bevy/crates/bevy_gltf/Cargo.toml

41 lines
1.5 KiB
TOML
Raw Normal View History

[package]
name = "bevy_gltf"
version = "0.8.0-dev"
edition = "2021"
2020-08-10 00:24:27 +00:00
description = "Bevy Engine GLTF loading"
homepage = "https://bevyengine.org"
repository = "https://github.com/bevyengine/bevy"
Relicense Bevy under the dual MIT or Apache-2.0 license (#2509) This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373. * Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons: * Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive. * People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach. * I like keeping the root clean and noise free * There is precedent for putting the apache and mit license text in sub folders (amethyst) * Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach). * Updates crates to use the new "MIT OR Apache-2.0" license value * Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies. * Added a License section to the main readme * Updated our Bevy Plugin licensing guidelines. As a follow-up we should update the website to properly describe the new license. Closes #2373
2021-07-23 21:11:51 +00:00
license = "MIT OR Apache-2.0"
2020-08-10 00:24:27 +00:00
keywords = ["bevy"]
[dependencies]
# bevy
bevy_animation = { path = "../bevy_animation", version = "0.8.0-dev", optional = true }
bevy_app = { path = "../bevy_app", version = "0.8.0-dev" }
bevy_asset = { path = "../bevy_asset", version = "0.8.0-dev" }
bevy_core = { path = "../bevy_core", version = "0.8.0-dev" }
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
bevy_core_pipeline = { path = "../bevy_core_pipeline", version = "0.8.0-dev" }
bevy_ecs = { path = "../bevy_ecs", version = "0.8.0-dev" }
bevy_hierarchy = { path = "../bevy_hierarchy", version = "0.8.0-dev" }
bevy_log = { path = "../bevy_log", version = "0.8.0-dev" }
bevy_math = { path = "../bevy_math", version = "0.8.0-dev" }
bevy_pbr = { path = "../bevy_pbr", version = "0.8.0-dev" }
bevy_reflect = { path = "../bevy_reflect", version = "0.8.0-dev", features = ["bevy"] }
bevy_render = { path = "../bevy_render", version = "0.8.0-dev" }
bevy_scene = { path = "../bevy_scene", version = "0.8.0-dev" }
bevy_transform = { path = "../bevy_transform", version = "0.8.0-dev" }
bevy_utils = { path = "../bevy_utils", version = "0.8.0-dev" }
# other
Update gltf requirement from 0.16.0 to 1.0.0 (#3826) Updates the requirements on [gltf](https://github.com/gltf-rs/gltf) to permit the latest version. <details> <summary>Changelog</summary> <p><em>Sourced from <a href="https://github.com/gltf-rs/gltf/blob/master/CHANGELOG.md">gltf's changelog</a>.</em></p> <blockquote> <h2>[1.0.0] - 2022-01-29</h2> <h3>Added</h3> <ul> <li>Support for the <code>KHR_materials_specular</code> extension.</li> <li>Support for the <code>KHR_materials_variants</code> extension.</li> <li>Support for the <code>KHR_materials_volume</code> extension.</li> <li><code>ExactSizeIterator</code> implementation for <code>Joints</code> iterator.</li> </ul> <h3>Changed</h3> <ul> <li>The <code>mesh.primitives</code> property is now always serialized.</li> </ul> <h3>Fixed</h3> <ul> <li>Incorrect implementation of <code>Normalize&lt;u16&gt;</code> and <code>Normalize&lt;f32&gt;</code> for <code>u16</code>.</li> </ul> <h2>[0.16.0] - 2021-05-13</h2> <h3>Added</h3> <ul> <li>Support for the <code>KHR_texture_transform</code> extension.</li> <li>Support for the <code>KHR_materials_transmission_ior</code> extension.</li> </ul> <h3>Changed</h3> <ul> <li><code>Material::alpha_cutoff</code> is now optional.</li> </ul> <h3>Fixed</h3> <ul> <li>URIs with embedded data failing to import when using <code>import_slice</code>.</li> <li>Serialization of empty primitives object being skipped.</li> </ul> <h2>[0.15.2] - 2020-03-29</h2> <h3>Changed</h3> <ul> <li>All features are now exposed in the <a href="http://docs.rs/gltf">online documentation</a>.</li> <li>Primary iterators now implement <code>Iterator::nth</code> explicitly for improved performance.</li> </ul> <h3>Fixed</h3> <ul> <li>Compiler warnings regarding deprecation of <code>std::error::Error::description</code>.</li> </ul> <h2>[0.15.1] - 2020-03-15</h2> <h3>Added</h3> <ul> <li>New feature <code>guess_mime_type</code> which, as the name suggests, attempts to guess the MIME type of an image if it doesn't exactly match the standard.</li> </ul> <!-- raw HTML omitted --> </blockquote> <p>... (truncated)</p> </details> <details> <summary>Commits</summary> <ul> <li>See full diff in <a href="https://github.com/gltf-rs/gltf/commits">compare view</a></li> </ul> </details> <br /> Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) --- <details> <summary>Dependabot commands and options</summary> <br /> You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) </details>
2022-02-02 00:25:39 +00:00
gltf = { version = "1.0.0", default-features = false, features = [
"KHR_lights_punctual",
"KHR_materials_unlit",
"extras",
"names",
"utils",
] }
thiserror = "1.0"
anyhow = "1.0.4"
base64 = "0.13.0"
percent-encoding = "2.1"