bevy/examples/ui/relative_cursor_position.rs

96 lines
3.1 KiB
Rust
Raw Normal View History

//! Showcases the [`RelativeCursorPosition`] component, used to check the position of the cursor relative to a UI node.
Camera-driven UI (#10559) # Objective Add support for presenting each UI tree on a specific window and viewport, while making as few breaking changes as possible. This PR is meant to resolve the following issues at once, since they're all related. - Fixes #5622 - Fixes #5570 - Fixes #5621 Adopted #5892 , but started over since the current codebase diverged significantly from the original PR branch. Also, I made a decision to propagate component to children instead of recursively iterating over nodes in search for the root. ## Solution Add a new optional component that can be inserted to UI root nodes and propagate to children to specify which camera it should render onto. This is then used to get the render target and the viewport for that UI tree. Since this component is optional, the default behavior should be to render onto the single camera (if only one exist) and warn of ambiguity if multiple cameras exist. This reduces the complexity for users with just one camera, while giving control in contexts where it matters. ## Changelog - Adds `TargetCamera(Entity)` component to specify which camera should a node tree be rendered into. If only one camera exists, this component is optional. - Adds an example of rendering UI to a texture and using it as a material in a 3D world. - Fixes recalculation of physical viewport size when target scale factor changes. This can happen when the window is moved between displays with different DPI. - Changes examples to demonstrate assigning UI to different viewports and windows and make interactions in an offset viewport testable. - Removes `UiCameraConfig`. UI visibility now can be controlled via combination of explicit `TargetCamera` and `Visibility` on the root nodes. --------- Co-authored-by: davier <bricedavier@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-01-16 00:39:10 +00:00
use bevy::{
prelude::*, render::camera::Viewport, ui::RelativeCursorPosition, winit::WinitSettings,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
// Only run the app when there is user input. This will significantly reduce CPU/GPU use.
.insert_resource(WinitSettings::desktop_app())
.add_systems(Startup, setup)
.add_systems(Update, relative_cursor_position_system)
.run();
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
Camera-driven UI (#10559) # Objective Add support for presenting each UI tree on a specific window and viewport, while making as few breaking changes as possible. This PR is meant to resolve the following issues at once, since they're all related. - Fixes #5622 - Fixes #5570 - Fixes #5621 Adopted #5892 , but started over since the current codebase diverged significantly from the original PR branch. Also, I made a decision to propagate component to children instead of recursively iterating over nodes in search for the root. ## Solution Add a new optional component that can be inserted to UI root nodes and propagate to children to specify which camera it should render onto. This is then used to get the render target and the viewport for that UI tree. Since this component is optional, the default behavior should be to render onto the single camera (if only one exist) and warn of ambiguity if multiple cameras exist. This reduces the complexity for users with just one camera, while giving control in contexts where it matters. ## Changelog - Adds `TargetCamera(Entity)` component to specify which camera should a node tree be rendered into. If only one camera exists, this component is optional. - Adds an example of rendering UI to a texture and using it as a material in a 3D world. - Fixes recalculation of physical viewport size when target scale factor changes. This can happen when the window is moved between displays with different DPI. - Changes examples to demonstrate assigning UI to different viewports and windows and make interactions in an offset viewport testable. - Removes `UiCameraConfig`. UI visibility now can be controlled via combination of explicit `TargetCamera` and `Visibility` on the root nodes. --------- Co-authored-by: davier <bricedavier@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-01-16 00:39:10 +00:00
commands.spawn(Camera2dBundle {
camera: Camera {
// Cursor position will take the viewport offset into account
viewport: Some(Viewport {
physical_position: [200, 100].into(),
physical_size: [600, 600].into(),
..default()
}),
..default()
},
..default()
});
commands
.spawn(NodeBundle {
style: Style {
width: Val::Percent(100.),
Have a separate implicit viewport node per root node + make viewport node `Display::Grid` (#9637) # Objective Make `bevy_ui` "root" nodes more intuitive to use/style by: - Removing the implicit flexbox styling (such as stretch alignment) that is applied to them, and replacing it with more intuitive CSS Grid styling (notably with stretch alignment disabled in both axes). - Making root nodes layout independently of each other. Instead of there being a single implicit "viewport" node that all root nodes are children of, there is now an implicit "viewport" node *per root node*. And layout of each tree is computed separately. ## Solution - Remove the global implicit viewport node, and instead create an implicit viewport node for each user-specified root node. - Keep track of both the user-specified root nodes and the implicit viewport nodes in a separate `Vec`. - Use the window's size as the `available_space` parameter to `Taffy.compute_layout` rather than setting it on the implicit viewport node (and set the viewport to `height: 100%; width: 100%` to make this "just work"). --- ## Changelog - Bevy UI now lays out root nodes independently of each other in separate layout contexts. - The implicit viewport node (which contains each user-specified root node) is now `Display::Grid` with `align_items` and `justify_items` both set to `Start`. ## Migration Guide - Bevy UI now lays out root nodes independently of each other in separate layout contexts. If you were relying on your root nodes being able to affect each other's layouts, then you may need to wrap them in a single root node. - The implicit viewport node (which contains each user-specified root node) is now `Display::Grid` with `align_items` and `justify_items` both set to `Start`. You may need to add `height: Val::Percent(100.)` to your root nodes if you were previously relying on being implicitly set.
2023-09-19 15:14:46 +00:00
height: Val::Percent(100.0),
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
flex_direction: FlexDirection::Column,
..default()
},
..default()
})
.with_children(|parent| {
parent
.spawn(NodeBundle {
style: Style {
width: Val::Px(250.),
height: Val::Px(250.),
margin: UiRect::bottom(Val::Px(15.)),
..default()
},
background_color: Color::rgb(235., 35., 12.).into(),
..default()
})
.insert(RelativeCursorPosition::default());
parent.spawn(TextBundle {
text: Text::from_section(
"(0.0, 0.0)",
TextStyle {
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
font_size: 40.0,
color: Color::rgb(0.9, 0.9, 0.9),
},
),
..default()
});
});
}
/// This systems polls the relative cursor position and displays its value in a text component.
fn relative_cursor_position_system(
relative_cursor_position_query: Query<&RelativeCursorPosition>,
mut output_query: Query<&mut Text>,
) {
let relative_cursor_position = relative_cursor_position_query.single();
let mut output = output_query.single_mut();
output.sections[0].value =
if let Some(relative_cursor_position) = relative_cursor_position.normalized {
format!(
"({:.1}, {:.1})",
relative_cursor_position.x, relative_cursor_position.y
)
} else {
"unknown".to_string()
};
output.sections[0].style.color = if relative_cursor_position.mouse_over() {
Color::rgb(0.1, 0.9, 0.1)
} else {
Color::rgb(0.9, 0.1, 0.1)
};
}