_info)?;
self.check_edges(&id, &graph_info)?;
self.changed = true;
let GraphInfo {
sets,
dependencies,
ambiguous_with,
} = graph_info;
if !self.hierarchy.graph.contains_node(id) {
self.hierarchy.graph.add_node(id);
}
for set in sets.into_iter().map(|set| self.system_set_ids[&set]) {
self.hierarchy.graph.add_edge(set, id, ());
}
if !self.dependency.graph.contains_node(id) {
self.dependency.graph.add_node(id);
}
for (kind, set) in dependencies
.into_iter()
.map(|Dependency { kind, set }| (kind, self.system_set_ids[&set]))
{
let (lhs, rhs) = match kind {
DependencyKind::Before => (id, set),
DependencyKind::After => (set, id),
};
self.dependency.graph.add_edge(lhs, rhs, ());
}
match ambiguous_with {
Ambiguity::Check => (),
Ambiguity::IgnoreWithSet(ambiguous_with) => {
for set in ambiguous_with
.into_iter()
.map(|set| self.system_set_ids[&set])
{
self.ambiguous_with.add_edge(id, set, ());
}
}
Ambiguity::IgnoreAll => {
self.ambiguous_with_all.insert(id);
}
}
Ok(())
}
fn initialize(&mut self, world: &mut World) {
for (id, i) in self.uninit.drain(..) {
match id {
NodeId::System(index) => {
self.systems[index].as_mut().unwrap().initialize(world);
if let Some(v) = self.system_conditions[index].as_mut() {
for condition in v.iter_mut() {
condition.initialize(world);
}
}
}
NodeId::Set(index) => {
if let Some(v) = self.system_set_conditions[index].as_mut() {
for condition in v.iter_mut().skip(i) {
condition.initialize(world);
}
}
}
}
}
}
fn build_schedule(&mut self) -> Result<SystemSchedule, ScheduleBuildError> {
// check hierarchy for cycles
let hier_scc = tarjan_scc(&self.hierarchy.graph);
if self.contains_cycles(&hier_scc) {
self.report_cycles(&hier_scc);
return Err(ScheduleBuildError::HierarchyCycle);
}
self.hierarchy.topsort = hier_scc.into_iter().flatten().rev().collect::<Vec<_>>();
let hier_results = check_graph(&self.hierarchy.graph, &self.hierarchy.topsort);
if self.contains_hierarchy_conflicts(&hier_results.transitive_edges) {
self.report_hierarchy_conflicts(&hier_results.transitive_edges);
if matches!(self.settings.hierarchy_detection, LogLevel::Error) {
return Err(ScheduleBuildError::HierarchyRedundancy);
}
}
// remove redundant edges
self.hierarchy.graph = hier_results.transitive_reduction;
// check dependencies for cycles
let dep_scc = tarjan_scc(&self.dependency.graph);
if self.contains_cycles(&dep_scc) {
self.report_cycles(&dep_scc);
return Err(ScheduleBuildError::DependencyCycle);
}
self.dependency.topsort = dep_scc.into_iter().flatten().rev().collect::<Vec<_>>();
// nodes can have dependent XOR hierarchical relationship
let dep_results = check_graph(&self.dependency.graph, &self.dependency.topsort);
for &(a, b) in dep_results.connected.iter() {
if hier_results.connected.contains(&(a, b)) || hier_results.connected.contains(&(b, a))
{
let name_a = self.get_node_name(&a);
let name_b = self.get_node_name(&b);
return Err(ScheduleBuildError::CrossDependency(name_a, name_b));
}
}
// map system sets to all their member systems
let mut systems_in_sets = HashMap::with_capacity(self.system_sets.len());
// iterate in reverse topological order (bottom-up)
for &id in self.hierarchy.topsort.iter().rev() {
if id.is_system() {
continue;
}
let set = id;
systems_in_sets.insert(set, Vec::new());
for child in self
.hierarchy
.graph
.neighbors_directed(set, Direction::Outgoing)
{
match child {
NodeId::System(_) => {
systems_in_sets.get_mut(&set).unwrap().push(child);
}
NodeId::Set(_) => {
let [sys, child_sys] =
systems_in_sets.get_many_mut([&set, &child]).unwrap();
sys.extend_from_slice(child_sys);
}
}
}
}
// can't depend on or be ambiguous with system type sets that have many instances
for (&set, systems) in systems_in_sets.iter() {
let node = &self.system_sets[set.index()];
if node.is_system_type() {
let ambiguities = self.ambiguous_with.edges(set).count();
let mut dependencies = 0;
dependencies += self
.dependency
.graph
.edges_directed(set, Direction::Incoming)
.count();
dependencies += self
.dependency
.graph
.edges_directed(set, Direction::Outgoing)
.count();
if systems.len() > 1 && (ambiguities > 0 || dependencies > 0) {
return Err(ScheduleBuildError::SystemTypeSetAmbiguity(
node.inner.dyn_clone(),
));
}
}
}
// flatten dependency graph
let mut dependency_flattened = DiGraphMap::new();
for id in self.dependency.graph.nodes() {
if id.is_system() {
dependency_flattened.add_node(id);
}
}
for (lhs, rhs, _) in self.dependency.graph.all_edges() {
match (lhs, rhs) {
(NodeId::System(_), NodeId::System(_)) => {
dependency_flattened.add_edge(lhs, rhs, ());
}
(NodeId::Set(_), NodeId::System(_)) => {
for &lhs_ in &systems_in_sets[&lhs] {
dependency_flattened.add_edge(lhs_, rhs, ());
}
}
(NodeId::System(_), NodeId::Set(_)) => {
for &rhs_ in &systems_in_sets[&rhs] {
dependency_flattened.add_edge(lhs, rhs_, ());
}
}
(NodeId::Set(_), NodeId::Set(_)) => {
for &lhs_ in &systems_in_sets[&lhs] {
for &rhs_ in &systems_in_sets[&rhs] {
dependency_flattened.add_edge(lhs_, rhs_, ());
}
}
}
}
}
// check flattened dependencies for cycles
let flat_scc = tarjan_scc(&dependency_flattened);
if self.contains_cycles(&flat_scc) {
self.report_cycles(&flat_scc);
return Err(ScheduleBuildError::DependencyCycle);
}
self.dependency_flattened.graph = dependency_flattened;
self.dependency_flattened.topsort =
flat_scc.into_iter().flatten().rev().collect::<Vec<_>>();
let flat_results = check_graph(
&self.dependency_flattened.graph,
&self.dependency_flattened.topsort,
);
// remove redundant edges
self.dependency_flattened.graph = flat_results.transitive_reduction;
// flatten allowed ambiguities
let mut ambiguous_with_flattened = UnGraphMap::new();
for (lhs, rhs, _) in self.ambiguous_with.all_edges() {
match (lhs, rhs) {
(NodeId::System(_), NodeId::System(_)) => {
ambiguous_with_flattened.add_edge(lhs, rhs, ());
}
(NodeId::Set(_), NodeId::System(_)) => {
for &lhs_ in &systems_in_sets[&lhs] {
ambiguous_with_flattened.add_edge(lhs_, rhs, ());
}
}
(NodeId::System(_), NodeId::Set(_)) => {
for &rhs_ in &systems_in_sets[&rhs] {
ambiguous_with_flattened.add_edge(lhs, rhs_, ());
}
}
(NodeId::Set(_), NodeId::Set(_)) => {
for &lhs_ in &systems_in_sets[&lhs] {
for &rhs_ in &systems_in_sets[&rhs] {
ambiguous_with_flattened.add_edge(lhs_, rhs_, ());
}
}
}
}
}
self.ambiguous_with_flattened = ambiguous_with_flattened;
// check for conflicts
let mut conflicting_systems = Vec::new();
for &(a, b) in flat_results.disconnected.iter() {
if self.ambiguous_with_flattened.contains_edge(a, b)
|| self.ambiguous_with_all.contains(&a)
|| self.ambiguous_with_all.contains(&b)
{
continue;
}
let system_a = self.systems[a.index()].as_ref().unwrap();
let system_b = self.systems[b.index()].as_ref().unwrap();
if system_a.is_exclusive() || system_b.is_exclusive() {
conflicting_systems.push((a, b, Vec::new()));
} else {
let access_a = system_a.component_access();
let access_b = system_b.component_access();
if !access_a.is_compatible(access_b) {
let conflicts = access_a.get_conflicts(access_b);
conflicting_systems.push((a, b, conflicts));
}
}
}
if self.contains_conflicts(&conflicting_systems) {
self.report_conflicts(&conflicting_systems);
if matches!(self.settings.ambiguity_detection, LogLevel::Error) {
return Err(ScheduleBuildError::Ambiguity);
}
}
// build the schedule
let dg_system_ids = self.dependency_flattened.topsort.clone();
let dg_system_idx_map = dg_system_ids
.iter()
.cloned()
.enumerate()
.map(|(i, id)| (id, i))
.collect::<HashMap<_, _>>();
let hg_systems = self
.hierarchy
.topsort
.iter()
.cloned()
.enumerate()
.filter(|&(_i, id)| id.is_system())
.collect::<Vec<_>>();
let (hg_set_idxs, hg_set_ids): (Vec<_>, Vec<_>) = self
.hierarchy
.topsort
.iter()
.cloned()
.enumerate()
.filter(|&(_i, id)| {
// ignore system sets that have no conditions
// ignore system type sets (already covered, they don't have conditions)
id.is_set()
&& self.system_set_conditions[id.index()]
.as_ref()
.filter(|v| !v.is_empty())
.is_some()
})
.unzip();
let sys_count = self.systems.len();
let set_count = hg_set_ids.len();
let node_count = self.systems.len() + self.system_sets.len();
// get the number of dependencies and the immediate dependents of each system
// (needed by multi-threaded executor to run systems in the correct order)
let mut system_dependencies = Vec::with_capacity(sys_count);
let mut system_dependents = Vec::with_capacity(sys_count);
for &sys_id in &dg_system_ids {
let num_dependencies = self
.dependency_flattened
.graph
.neighbors_directed(sys_id, Direction::Incoming)
.count();
let dependents = self
.dependency_flattened
.graph
.neighbors_directed(sys_id, Direction::Outgoing)
.map(|dep_id| dg_system_idx_map[&dep_id])
.collect::<Vec<_>>();
system_dependencies.push(num_dependencies);
system_dependents.push(dependents);
}
// get the rows and columns of the hierarchy graph's reachability matrix
// (needed to we can evaluate conditions in the correct order)
let mut systems_in_sets = vec![FixedBitSet::with_capacity(sys_count); set_count];
for (i, &row) in hg_set_idxs.iter().enumerate() {
let bitset = &mut systems_in_sets[i];
for &(col, sys_id) in &hg_systems {
let idx = dg_system_idx_map[&sys_id];
let is_descendant = hier_results.reachable[index(row, col, node_count)];
bitset.set(idx, is_descendant);
}
}
let mut sets_of_systems = vec![FixedBitSet::with_capacity(set_count); sys_count];
for &(col, sys_id) in &hg_systems {
let i = dg_system_idx_map[&sys_id];
let bitset = &mut sets_of_systems[i];
for (idx, &row) in hg_set_idxs
.iter()
.enumerate()
.take_while(|&(_idx, &row)| row < col)
{
let is_ancestor = hier_results.reachable[index(row, col, node_count)];
bitset.set(idx, is_ancestor);
}
}
Ok(SystemSchedule {
systems: Vec::with_capacity(sys_count),
system_conditions: Vec::with_capacity(sys_count),
set_conditions: Vec::with_capacity(set_count),
system_ids: dg_system_ids,
set_ids: hg_set_ids,
system_dependencies,
system_dependents,
sets_of_systems,
systems_in_sets,
})
}
fn update_schedule(&mut self, schedule: &mut SystemSchedule) -> Result<(), ScheduleBuildError> {
if !self.uninit.is_empty() {
return Err(ScheduleBuildError::Uninitialized);
}
// move systems out of old schedule
for ((id, system), conditions) in schedule
.system_ids
.drain(..)
.zip(schedule.systems.drain(..))
.zip(schedule.system_conditions.drain(..))
{
self.systems[id.index()] = Some(system);
self.system_conditions[id.index()] = Some(conditions);
}
for (id, conditions) in schedule
.set_ids
.drain(..)
.zip(schedule.set_conditions.drain(..))
{
self.system_set_conditions[id.index()] = Some(conditions);
}
*schedule = self.build_schedule()?;
// move systems into new schedule
for &id in &schedule.system_ids {
let system = self.systems[id.index()].take().unwrap();
let conditions = self.system_conditions[id.index()].take().unwrap();
schedule.systems.push(system);
schedule.system_conditions.push(conditions);
}
for &id in &schedule.set_ids {
let conditions = self.system_set_conditions[id.index()].take().unwrap();
schedule.set_conditions.push(conditions);
}
Ok(())
}
}
// methods for reporting errors
impl ScheduleGraph {
fn get_node_name(&self, id: &NodeId) -> String {
match id {
NodeId::System(_) => self.systems[id.index()]
.as_ref()
.unwrap()
.name()
.to_string(),
NodeId::Set(_) => self.system_sets[id.index()].name(),
}
}
fn get_node_kind(id: &NodeId) -> &'static str {
match id {
NodeId::System(_) => "system",
NodeId::Set(_) => "system set",
}
}
fn contains_hierarchy_conflicts(&self, transitive_edges: &[(NodeId, NodeId)]) -> bool {
if transitive_edges.is_empty() {
return false;
}
true
}
fn report_hierarchy_conflicts(&self, transitive_edges: &[(NodeId, NodeId)]) {
let mut message = String::from("hierarchy contains redundant edge(s)");
for (parent, child) in transitive_edges {
writeln!(
message,
" -- {:?} '{:?}' cannot be child of set '{:?}', longer path exists",
Self::get_node_kind(child),
self.get_node_name(child),
self.get_node_name(parent),
)
.unwrap();
}
error!("{}", message);
}
fn contains_cycles(&self, strongly_connected_components: &[Vec<NodeId>]) -> bool {
if strongly_connected_components
.iter()
.all(|scc| scc.len() == 1)
{
return false;
}
true
}
fn report_cycles(&self, strongly_connected_components: &[Vec<NodeId>]) {
let components_with_cycles = strongly_connected_components
.iter()
.filter(|scc| scc.len() > 1)
.cloned()
.collect::<Vec<_>>();
let mut message = format!(
"schedule contains at least {} cycle(s)",
components_with_cycles.len()
);
writeln!(message, " -- cycle(s) found within:").unwrap();
for (i, scc) in components_with_cycles.into_iter().enumerate() {
let names = scc
.iter()
.map(|id| self.get_node_name(id))
.collect::<Vec<_>>();
writeln!(message, " ---- {i}: {names:?}").unwrap();
}
error!("{}", message);
}
fn contains_conflicts(&self, conflicts: &[(NodeId, NodeId, Vec<ComponentId>)]) -> bool {
if conflicts.is_empty() {
return false;
}
true
}
fn report_conflicts(&self, ambiguities: &[(NodeId, NodeId, Vec<ComponentId>)]) {
let mut string = String::from(
"Some systems with conflicting access have indeterminate execution order. \
Consider adding `before`, `after`, or `ambiguous_with` relationships between these:\n",
);
for (system_a, system_b, conflicts) in ambiguities {
debug_assert!(system_a.is_system());
debug_assert!(system_b.is_system());
let name_a = self.get_node_name(system_a);
let name_b = self.get_node_name(system_b);
writeln!(string, " -- {name_a} and {name_b}").unwrap();
if !conflicts.is_empty() {
writeln!(string, " conflict on: {conflicts:?}").unwrap();
} else {
// one or both systems must be exclusive
let world = std::any::type_name::<World>();
writeln!(string, " conflict on: {world}").unwrap();
}
}
warn!("{}", string);
}
}
/// Category of errors encountered during schedule construction.
#[derive(Error, Debug)]
#[non_exhaustive]
pub enum ScheduleBuildError {
/// A system set contains itself.
#[error("`{0:?}` contains itself.")]
HierarchyLoop(BoxedSystemSet),
/// The hierarchy of system sets contains a cycle.
#[error("System set hierarchy contains cycle(s).")]
HierarchyCycle,
/// The hierarchy of system sets contains redundant edges.
///
/// This error is disabled by default, but can be opted-in using [`ScheduleBuildSettings`].
#[error("System set hierarchy contains redundant edges.")]
HierarchyRedundancy,
/// A system (set) has been told to run before itself.
#[error("`{0:?}` depends on itself.")]
DependencyLoop(BoxedSystemSet),
/// The dependency graph contains a cycle.
#[error("System dependencies contain cycle(s).")]
DependencyCycle,
/// Tried to order a system (set) relative to a system set it belongs to.
#[error("`{0:?}` and `{1:?}` have both `in_set` and `before`-`after` relationships (these might be transitive). This combination is unsolvable as a system cannot run before or after a set it belongs to.")]
CrossDependency(String, String),
/// Tried to order a system (set) relative to all instances of some system function.
#[error("Tried to order against `fn {0:?}` in a schedule that has more than one `{0:?}` instance. `fn {0:?}` is a `SystemTypeSet` and cannot be used for ordering if ambiguous. Use a different set without this restriction.")]
SystemTypeSetAmbiguity(BoxedSystemSet),
/// Systems with conflicting access have indeterminate run order.
///
/// This error is disabled by default, but can be opted-in using [`ScheduleBuildSettings`].
#[error("Systems with conflicting access have indeterminate run order.")]
Ambiguity,
/// Tried to run a schedule before all of its systems have been initialized.
#[error("Systems in schedule have not been initialized.")]
Uninitialized,
}
/// Specifies how schedule construction should respond to detecting a certain kind of issue.
pub enum LogLevel {
/// Occurrences are logged only.
Warn,
/// Occurrences are logged and result in errors.
Error,
}
/// Specifies miscellaneous settings for schedule construction.
pub struct ScheduleBuildSettings {
ambiguity_detection: LogLevel,
hierarchy_detection: LogLevel,
}
impl Default for ScheduleBuildSettings {
fn default() -> Self {
Self::new()
}
}
impl ScheduleBuildSettings {
pub const fn new() -> Self {
Self {
ambiguity_detection: LogLevel::Warn,
hierarchy_detection: LogLevel::Warn,
}
}
/// Determines whether the presence of ambiguities (systems with conflicting access but indeterminate order)
/// is only logged or also results in an [`Ambiguity`](ScheduleBuildError::Ambiguity) error.
pub fn with_ambiguity_detection(mut self, level: LogLevel) -> Self {
self.ambiguity_detection = level;
self
}
/// Determines whether the presence of redundant edges in the hierarchy of system sets is only
/// logged or also results in a [`HierarchyRedundancy`](ScheduleBuildError::HierarchyRedundancy)
/// error.
pub fn with_hierarchy_detection(mut self, level: LogLevel) -> Self {
self.hierarchy_detection = level;
self
}
}