bevy/examples/shader/shader_material.rs

64 lines
1.8 KiB
Rust
Raw Normal View History

//! A shader and a material that uses it.
Modular Rendering (#2831) This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts. To make rendering more modular, I made a number of changes: * Entities now drive rendering: * We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering" * To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815 * Reworked the `Draw` abstraction: * Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key" * Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems) * `Draw` trait and and `DrawFunctions` are now generic on PhaseItem * Modular / Ergonomic `DrawFunctions` via `RenderCommands` * RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations: ```rust pub type DrawPbr = ( SetPbrPipeline, SetMeshViewBindGroup<0>, SetStandardMaterialBindGroup<1>, SetTransformBindGroup<2>, DrawMesh, ); ``` * The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function: ```rust type DrawCustom = ( SetCustomMaterialPipeline, SetMeshViewBindGroup<0>, SetTransformBindGroup<2>, DrawMesh, ); ``` * ExtractComponentPlugin and UniformComponentPlugin: * Simple, standardized ways to easily extract individual components and write them to GPU buffers * Ported PBR and Sprite rendering to the new primitives above. * Removed staging buffer from UniformVec in favor of direct Queue usage * Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems). * Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark! * Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know! * RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers). * RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes. * Updated some built in shaders to account for missing MeshUniform fields
2021-09-23 06:16:11 +00:00
use bevy::{
prelude::*,
Bevy Asset V2 (#8624) # Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
reflect::TypePath,
Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053) # Objective This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired: * Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan. * There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss. * Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. ## Solution Say hello to the new `Material` system: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } } ``` Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code. This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive. ### The new `Material` trait The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional. The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity: ```rust // Old impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode { render_asset.alpha_mode } } // New impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn alpha_mode(&self) -> AlphaMode { self.alpha_mode } } ``` Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later). ### The `AsBindGroup` trait / derive The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. Field attributes like `uniform` and `texture` are used to define which fields should be bindings, what their binding type is, and what index they should be bound at: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` In WGSL shaders, the binding looks like this: ```wgsl struct CoolMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; [[group(1), binding(1)]] var color_texture: texture_2d<f32>; [[group(1), binding(2)]] var color_sampler: sampler; ``` Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1. The following field-level attributes are supported: * `uniform(BINDING_INDEX)` * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs. * `texture(BINDING_INDEX)` * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index). * `sampler(BINDING_INDEX)` * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. Note that fields without field-level binding attributes will be ignored. ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, this_field_is_ignored: String, } ``` As mentioned above, `Option<Handle<Image>>` is also supported: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Option<Handle<Image>>, } ``` This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white". Field uniforms with the same binding index will be combined into a single binding: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[uniform(0)] roughness: f32, } ``` In WGSL shaders, the binding would look like this: ```wgsl struct CoolMaterial { color: vec4<f32>; roughness: f32; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; ``` Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes: * `uniform(BINDING_INDEX, ConvertedShaderType)` * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required. * `bind_group_data(DataType)` * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization". The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can also be equivalently represented with a single struct-level uniform attribute: ```rust #[derive(AsBindGroup)] #[uniform(0, CoolMaterialUniform)] struct CoolMaterial { color: Color, roughness: f32, } #[derive(ShaderType)] struct CoolMaterialUniform { color: Color, roughness: f32, } impl From<&CoolMaterial> for CoolMaterialUniform { fn from(material: &CoolMaterial) -> CoolMaterialUniform { CoolMaterialUniform { color: material.color, roughness: material.roughness, } } } ``` ### Material Specialization Material shader specialization is now _much_ simpler: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] #[bind_group_data(CoolMaterialKey)] struct CoolMaterial { #[uniform(0)] color: Color, is_red: bool, } #[derive(Copy, Clone, Hash, Eq, PartialEq)] struct CoolMaterialKey { is_red: bool, } impl From<&CoolMaterial> for CoolMaterialKey { fn from(material: &CoolMaterial) -> CoolMaterialKey { CoolMaterialKey { is_red: material.is_red, } } } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { if key.bind_group_data.is_red { let fragment = descriptor.fragment.as_mut().unwrap(); fragment.shader_defs.push("IS_RED".to_string()); } Ok(()) } } ``` Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system: ```rust impl Material for CustomMaterial { fn vertex_shader() -> ShaderRef { "custom_material.wgsl".into() } fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { let vertex_layout = layout.get_layout(&[ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), ATTRIBUTE_BLEND_COLOR.at_shader_location(1), ])?; descriptor.vertex.buffers = vec![vertex_layout]; Ok(()) } } ``` ### Ported `StandardMaterial` to the new `Material` system Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive): ```rust #[derive(AsBindGroup, Debug, Clone, TypeUuid)] #[uuid = "7494888b-c082-457b-aacf-517228cc0c22"] #[bind_group_data(StandardMaterialKey)] #[uniform(0, StandardMaterialUniform)] pub struct StandardMaterial { pub base_color: Color, #[texture(1)] #[sampler(2)] pub base_color_texture: Option<Handle<Image>>, /* other fields omitted for brevity */ ``` ### Ported Bevy examples to the new `Material` system The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike. Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction in the overall complexity of the code (even accounting for the new derive logic). --- ## Changelog ### Added * `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type. ### Changed * The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`. * `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`. ## Migration Guide The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well! ### Bevy 0.7 (old) ```rust #[derive(Debug, Clone, TypeUuid)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { color: Color, color_texture: Handle<Image>, } #[derive(Clone)] pub struct GpuCustomMaterial { _buffer: Buffer, bind_group: BindGroup, } impl RenderAsset for CustomMaterial { type ExtractedAsset = CustomMaterial; type PreparedAsset = GpuCustomMaterial; type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>); fn extract_asset(&self) -> Self::ExtractedAsset { self.clone() } fn prepare_asset( extracted_asset: Self::ExtractedAsset, (render_device, material_pipeline): &mut SystemParamItem<Self::Param>, ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> { let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32()); let byte_buffer = [0u8; Vec4::SIZE.get() as usize]; let mut buffer = encase::UniformBuffer::new(byte_buffer); buffer.write(&color).unwrap(); let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor { contents: buffer.as_ref(), label: None, usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let (texture_view, texture_sampler) = if let Some(result) = material_pipeline .mesh_pipeline .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone())) { result } else { return Err(PrepareAssetError::RetryNextUpdate(extracted_asset)); }; let bind_group = render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: buffer.as_entire_binding(), }, BindGroupEntry { binding: 0, resource: BindingResource::TextureView(texture_view), }, BindGroupEntry { binding: 1, resource: BindingResource::Sampler(texture_sampler), }, ], label: None, layout: &material_pipeline.material_layout, }); Ok(GpuCustomMaterial { _buffer: buffer, bind_group, }) } } impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup { &render_asset.bind_group } fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout { render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: Some(Vec4::min_size()), }, count: None, }, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Float { filterable: true }, view_dimension: TextureViewDimension::D2Array, }, count: None, }, BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Filtering), count: None, }, ], label: None, }) } } ``` ### Bevy 0.8 (new) ```rust impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } } #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` ## Future Work * Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check. * Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint". * This would make it possible for the derive to do this: ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[uniform] color: Color, #[texture] #[sampler] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or this ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[binding] color: Color, #[binding] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or even this (if we flip to "include bindings by default") ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { color: Color, color_texture: Option<Handle<Image>>, #[binding(ignore)] alpha_mode: AlphaMode, } ``` * If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00
render::render_resource::{AsBindGroup, ShaderRef},
Modular Rendering (#2831) This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts. To make rendering more modular, I made a number of changes: * Entities now drive rendering: * We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering" * To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815 * Reworked the `Draw` abstraction: * Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key" * Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems) * `Draw` trait and and `DrawFunctions` are now generic on PhaseItem * Modular / Ergonomic `DrawFunctions` via `RenderCommands` * RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations: ```rust pub type DrawPbr = ( SetPbrPipeline, SetMeshViewBindGroup<0>, SetStandardMaterialBindGroup<1>, SetTransformBindGroup<2>, DrawMesh, ); ``` * The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function: ```rust type DrawCustom = ( SetCustomMaterialPipeline, SetMeshViewBindGroup<0>, SetTransformBindGroup<2>, DrawMesh, ); ``` * ExtractComponentPlugin and UniformComponentPlugin: * Simple, standardized ways to easily extract individual components and write them to GPU buffers * Ported PBR and Sprite rendering to the new primitives above. * Removed staging buffer from UniformVec in favor of direct Queue usage * Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems). * Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark! * Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know! * RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers). * RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes. * Updated some built in shaders to account for missing MeshUniform fields
2021-09-23 06:16:11 +00:00
};
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
fn main() {
App::new()
.add_plugins((DefaultPlugins, MaterialPlugin::<CustomMaterial>::default()))
.add_systems(Startup, setup)
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
.run();
}
/// set up a simple 3D scene
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<CustomMaterial>>,
Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053) # Objective This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired: * Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan. * There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss. * Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. ## Solution Say hello to the new `Material` system: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } } ``` Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code. This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive. ### The new `Material` trait The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional. The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity: ```rust // Old impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode { render_asset.alpha_mode } } // New impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn alpha_mode(&self) -> AlphaMode { self.alpha_mode } } ``` Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later). ### The `AsBindGroup` trait / derive The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. Field attributes like `uniform` and `texture` are used to define which fields should be bindings, what their binding type is, and what index they should be bound at: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` In WGSL shaders, the binding looks like this: ```wgsl struct CoolMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; [[group(1), binding(1)]] var color_texture: texture_2d<f32>; [[group(1), binding(2)]] var color_sampler: sampler; ``` Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1. The following field-level attributes are supported: * `uniform(BINDING_INDEX)` * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs. * `texture(BINDING_INDEX)` * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index). * `sampler(BINDING_INDEX)` * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. Note that fields without field-level binding attributes will be ignored. ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, this_field_is_ignored: String, } ``` As mentioned above, `Option<Handle<Image>>` is also supported: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Option<Handle<Image>>, } ``` This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white". Field uniforms with the same binding index will be combined into a single binding: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[uniform(0)] roughness: f32, } ``` In WGSL shaders, the binding would look like this: ```wgsl struct CoolMaterial { color: vec4<f32>; roughness: f32; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; ``` Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes: * `uniform(BINDING_INDEX, ConvertedShaderType)` * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required. * `bind_group_data(DataType)` * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization". The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can also be equivalently represented with a single struct-level uniform attribute: ```rust #[derive(AsBindGroup)] #[uniform(0, CoolMaterialUniform)] struct CoolMaterial { color: Color, roughness: f32, } #[derive(ShaderType)] struct CoolMaterialUniform { color: Color, roughness: f32, } impl From<&CoolMaterial> for CoolMaterialUniform { fn from(material: &CoolMaterial) -> CoolMaterialUniform { CoolMaterialUniform { color: material.color, roughness: material.roughness, } } } ``` ### Material Specialization Material shader specialization is now _much_ simpler: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] #[bind_group_data(CoolMaterialKey)] struct CoolMaterial { #[uniform(0)] color: Color, is_red: bool, } #[derive(Copy, Clone, Hash, Eq, PartialEq)] struct CoolMaterialKey { is_red: bool, } impl From<&CoolMaterial> for CoolMaterialKey { fn from(material: &CoolMaterial) -> CoolMaterialKey { CoolMaterialKey { is_red: material.is_red, } } } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { if key.bind_group_data.is_red { let fragment = descriptor.fragment.as_mut().unwrap(); fragment.shader_defs.push("IS_RED".to_string()); } Ok(()) } } ``` Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system: ```rust impl Material for CustomMaterial { fn vertex_shader() -> ShaderRef { "custom_material.wgsl".into() } fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { let vertex_layout = layout.get_layout(&[ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), ATTRIBUTE_BLEND_COLOR.at_shader_location(1), ])?; descriptor.vertex.buffers = vec![vertex_layout]; Ok(()) } } ``` ### Ported `StandardMaterial` to the new `Material` system Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive): ```rust #[derive(AsBindGroup, Debug, Clone, TypeUuid)] #[uuid = "7494888b-c082-457b-aacf-517228cc0c22"] #[bind_group_data(StandardMaterialKey)] #[uniform(0, StandardMaterialUniform)] pub struct StandardMaterial { pub base_color: Color, #[texture(1)] #[sampler(2)] pub base_color_texture: Option<Handle<Image>>, /* other fields omitted for brevity */ ``` ### Ported Bevy examples to the new `Material` system The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike. Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction in the overall complexity of the code (even accounting for the new derive logic). --- ## Changelog ### Added * `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type. ### Changed * The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`. * `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`. ## Migration Guide The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well! ### Bevy 0.7 (old) ```rust #[derive(Debug, Clone, TypeUuid)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { color: Color, color_texture: Handle<Image>, } #[derive(Clone)] pub struct GpuCustomMaterial { _buffer: Buffer, bind_group: BindGroup, } impl RenderAsset for CustomMaterial { type ExtractedAsset = CustomMaterial; type PreparedAsset = GpuCustomMaterial; type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>); fn extract_asset(&self) -> Self::ExtractedAsset { self.clone() } fn prepare_asset( extracted_asset: Self::ExtractedAsset, (render_device, material_pipeline): &mut SystemParamItem<Self::Param>, ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> { let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32()); let byte_buffer = [0u8; Vec4::SIZE.get() as usize]; let mut buffer = encase::UniformBuffer::new(byte_buffer); buffer.write(&color).unwrap(); let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor { contents: buffer.as_ref(), label: None, usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let (texture_view, texture_sampler) = if let Some(result) = material_pipeline .mesh_pipeline .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone())) { result } else { return Err(PrepareAssetError::RetryNextUpdate(extracted_asset)); }; let bind_group = render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: buffer.as_entire_binding(), }, BindGroupEntry { binding: 0, resource: BindingResource::TextureView(texture_view), }, BindGroupEntry { binding: 1, resource: BindingResource::Sampler(texture_sampler), }, ], label: None, layout: &material_pipeline.material_layout, }); Ok(GpuCustomMaterial { _buffer: buffer, bind_group, }) } } impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup { &render_asset.bind_group } fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout { render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: Some(Vec4::min_size()), }, count: None, }, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Float { filterable: true }, view_dimension: TextureViewDimension::D2Array, }, count: None, }, BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Filtering), count: None, }, ], label: None, }) } } ``` ### Bevy 0.8 (new) ```rust impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } } #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` ## Future Work * Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check. * Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint". * This would make it possible for the derive to do this: ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[uniform] color: Color, #[texture] #[sampler] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or this ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[binding] color: Color, #[binding] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or even this (if we flip to "include bindings by default") ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { color: Color, color_texture: Option<Handle<Image>>, #[binding(ignore)] alpha_mode: AlphaMode, } ``` * If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00
asset_server: Res<AssetServer>,
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
) {
// cube
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
commands.spawn(MaterialMeshBundle {
Deprecate shapes in `bevy_render::mesh::shape` (#11773) # Objective #11431 and #11688 implemented meshing support for Bevy's new geometric primitives. The next step is to deprecate the shapes in `bevy_render::mesh::shape` and to later remove them completely for 0.14. ## Solution Deprecate the shapes and reduce code duplication by utilizing the primitive meshing API for the old shapes where possible. Note that some shapes have behavior that can't be exactly reproduced with the new primitives yet: - `Box` is more of an AABB with min/max extents - `Plane` supports a subdivision count - `Quad` has a `flipped` property These types have not been changed to utilize the new primitives yet. --- ## Changelog - Deprecated all shapes in `bevy_render::mesh::shape` - Changed all examples to use new primitives for meshing ## Migration Guide Bevy has previously used rendering-specific types like `UVSphere` and `Quad` for primitive mesh shapes. These have now been deprecated to use the geometric primitives newly introduced in version 0.13. Some examples: ```rust let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0)); let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0)); let before = meshes.add(shape::Quad::default()); let after = meshes.add(Rectangle::default()); let before = meshes.add(shape::Plane::from_size(5.0)); // The surface normal can now also be specified when using `new` let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0)); let before = meshes.add( Mesh::try_from(shape::Icosphere { radius: 0.5, subdivisions: 5, }) .unwrap(), ); let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap()); ```
2024-02-08 18:01:34 +00:00
mesh: meshes.add(Cuboid::default()),
transform: Transform::from_xyz(0.0, 0.5, 0.0),
material: materials.add(CustomMaterial {
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: LinearRgba::BLUE,
Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053) # Objective This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired: * Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan. * There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss. * Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. ## Solution Say hello to the new `Material` system: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } } ``` Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code. This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive. ### The new `Material` trait The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional. The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity: ```rust // Old impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode { render_asset.alpha_mode } } // New impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn alpha_mode(&self) -> AlphaMode { self.alpha_mode } } ``` Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later). ### The `AsBindGroup` trait / derive The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. Field attributes like `uniform` and `texture` are used to define which fields should be bindings, what their binding type is, and what index they should be bound at: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` In WGSL shaders, the binding looks like this: ```wgsl struct CoolMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; [[group(1), binding(1)]] var color_texture: texture_2d<f32>; [[group(1), binding(2)]] var color_sampler: sampler; ``` Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1. The following field-level attributes are supported: * `uniform(BINDING_INDEX)` * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs. * `texture(BINDING_INDEX)` * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index). * `sampler(BINDING_INDEX)` * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. Note that fields without field-level binding attributes will be ignored. ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, this_field_is_ignored: String, } ``` As mentioned above, `Option<Handle<Image>>` is also supported: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Option<Handle<Image>>, } ``` This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white". Field uniforms with the same binding index will be combined into a single binding: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[uniform(0)] roughness: f32, } ``` In WGSL shaders, the binding would look like this: ```wgsl struct CoolMaterial { color: vec4<f32>; roughness: f32; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; ``` Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes: * `uniform(BINDING_INDEX, ConvertedShaderType)` * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required. * `bind_group_data(DataType)` * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization". The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can also be equivalently represented with a single struct-level uniform attribute: ```rust #[derive(AsBindGroup)] #[uniform(0, CoolMaterialUniform)] struct CoolMaterial { color: Color, roughness: f32, } #[derive(ShaderType)] struct CoolMaterialUniform { color: Color, roughness: f32, } impl From<&CoolMaterial> for CoolMaterialUniform { fn from(material: &CoolMaterial) -> CoolMaterialUniform { CoolMaterialUniform { color: material.color, roughness: material.roughness, } } } ``` ### Material Specialization Material shader specialization is now _much_ simpler: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] #[bind_group_data(CoolMaterialKey)] struct CoolMaterial { #[uniform(0)] color: Color, is_red: bool, } #[derive(Copy, Clone, Hash, Eq, PartialEq)] struct CoolMaterialKey { is_red: bool, } impl From<&CoolMaterial> for CoolMaterialKey { fn from(material: &CoolMaterial) -> CoolMaterialKey { CoolMaterialKey { is_red: material.is_red, } } } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { if key.bind_group_data.is_red { let fragment = descriptor.fragment.as_mut().unwrap(); fragment.shader_defs.push("IS_RED".to_string()); } Ok(()) } } ``` Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system: ```rust impl Material for CustomMaterial { fn vertex_shader() -> ShaderRef { "custom_material.wgsl".into() } fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { let vertex_layout = layout.get_layout(&[ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), ATTRIBUTE_BLEND_COLOR.at_shader_location(1), ])?; descriptor.vertex.buffers = vec![vertex_layout]; Ok(()) } } ``` ### Ported `StandardMaterial` to the new `Material` system Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive): ```rust #[derive(AsBindGroup, Debug, Clone, TypeUuid)] #[uuid = "7494888b-c082-457b-aacf-517228cc0c22"] #[bind_group_data(StandardMaterialKey)] #[uniform(0, StandardMaterialUniform)] pub struct StandardMaterial { pub base_color: Color, #[texture(1)] #[sampler(2)] pub base_color_texture: Option<Handle<Image>>, /* other fields omitted for brevity */ ``` ### Ported Bevy examples to the new `Material` system The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike. Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction in the overall complexity of the code (even accounting for the new derive logic). --- ## Changelog ### Added * `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type. ### Changed * The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`. * `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`. ## Migration Guide The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well! ### Bevy 0.7 (old) ```rust #[derive(Debug, Clone, TypeUuid)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { color: Color, color_texture: Handle<Image>, } #[derive(Clone)] pub struct GpuCustomMaterial { _buffer: Buffer, bind_group: BindGroup, } impl RenderAsset for CustomMaterial { type ExtractedAsset = CustomMaterial; type PreparedAsset = GpuCustomMaterial; type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>); fn extract_asset(&self) -> Self::ExtractedAsset { self.clone() } fn prepare_asset( extracted_asset: Self::ExtractedAsset, (render_device, material_pipeline): &mut SystemParamItem<Self::Param>, ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> { let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32()); let byte_buffer = [0u8; Vec4::SIZE.get() as usize]; let mut buffer = encase::UniformBuffer::new(byte_buffer); buffer.write(&color).unwrap(); let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor { contents: buffer.as_ref(), label: None, usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let (texture_view, texture_sampler) = if let Some(result) = material_pipeline .mesh_pipeline .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone())) { result } else { return Err(PrepareAssetError::RetryNextUpdate(extracted_asset)); }; let bind_group = render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: buffer.as_entire_binding(), }, BindGroupEntry { binding: 0, resource: BindingResource::TextureView(texture_view), }, BindGroupEntry { binding: 1, resource: BindingResource::Sampler(texture_sampler), }, ], label: None, layout: &material_pipeline.material_layout, }); Ok(GpuCustomMaterial { _buffer: buffer, bind_group, }) } } impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup { &render_asset.bind_group } fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout { render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: Some(Vec4::min_size()), }, count: None, }, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Float { filterable: true }, view_dimension: TextureViewDimension::D2Array, }, count: None, }, BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Filtering), count: None, }, ], label: None, }) } } ``` ### Bevy 0.8 (new) ```rust impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } } #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` ## Future Work * Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check. * Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint". * This would make it possible for the derive to do this: ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[uniform] color: Color, #[texture] #[sampler] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or this ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[binding] color: Color, #[binding] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or even this (if we flip to "include bindings by default") ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { color: Color, color_texture: Option<Handle<Image>>, #[binding(ignore)] alpha_mode: AlphaMode, } ``` * If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00
color_texture: Some(asset_server.load("branding/icon.png")),
alpha_mode: AlphaMode::Blend,
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
}),
..default()
});
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
// camera
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
commands.spawn(Camera3dBundle {
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
transform: Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031) ## New Features This adds the following to the new renderer: * **Shader Assets** * Shaders are assets again! Users no longer need to call `include_str!` for their shaders * Shader hot-reloading * **Shader Defs / Shader Preprocessing** * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives * **Bevy RenderPipelineDescriptor and RenderPipelineCache** * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization. * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. * **Pipeline Specialization** * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts. * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline. * Specialized pipelines are also hot-reloadable. * This was the result of experimentation with two different approaches: 1. **"generic immediate mode multi-key hash pipeline specialization"** * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes) * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). * this is the approach rafx used last time i checked 2. **"custom key specialization"** * Pipelines by default are not specialized * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings. * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated. * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache ## Callouts * The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline. * The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". ## Next Steps * Port compute pipelines to the new system * Add more preprocessor directives (else, elif, import) * More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
});
}
// This struct defines the data that will be passed to your shader
#[derive(Asset, TypePath, AsBindGroup, Debug, Clone)]
struct CustomMaterial {
#[uniform(0)]
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: LinearRgba,
#[texture(1)]
#[sampler(2)]
color_texture: Option<Handle<Image>>,
alpha_mode: AlphaMode,
}
Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053) # Objective This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired: * Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan. * There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss. * Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. ## Solution Say hello to the new `Material` system: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } } ``` Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code. This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive. ### The new `Material` trait The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional. The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity: ```rust // Old impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode { render_asset.alpha_mode } } // New impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn alpha_mode(&self) -> AlphaMode { self.alpha_mode } } ``` Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later). ### The `AsBindGroup` trait / derive The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. Field attributes like `uniform` and `texture` are used to define which fields should be bindings, what their binding type is, and what index they should be bound at: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` In WGSL shaders, the binding looks like this: ```wgsl struct CoolMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; [[group(1), binding(1)]] var color_texture: texture_2d<f32>; [[group(1), binding(2)]] var color_sampler: sampler; ``` Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1. The following field-level attributes are supported: * `uniform(BINDING_INDEX)` * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs. * `texture(BINDING_INDEX)` * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index). * `sampler(BINDING_INDEX)` * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. Note that fields without field-level binding attributes will be ignored. ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, this_field_is_ignored: String, } ``` As mentioned above, `Option<Handle<Image>>` is also supported: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Option<Handle<Image>>, } ``` This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white". Field uniforms with the same binding index will be combined into a single binding: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[uniform(0)] roughness: f32, } ``` In WGSL shaders, the binding would look like this: ```wgsl struct CoolMaterial { color: vec4<f32>; roughness: f32; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; ``` Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes: * `uniform(BINDING_INDEX, ConvertedShaderType)` * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required. * `bind_group_data(DataType)` * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization". The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can also be equivalently represented with a single struct-level uniform attribute: ```rust #[derive(AsBindGroup)] #[uniform(0, CoolMaterialUniform)] struct CoolMaterial { color: Color, roughness: f32, } #[derive(ShaderType)] struct CoolMaterialUniform { color: Color, roughness: f32, } impl From<&CoolMaterial> for CoolMaterialUniform { fn from(material: &CoolMaterial) -> CoolMaterialUniform { CoolMaterialUniform { color: material.color, roughness: material.roughness, } } } ``` ### Material Specialization Material shader specialization is now _much_ simpler: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] #[bind_group_data(CoolMaterialKey)] struct CoolMaterial { #[uniform(0)] color: Color, is_red: bool, } #[derive(Copy, Clone, Hash, Eq, PartialEq)] struct CoolMaterialKey { is_red: bool, } impl From<&CoolMaterial> for CoolMaterialKey { fn from(material: &CoolMaterial) -> CoolMaterialKey { CoolMaterialKey { is_red: material.is_red, } } } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { if key.bind_group_data.is_red { let fragment = descriptor.fragment.as_mut().unwrap(); fragment.shader_defs.push("IS_RED".to_string()); } Ok(()) } } ``` Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system: ```rust impl Material for CustomMaterial { fn vertex_shader() -> ShaderRef { "custom_material.wgsl".into() } fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { let vertex_layout = layout.get_layout(&[ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), ATTRIBUTE_BLEND_COLOR.at_shader_location(1), ])?; descriptor.vertex.buffers = vec![vertex_layout]; Ok(()) } } ``` ### Ported `StandardMaterial` to the new `Material` system Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive): ```rust #[derive(AsBindGroup, Debug, Clone, TypeUuid)] #[uuid = "7494888b-c082-457b-aacf-517228cc0c22"] #[bind_group_data(StandardMaterialKey)] #[uniform(0, StandardMaterialUniform)] pub struct StandardMaterial { pub base_color: Color, #[texture(1)] #[sampler(2)] pub base_color_texture: Option<Handle<Image>>, /* other fields omitted for brevity */ ``` ### Ported Bevy examples to the new `Material` system The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike. Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction in the overall complexity of the code (even accounting for the new derive logic). --- ## Changelog ### Added * `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type. ### Changed * The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`. * `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`. ## Migration Guide The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well! ### Bevy 0.7 (old) ```rust #[derive(Debug, Clone, TypeUuid)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { color: Color, color_texture: Handle<Image>, } #[derive(Clone)] pub struct GpuCustomMaterial { _buffer: Buffer, bind_group: BindGroup, } impl RenderAsset for CustomMaterial { type ExtractedAsset = CustomMaterial; type PreparedAsset = GpuCustomMaterial; type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>); fn extract_asset(&self) -> Self::ExtractedAsset { self.clone() } fn prepare_asset( extracted_asset: Self::ExtractedAsset, (render_device, material_pipeline): &mut SystemParamItem<Self::Param>, ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> { let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32()); let byte_buffer = [0u8; Vec4::SIZE.get() as usize]; let mut buffer = encase::UniformBuffer::new(byte_buffer); buffer.write(&color).unwrap(); let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor { contents: buffer.as_ref(), label: None, usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let (texture_view, texture_sampler) = if let Some(result) = material_pipeline .mesh_pipeline .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone())) { result } else { return Err(PrepareAssetError::RetryNextUpdate(extracted_asset)); }; let bind_group = render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: buffer.as_entire_binding(), }, BindGroupEntry { binding: 0, resource: BindingResource::TextureView(texture_view), }, BindGroupEntry { binding: 1, resource: BindingResource::Sampler(texture_sampler), }, ], label: None, layout: &material_pipeline.material_layout, }); Ok(GpuCustomMaterial { _buffer: buffer, bind_group, }) } } impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup { &render_asset.bind_group } fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout { render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: Some(Vec4::min_size()), }, count: None, }, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Float { filterable: true }, view_dimension: TextureViewDimension::D2Array, }, count: None, }, BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Filtering), count: None, }, ], label: None, }) } } ``` ### Bevy 0.8 (new) ```rust impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } } #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` ## Future Work * Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check. * Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint". * This would make it possible for the derive to do this: ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[uniform] color: Color, #[texture] #[sampler] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or this ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[binding] color: Color, #[binding] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or even this (if we flip to "include bindings by default") ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { color: Color, color_texture: Option<Handle<Image>>, #[binding(ignore)] alpha_mode: AlphaMode, } ``` * If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00
/// The Material trait is very configurable, but comes with sensible defaults for all methods.
/// You only need to implement functions for features that need non-default behavior. See the Material api docs for details!
impl Material for CustomMaterial {
Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053) # Objective This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired: * Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan. * There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss. * Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. ## Solution Say hello to the new `Material` system: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } } ``` Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code. This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive. ### The new `Material` trait The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional. The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity: ```rust // Old impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode { render_asset.alpha_mode } } // New impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn alpha_mode(&self) -> AlphaMode { self.alpha_mode } } ``` Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later). ### The `AsBindGroup` trait / derive The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. Field attributes like `uniform` and `texture` are used to define which fields should be bindings, what their binding type is, and what index they should be bound at: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` In WGSL shaders, the binding looks like this: ```wgsl struct CoolMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; [[group(1), binding(1)]] var color_texture: texture_2d<f32>; [[group(1), binding(2)]] var color_sampler: sampler; ``` Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1. The following field-level attributes are supported: * `uniform(BINDING_INDEX)` * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs. * `texture(BINDING_INDEX)` * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index). * `sampler(BINDING_INDEX)` * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. Note that fields without field-level binding attributes will be ignored. ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, this_field_is_ignored: String, } ``` As mentioned above, `Option<Handle<Image>>` is also supported: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Option<Handle<Image>>, } ``` This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white". Field uniforms with the same binding index will be combined into a single binding: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[uniform(0)] roughness: f32, } ``` In WGSL shaders, the binding would look like this: ```wgsl struct CoolMaterial { color: vec4<f32>; roughness: f32; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; ``` Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes: * `uniform(BINDING_INDEX, ConvertedShaderType)` * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required. * `bind_group_data(DataType)` * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization". The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can also be equivalently represented with a single struct-level uniform attribute: ```rust #[derive(AsBindGroup)] #[uniform(0, CoolMaterialUniform)] struct CoolMaterial { color: Color, roughness: f32, } #[derive(ShaderType)] struct CoolMaterialUniform { color: Color, roughness: f32, } impl From<&CoolMaterial> for CoolMaterialUniform { fn from(material: &CoolMaterial) -> CoolMaterialUniform { CoolMaterialUniform { color: material.color, roughness: material.roughness, } } } ``` ### Material Specialization Material shader specialization is now _much_ simpler: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] #[bind_group_data(CoolMaterialKey)] struct CoolMaterial { #[uniform(0)] color: Color, is_red: bool, } #[derive(Copy, Clone, Hash, Eq, PartialEq)] struct CoolMaterialKey { is_red: bool, } impl From<&CoolMaterial> for CoolMaterialKey { fn from(material: &CoolMaterial) -> CoolMaterialKey { CoolMaterialKey { is_red: material.is_red, } } } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { if key.bind_group_data.is_red { let fragment = descriptor.fragment.as_mut().unwrap(); fragment.shader_defs.push("IS_RED".to_string()); } Ok(()) } } ``` Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system: ```rust impl Material for CustomMaterial { fn vertex_shader() -> ShaderRef { "custom_material.wgsl".into() } fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { let vertex_layout = layout.get_layout(&[ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), ATTRIBUTE_BLEND_COLOR.at_shader_location(1), ])?; descriptor.vertex.buffers = vec![vertex_layout]; Ok(()) } } ``` ### Ported `StandardMaterial` to the new `Material` system Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive): ```rust #[derive(AsBindGroup, Debug, Clone, TypeUuid)] #[uuid = "7494888b-c082-457b-aacf-517228cc0c22"] #[bind_group_data(StandardMaterialKey)] #[uniform(0, StandardMaterialUniform)] pub struct StandardMaterial { pub base_color: Color, #[texture(1)] #[sampler(2)] pub base_color_texture: Option<Handle<Image>>, /* other fields omitted for brevity */ ``` ### Ported Bevy examples to the new `Material` system The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike. Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction in the overall complexity of the code (even accounting for the new derive logic). --- ## Changelog ### Added * `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type. ### Changed * The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`. * `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`. ## Migration Guide The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well! ### Bevy 0.7 (old) ```rust #[derive(Debug, Clone, TypeUuid)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { color: Color, color_texture: Handle<Image>, } #[derive(Clone)] pub struct GpuCustomMaterial { _buffer: Buffer, bind_group: BindGroup, } impl RenderAsset for CustomMaterial { type ExtractedAsset = CustomMaterial; type PreparedAsset = GpuCustomMaterial; type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>); fn extract_asset(&self) -> Self::ExtractedAsset { self.clone() } fn prepare_asset( extracted_asset: Self::ExtractedAsset, (render_device, material_pipeline): &mut SystemParamItem<Self::Param>, ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> { let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32()); let byte_buffer = [0u8; Vec4::SIZE.get() as usize]; let mut buffer = encase::UniformBuffer::new(byte_buffer); buffer.write(&color).unwrap(); let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor { contents: buffer.as_ref(), label: None, usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let (texture_view, texture_sampler) = if let Some(result) = material_pipeline .mesh_pipeline .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone())) { result } else { return Err(PrepareAssetError::RetryNextUpdate(extracted_asset)); }; let bind_group = render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: buffer.as_entire_binding(), }, BindGroupEntry { binding: 0, resource: BindingResource::TextureView(texture_view), }, BindGroupEntry { binding: 1, resource: BindingResource::Sampler(texture_sampler), }, ], label: None, layout: &material_pipeline.material_layout, }); Ok(GpuCustomMaterial { _buffer: buffer, bind_group, }) } } impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup { &render_asset.bind_group } fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout { render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: Some(Vec4::min_size()), }, count: None, }, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Float { filterable: true }, view_dimension: TextureViewDimension::D2Array, }, count: None, }, BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Filtering), count: None, }, ], label: None, }) } } ``` ### Bevy 0.8 (new) ```rust impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } } #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` ## Future Work * Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check. * Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint". * This would make it possible for the derive to do this: ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[uniform] color: Color, #[texture] #[sampler] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or this ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[binding] color: Color, #[binding] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or even this (if we flip to "include bindings by default") ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { color: Color, color_texture: Option<Handle<Image>>, #[binding(ignore)] alpha_mode: AlphaMode, } ``` * If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00
fn fragment_shader() -> ShaderRef {
"shaders/custom_material.wgsl".into()
Modular Rendering (#2831) This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts. To make rendering more modular, I made a number of changes: * Entities now drive rendering: * We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering" * To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815 * Reworked the `Draw` abstraction: * Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key" * Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems) * `Draw` trait and and `DrawFunctions` are now generic on PhaseItem * Modular / Ergonomic `DrawFunctions` via `RenderCommands` * RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations: ```rust pub type DrawPbr = ( SetPbrPipeline, SetMeshViewBindGroup<0>, SetStandardMaterialBindGroup<1>, SetTransformBindGroup<2>, DrawMesh, ); ``` * The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function: ```rust type DrawCustom = ( SetCustomMaterialPipeline, SetMeshViewBindGroup<0>, SetTransformBindGroup<2>, DrawMesh, ); ``` * ExtractComponentPlugin and UniformComponentPlugin: * Simple, standardized ways to easily extract individual components and write them to GPU buffers * Ported PBR and Sprite rendering to the new primitives above. * Removed staging buffer from UniformVec in favor of direct Queue usage * Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems). * Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark! * Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know! * RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers). * RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes. * Updated some built in shaders to account for missing MeshUniform fields
2021-09-23 06:16:11 +00:00
}
Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053) # Objective This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired: * Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan. * There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss. * Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. ## Solution Say hello to the new `Material` system: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } } ``` Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code. This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive. ### The new `Material` trait The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional. The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity: ```rust // Old impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode { render_asset.alpha_mode } } // New impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn alpha_mode(&self) -> AlphaMode { self.alpha_mode } } ``` Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later). ### The `AsBindGroup` trait / derive The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. Field attributes like `uniform` and `texture` are used to define which fields should be bindings, what their binding type is, and what index they should be bound at: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` In WGSL shaders, the binding looks like this: ```wgsl struct CoolMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; [[group(1), binding(1)]] var color_texture: texture_2d<f32>; [[group(1), binding(2)]] var color_sampler: sampler; ``` Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1. The following field-level attributes are supported: * `uniform(BINDING_INDEX)` * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs. * `texture(BINDING_INDEX)` * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index). * `sampler(BINDING_INDEX)` * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. Note that fields without field-level binding attributes will be ignored. ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, this_field_is_ignored: String, } ``` As mentioned above, `Option<Handle<Image>>` is also supported: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Option<Handle<Image>>, } ``` This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white". Field uniforms with the same binding index will be combined into a single binding: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[uniform(0)] roughness: f32, } ``` In WGSL shaders, the binding would look like this: ```wgsl struct CoolMaterial { color: vec4<f32>; roughness: f32; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; ``` Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes: * `uniform(BINDING_INDEX, ConvertedShaderType)` * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required. * `bind_group_data(DataType)` * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization". The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can also be equivalently represented with a single struct-level uniform attribute: ```rust #[derive(AsBindGroup)] #[uniform(0, CoolMaterialUniform)] struct CoolMaterial { color: Color, roughness: f32, } #[derive(ShaderType)] struct CoolMaterialUniform { color: Color, roughness: f32, } impl From<&CoolMaterial> for CoolMaterialUniform { fn from(material: &CoolMaterial) -> CoolMaterialUniform { CoolMaterialUniform { color: material.color, roughness: material.roughness, } } } ``` ### Material Specialization Material shader specialization is now _much_ simpler: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] #[bind_group_data(CoolMaterialKey)] struct CoolMaterial { #[uniform(0)] color: Color, is_red: bool, } #[derive(Copy, Clone, Hash, Eq, PartialEq)] struct CoolMaterialKey { is_red: bool, } impl From<&CoolMaterial> for CoolMaterialKey { fn from(material: &CoolMaterial) -> CoolMaterialKey { CoolMaterialKey { is_red: material.is_red, } } } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { if key.bind_group_data.is_red { let fragment = descriptor.fragment.as_mut().unwrap(); fragment.shader_defs.push("IS_RED".to_string()); } Ok(()) } } ``` Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system: ```rust impl Material for CustomMaterial { fn vertex_shader() -> ShaderRef { "custom_material.wgsl".into() } fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { let vertex_layout = layout.get_layout(&[ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), ATTRIBUTE_BLEND_COLOR.at_shader_location(1), ])?; descriptor.vertex.buffers = vec![vertex_layout]; Ok(()) } } ``` ### Ported `StandardMaterial` to the new `Material` system Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive): ```rust #[derive(AsBindGroup, Debug, Clone, TypeUuid)] #[uuid = "7494888b-c082-457b-aacf-517228cc0c22"] #[bind_group_data(StandardMaterialKey)] #[uniform(0, StandardMaterialUniform)] pub struct StandardMaterial { pub base_color: Color, #[texture(1)] #[sampler(2)] pub base_color_texture: Option<Handle<Image>>, /* other fields omitted for brevity */ ``` ### Ported Bevy examples to the new `Material` system The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike. Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction in the overall complexity of the code (even accounting for the new derive logic). --- ## Changelog ### Added * `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type. ### Changed * The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`. * `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`. ## Migration Guide The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well! ### Bevy 0.7 (old) ```rust #[derive(Debug, Clone, TypeUuid)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { color: Color, color_texture: Handle<Image>, } #[derive(Clone)] pub struct GpuCustomMaterial { _buffer: Buffer, bind_group: BindGroup, } impl RenderAsset for CustomMaterial { type ExtractedAsset = CustomMaterial; type PreparedAsset = GpuCustomMaterial; type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>); fn extract_asset(&self) -> Self::ExtractedAsset { self.clone() } fn prepare_asset( extracted_asset: Self::ExtractedAsset, (render_device, material_pipeline): &mut SystemParamItem<Self::Param>, ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> { let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32()); let byte_buffer = [0u8; Vec4::SIZE.get() as usize]; let mut buffer = encase::UniformBuffer::new(byte_buffer); buffer.write(&color).unwrap(); let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor { contents: buffer.as_ref(), label: None, usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let (texture_view, texture_sampler) = if let Some(result) = material_pipeline .mesh_pipeline .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone())) { result } else { return Err(PrepareAssetError::RetryNextUpdate(extracted_asset)); }; let bind_group = render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: buffer.as_entire_binding(), }, BindGroupEntry { binding: 0, resource: BindingResource::TextureView(texture_view), }, BindGroupEntry { binding: 1, resource: BindingResource::Sampler(texture_sampler), }, ], label: None, layout: &material_pipeline.material_layout, }); Ok(GpuCustomMaterial { _buffer: buffer, bind_group, }) } } impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup { &render_asset.bind_group } fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout { render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: Some(Vec4::min_size()), }, count: None, }, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Float { filterable: true }, view_dimension: TextureViewDimension::D2Array, }, count: None, }, BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Filtering), count: None, }, ], label: None, }) } } ``` ### Bevy 0.8 (new) ```rust impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } } #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` ## Future Work * Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check. * Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint". * This would make it possible for the derive to do this: ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[uniform] color: Color, #[texture] #[sampler] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or this ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[binding] color: Color, #[binding] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or even this (if we flip to "include bindings by default") ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { color: Color, color_texture: Option<Handle<Image>>, #[binding(ignore)] alpha_mode: AlphaMode, } ``` * If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00
fn alpha_mode(&self) -> AlphaMode {
self.alpha_mode
}
Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053) # Objective This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired: * Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan. * There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss. * Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. ## Solution Say hello to the new `Material` system: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } } ``` Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code. This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive. ### The new `Material` trait The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional. The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity: ```rust // Old impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode { render_asset.alpha_mode } } // New impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn alpha_mode(&self) -> AlphaMode { self.alpha_mode } } ``` Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later). ### The `AsBindGroup` trait / derive The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. Field attributes like `uniform` and `texture` are used to define which fields should be bindings, what their binding type is, and what index they should be bound at: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` In WGSL shaders, the binding looks like this: ```wgsl struct CoolMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; [[group(1), binding(1)]] var color_texture: texture_2d<f32>; [[group(1), binding(2)]] var color_sampler: sampler; ``` Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1. The following field-level attributes are supported: * `uniform(BINDING_INDEX)` * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs. * `texture(BINDING_INDEX)` * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index). * `sampler(BINDING_INDEX)` * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. Note that fields without field-level binding attributes will be ignored. ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, this_field_is_ignored: String, } ``` As mentioned above, `Option<Handle<Image>>` is also supported: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Option<Handle<Image>>, } ``` This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white". Field uniforms with the same binding index will be combined into a single binding: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[uniform(0)] roughness: f32, } ``` In WGSL shaders, the binding would look like this: ```wgsl struct CoolMaterial { color: vec4<f32>; roughness: f32; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; ``` Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes: * `uniform(BINDING_INDEX, ConvertedShaderType)` * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required. * `bind_group_data(DataType)` * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization". The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can also be equivalently represented with a single struct-level uniform attribute: ```rust #[derive(AsBindGroup)] #[uniform(0, CoolMaterialUniform)] struct CoolMaterial { color: Color, roughness: f32, } #[derive(ShaderType)] struct CoolMaterialUniform { color: Color, roughness: f32, } impl From<&CoolMaterial> for CoolMaterialUniform { fn from(material: &CoolMaterial) -> CoolMaterialUniform { CoolMaterialUniform { color: material.color, roughness: material.roughness, } } } ``` ### Material Specialization Material shader specialization is now _much_ simpler: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] #[bind_group_data(CoolMaterialKey)] struct CoolMaterial { #[uniform(0)] color: Color, is_red: bool, } #[derive(Copy, Clone, Hash, Eq, PartialEq)] struct CoolMaterialKey { is_red: bool, } impl From<&CoolMaterial> for CoolMaterialKey { fn from(material: &CoolMaterial) -> CoolMaterialKey { CoolMaterialKey { is_red: material.is_red, } } } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { if key.bind_group_data.is_red { let fragment = descriptor.fragment.as_mut().unwrap(); fragment.shader_defs.push("IS_RED".to_string()); } Ok(()) } } ``` Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system: ```rust impl Material for CustomMaterial { fn vertex_shader() -> ShaderRef { "custom_material.wgsl".into() } fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { let vertex_layout = layout.get_layout(&[ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), ATTRIBUTE_BLEND_COLOR.at_shader_location(1), ])?; descriptor.vertex.buffers = vec![vertex_layout]; Ok(()) } } ``` ### Ported `StandardMaterial` to the new `Material` system Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive): ```rust #[derive(AsBindGroup, Debug, Clone, TypeUuid)] #[uuid = "7494888b-c082-457b-aacf-517228cc0c22"] #[bind_group_data(StandardMaterialKey)] #[uniform(0, StandardMaterialUniform)] pub struct StandardMaterial { pub base_color: Color, #[texture(1)] #[sampler(2)] pub base_color_texture: Option<Handle<Image>>, /* other fields omitted for brevity */ ``` ### Ported Bevy examples to the new `Material` system The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike. Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction in the overall complexity of the code (even accounting for the new derive logic). --- ## Changelog ### Added * `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type. ### Changed * The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`. * `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`. ## Migration Guide The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well! ### Bevy 0.7 (old) ```rust #[derive(Debug, Clone, TypeUuid)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { color: Color, color_texture: Handle<Image>, } #[derive(Clone)] pub struct GpuCustomMaterial { _buffer: Buffer, bind_group: BindGroup, } impl RenderAsset for CustomMaterial { type ExtractedAsset = CustomMaterial; type PreparedAsset = GpuCustomMaterial; type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>); fn extract_asset(&self) -> Self::ExtractedAsset { self.clone() } fn prepare_asset( extracted_asset: Self::ExtractedAsset, (render_device, material_pipeline): &mut SystemParamItem<Self::Param>, ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> { let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32()); let byte_buffer = [0u8; Vec4::SIZE.get() as usize]; let mut buffer = encase::UniformBuffer::new(byte_buffer); buffer.write(&color).unwrap(); let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor { contents: buffer.as_ref(), label: None, usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let (texture_view, texture_sampler) = if let Some(result) = material_pipeline .mesh_pipeline .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone())) { result } else { return Err(PrepareAssetError::RetryNextUpdate(extracted_asset)); }; let bind_group = render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: buffer.as_entire_binding(), }, BindGroupEntry { binding: 0, resource: BindingResource::TextureView(texture_view), }, BindGroupEntry { binding: 1, resource: BindingResource::Sampler(texture_sampler), }, ], label: None, layout: &material_pipeline.material_layout, }); Ok(GpuCustomMaterial { _buffer: buffer, bind_group, }) } } impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup { &render_asset.bind_group } fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout { render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: Some(Vec4::min_size()), }, count: None, }, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Float { filterable: true }, view_dimension: TextureViewDimension::D2Array, }, count: None, }, BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Filtering), count: None, }, ], label: None, }) } } ``` ### Bevy 0.8 (new) ```rust impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } } #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` ## Future Work * Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check. * Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint". * This would make it possible for the derive to do this: ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[uniform] color: Color, #[texture] #[sampler] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or this ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[binding] color: Color, #[binding] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or even this (if we flip to "include bindings by default") ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { color: Color, color_texture: Option<Handle<Image>>, #[binding(ignore)] alpha_mode: AlphaMode, } ``` * If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00
}