bevy/examples/games/stepping.rs

284 lines
8.7 KiB
Rust
Raw Normal View History

System Stepping implemented as Resource (#8453) # Objective Add interactive system debugging capabilities to bevy, providing step/break/continue style capabilities to running system schedules. * Original implementation: #8063 - `ignore_stepping()` everywhere was too much complexity * Schedule-config & Resource discussion: #8168 - Decided on selective adding of Schedules & Resource-based control ## Solution Created `Stepping` Resource. This resource can be used to enable stepping on a per-schedule basis. Systems within schedules can be individually configured to: * AlwaysRun: Ignore any stepping state and run every frame * NeverRun: Never run while stepping is enabled - this allows for disabling of systems while debugging * Break: If we're running the full frame, stop before this system is run Stepping provides two modes of execution that reflect traditional debuggers: * Step-based: Only execute one system at a time * Continue/Break: Run all systems, but stop before running a system marked as Break ### Demo https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov Breakout has been modified to use Stepping. The game runs normally for a couple of seconds, then stepping is enabled and the game appears to pause. A list of Schedules & Systems appears with a cursor at the first System in the list. The demo then steps forward full frames using the spacebar until the ball is about to hit a brick. Then we step system by system as the ball impacts a brick, showing the cursor moving through the individual systems. Finally the demo switches back to frame stepping as the ball changes course. ### Limitations Due to architectural constraints in bevy, there are some cases systems stepping will not function as a user would expect. #### Event-driven systems Stepping does not support systems that are driven by `Event`s as events are flushed after 1-2 frames. Although game systems are not running while stepping, ignored systems are still running every frame, so events will be flushed. This presents to the user as stepping the event-driven system never executes the system. It does execute, but the events have already been flushed. This can be resolved by changing event handling to use a buffer for events, and only dropping an event once all readers have read it. The work-around to allow these systems to properly execute during stepping is to have them ignore stepping: `app.add_systems(event_driven_system.ignore_stepping())`. This was done in the breakout example to ensure sound played even while stepping. #### Conditional Systems When a system is stepped, it is given an opportunity to run. If the conditions of the system say it should not run, it will not. Similar to Event-driven systems, if a system is conditional, and that condition is only true for a very small time window, then stepping the system may not execute the system. This includes depending on any sort of external clock. This exhibits to the user as the system not always running when it is stepped. A solution to this limitation is to ensure any conditions are consistent while stepping is enabled. For example, all systems that modify any state the condition uses should also enable stepping. #### State-transition Systems Stepping is configured on the per-`Schedule` level, requiring the user to have a `ScheduleLabel`. To support state-transition systems, bevy generates needed schedules dynamically. Currently it’s very difficult (if not impossible, I haven’t verified) for the user to get the labels for these schedules. Without ready access to the dynamically generated schedules, and a resolution for the `Event` lifetime, **stepping of the state-transition systems is not supported** --- ## Changelog - `Schedule::run()` updated to consult `Stepping` Resource to determine which Systems to run each frame - Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting `Schedule::set_label()` and `Schedule::label()` methods - `Stepping` needed to know which `Schedule` was running, and prior to this PR, `Schedule` didn't track its own label - Would have preferred to add `Schedule::with_label()` and remove `Schedule::new()`, but this PR touches enough already - Added calls to `Schedule.set_label()` to `App` and `World` as needed - Added `Stepping` resource - Added `Stepping::begin_frame()` system to `MainSchedulePlugin` - Run before `Main::run_main()` - Notifies any `Stepping` Resource a new render frame is starting ## Migration Guide - Add a call to `Schedule::set_label()` for any custom `Schedule` - This is only required if the `Schedule` will be stepped --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-02-03 05:18:38 +00:00
use bevy::{app::MainScheduleOrder, ecs::schedule::*, prelude::*};
/// Independent [`Schedule`] for stepping systems.
///
/// The stepping systems must run in their own schedule to be able to inspect
/// all the other schedules in the [`App`]. This is because the currently
/// executing schedule is removed from the [`Schedules`] resource while it is
/// being run.
#[derive(Debug, Hash, PartialEq, Eq, Clone, ScheduleLabel)]
struct DebugSchedule;
/// Plugin to add a stepping UI to an example
#[derive(Default)]
pub struct SteppingPlugin {
schedule_labels: Vec<InternedScheduleLabel>,
top: Val,
left: Val,
}
impl SteppingPlugin {
/// add a schedule to be stepped when stepping is enabled
pub fn add_schedule(mut self, label: impl ScheduleLabel) -> SteppingPlugin {
self.schedule_labels.push(label.intern());
self
}
/// Set the location of the stepping UI when activated
pub fn at(self, left: Val, top: Val) -> SteppingPlugin {
SteppingPlugin { top, left, ..self }
}
}
impl Plugin for SteppingPlugin {
fn build(&self, app: &mut App) {
app.add_systems(Startup, build_stepping_hint);
if cfg!(not(feature = "bevy_debug_stepping")) {
return;
}
System Stepping implemented as Resource (#8453) # Objective Add interactive system debugging capabilities to bevy, providing step/break/continue style capabilities to running system schedules. * Original implementation: #8063 - `ignore_stepping()` everywhere was too much complexity * Schedule-config & Resource discussion: #8168 - Decided on selective adding of Schedules & Resource-based control ## Solution Created `Stepping` Resource. This resource can be used to enable stepping on a per-schedule basis. Systems within schedules can be individually configured to: * AlwaysRun: Ignore any stepping state and run every frame * NeverRun: Never run while stepping is enabled - this allows for disabling of systems while debugging * Break: If we're running the full frame, stop before this system is run Stepping provides two modes of execution that reflect traditional debuggers: * Step-based: Only execute one system at a time * Continue/Break: Run all systems, but stop before running a system marked as Break ### Demo https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov Breakout has been modified to use Stepping. The game runs normally for a couple of seconds, then stepping is enabled and the game appears to pause. A list of Schedules & Systems appears with a cursor at the first System in the list. The demo then steps forward full frames using the spacebar until the ball is about to hit a brick. Then we step system by system as the ball impacts a brick, showing the cursor moving through the individual systems. Finally the demo switches back to frame stepping as the ball changes course. ### Limitations Due to architectural constraints in bevy, there are some cases systems stepping will not function as a user would expect. #### Event-driven systems Stepping does not support systems that are driven by `Event`s as events are flushed after 1-2 frames. Although game systems are not running while stepping, ignored systems are still running every frame, so events will be flushed. This presents to the user as stepping the event-driven system never executes the system. It does execute, but the events have already been flushed. This can be resolved by changing event handling to use a buffer for events, and only dropping an event once all readers have read it. The work-around to allow these systems to properly execute during stepping is to have them ignore stepping: `app.add_systems(event_driven_system.ignore_stepping())`. This was done in the breakout example to ensure sound played even while stepping. #### Conditional Systems When a system is stepped, it is given an opportunity to run. If the conditions of the system say it should not run, it will not. Similar to Event-driven systems, if a system is conditional, and that condition is only true for a very small time window, then stepping the system may not execute the system. This includes depending on any sort of external clock. This exhibits to the user as the system not always running when it is stepped. A solution to this limitation is to ensure any conditions are consistent while stepping is enabled. For example, all systems that modify any state the condition uses should also enable stepping. #### State-transition Systems Stepping is configured on the per-`Schedule` level, requiring the user to have a `ScheduleLabel`. To support state-transition systems, bevy generates needed schedules dynamically. Currently it’s very difficult (if not impossible, I haven’t verified) for the user to get the labels for these schedules. Without ready access to the dynamically generated schedules, and a resolution for the `Event` lifetime, **stepping of the state-transition systems is not supported** --- ## Changelog - `Schedule::run()` updated to consult `Stepping` Resource to determine which Systems to run each frame - Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting `Schedule::set_label()` and `Schedule::label()` methods - `Stepping` needed to know which `Schedule` was running, and prior to this PR, `Schedule` didn't track its own label - Would have preferred to add `Schedule::with_label()` and remove `Schedule::new()`, but this PR touches enough already - Added calls to `Schedule.set_label()` to `App` and `World` as needed - Added `Stepping` resource - Added `Stepping::begin_frame()` system to `MainSchedulePlugin` - Run before `Main::run_main()` - Notifies any `Stepping` Resource a new render frame is starting ## Migration Guide - Add a call to `Schedule::set_label()` for any custom `Schedule` - This is only required if the `Schedule` will be stepped --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-02-03 05:18:38 +00:00
// create and insert our debug schedule into the main schedule order.
// We need an independent schedule so we have access to all other
// schedules through the `Stepping` resource
app.init_schedule(DebugSchedule);
let mut order = app.world_mut().resource_mut::<MainScheduleOrder>();
System Stepping implemented as Resource (#8453) # Objective Add interactive system debugging capabilities to bevy, providing step/break/continue style capabilities to running system schedules. * Original implementation: #8063 - `ignore_stepping()` everywhere was too much complexity * Schedule-config & Resource discussion: #8168 - Decided on selective adding of Schedules & Resource-based control ## Solution Created `Stepping` Resource. This resource can be used to enable stepping on a per-schedule basis. Systems within schedules can be individually configured to: * AlwaysRun: Ignore any stepping state and run every frame * NeverRun: Never run while stepping is enabled - this allows for disabling of systems while debugging * Break: If we're running the full frame, stop before this system is run Stepping provides two modes of execution that reflect traditional debuggers: * Step-based: Only execute one system at a time * Continue/Break: Run all systems, but stop before running a system marked as Break ### Demo https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov Breakout has been modified to use Stepping. The game runs normally for a couple of seconds, then stepping is enabled and the game appears to pause. A list of Schedules & Systems appears with a cursor at the first System in the list. The demo then steps forward full frames using the spacebar until the ball is about to hit a brick. Then we step system by system as the ball impacts a brick, showing the cursor moving through the individual systems. Finally the demo switches back to frame stepping as the ball changes course. ### Limitations Due to architectural constraints in bevy, there are some cases systems stepping will not function as a user would expect. #### Event-driven systems Stepping does not support systems that are driven by `Event`s as events are flushed after 1-2 frames. Although game systems are not running while stepping, ignored systems are still running every frame, so events will be flushed. This presents to the user as stepping the event-driven system never executes the system. It does execute, but the events have already been flushed. This can be resolved by changing event handling to use a buffer for events, and only dropping an event once all readers have read it. The work-around to allow these systems to properly execute during stepping is to have them ignore stepping: `app.add_systems(event_driven_system.ignore_stepping())`. This was done in the breakout example to ensure sound played even while stepping. #### Conditional Systems When a system is stepped, it is given an opportunity to run. If the conditions of the system say it should not run, it will not. Similar to Event-driven systems, if a system is conditional, and that condition is only true for a very small time window, then stepping the system may not execute the system. This includes depending on any sort of external clock. This exhibits to the user as the system not always running when it is stepped. A solution to this limitation is to ensure any conditions are consistent while stepping is enabled. For example, all systems that modify any state the condition uses should also enable stepping. #### State-transition Systems Stepping is configured on the per-`Schedule` level, requiring the user to have a `ScheduleLabel`. To support state-transition systems, bevy generates needed schedules dynamically. Currently it’s very difficult (if not impossible, I haven’t verified) for the user to get the labels for these schedules. Without ready access to the dynamically generated schedules, and a resolution for the `Event` lifetime, **stepping of the state-transition systems is not supported** --- ## Changelog - `Schedule::run()` updated to consult `Stepping` Resource to determine which Systems to run each frame - Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting `Schedule::set_label()` and `Schedule::label()` methods - `Stepping` needed to know which `Schedule` was running, and prior to this PR, `Schedule` didn't track its own label - Would have preferred to add `Schedule::with_label()` and remove `Schedule::new()`, but this PR touches enough already - Added calls to `Schedule.set_label()` to `App` and `World` as needed - Added `Stepping` resource - Added `Stepping::begin_frame()` system to `MainSchedulePlugin` - Run before `Main::run_main()` - Notifies any `Stepping` Resource a new render frame is starting ## Migration Guide - Add a call to `Schedule::set_label()` for any custom `Schedule` - This is only required if the `Schedule` will be stepped --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-02-03 05:18:38 +00:00
order.insert_after(Update, DebugSchedule);
// create our stepping resource
let mut stepping = Stepping::new();
for label in &self.schedule_labels {
stepping.add_schedule(*label);
}
app.insert_resource(stepping);
// add our startup & stepping systems
app.insert_resource(State {
ui_top: self.top,
ui_left: self.left,
systems: Vec::new(),
})
.add_systems(
DebugSchedule,
(
build_ui.run_if(not(initialized)),
handle_input,
update_ui.run_if(initialized),
)
.chain(),
);
}
}
/// Struct for maintaining stepping state
#[derive(Resource, Debug)]
struct State {
// vector of schedule/nodeid -> text index offset
systems: Vec<(InternedScheduleLabel, NodeId, usize)>,
// ui positioning
ui_top: Val,
ui_left: Val,
}
/// condition to check if the stepping UI has been constructed
fn initialized(state: Res<State>) -> bool {
!state.systems.is_empty()
}
const FONT_SIZE: f32 = 20.0;
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
const FONT_COLOR: Color = Color::srgb(0.2, 0.2, 0.2);
System Stepping implemented as Resource (#8453) # Objective Add interactive system debugging capabilities to bevy, providing step/break/continue style capabilities to running system schedules. * Original implementation: #8063 - `ignore_stepping()` everywhere was too much complexity * Schedule-config & Resource discussion: #8168 - Decided on selective adding of Schedules & Resource-based control ## Solution Created `Stepping` Resource. This resource can be used to enable stepping on a per-schedule basis. Systems within schedules can be individually configured to: * AlwaysRun: Ignore any stepping state and run every frame * NeverRun: Never run while stepping is enabled - this allows for disabling of systems while debugging * Break: If we're running the full frame, stop before this system is run Stepping provides two modes of execution that reflect traditional debuggers: * Step-based: Only execute one system at a time * Continue/Break: Run all systems, but stop before running a system marked as Break ### Demo https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov Breakout has been modified to use Stepping. The game runs normally for a couple of seconds, then stepping is enabled and the game appears to pause. A list of Schedules & Systems appears with a cursor at the first System in the list. The demo then steps forward full frames using the spacebar until the ball is about to hit a brick. Then we step system by system as the ball impacts a brick, showing the cursor moving through the individual systems. Finally the demo switches back to frame stepping as the ball changes course. ### Limitations Due to architectural constraints in bevy, there are some cases systems stepping will not function as a user would expect. #### Event-driven systems Stepping does not support systems that are driven by `Event`s as events are flushed after 1-2 frames. Although game systems are not running while stepping, ignored systems are still running every frame, so events will be flushed. This presents to the user as stepping the event-driven system never executes the system. It does execute, but the events have already been flushed. This can be resolved by changing event handling to use a buffer for events, and only dropping an event once all readers have read it. The work-around to allow these systems to properly execute during stepping is to have them ignore stepping: `app.add_systems(event_driven_system.ignore_stepping())`. This was done in the breakout example to ensure sound played even while stepping. #### Conditional Systems When a system is stepped, it is given an opportunity to run. If the conditions of the system say it should not run, it will not. Similar to Event-driven systems, if a system is conditional, and that condition is only true for a very small time window, then stepping the system may not execute the system. This includes depending on any sort of external clock. This exhibits to the user as the system not always running when it is stepped. A solution to this limitation is to ensure any conditions are consistent while stepping is enabled. For example, all systems that modify any state the condition uses should also enable stepping. #### State-transition Systems Stepping is configured on the per-`Schedule` level, requiring the user to have a `ScheduleLabel`. To support state-transition systems, bevy generates needed schedules dynamically. Currently it’s very difficult (if not impossible, I haven’t verified) for the user to get the labels for these schedules. Without ready access to the dynamically generated schedules, and a resolution for the `Event` lifetime, **stepping of the state-transition systems is not supported** --- ## Changelog - `Schedule::run()` updated to consult `Stepping` Resource to determine which Systems to run each frame - Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting `Schedule::set_label()` and `Schedule::label()` methods - `Stepping` needed to know which `Schedule` was running, and prior to this PR, `Schedule` didn't track its own label - Would have preferred to add `Schedule::with_label()` and remove `Schedule::new()`, but this PR touches enough already - Added calls to `Schedule.set_label()` to `App` and `World` as needed - Added `Stepping` resource - Added `Stepping::begin_frame()` system to `MainSchedulePlugin` - Run before `Main::run_main()` - Notifies any `Stepping` Resource a new render frame is starting ## Migration Guide - Add a call to `Schedule::set_label()` for any custom `Schedule` - This is only required if the `Schedule` will be stepped --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-02-03 05:18:38 +00:00
const FONT_BOLD: &str = "fonts/FiraSans-Bold.ttf";
const FONT_MEDIUM: &str = "fonts/FiraMono-Medium.ttf";
#[derive(Component)]
struct SteppingUi;
/// Construct the stepping UI elements from the [`Schedules`] resource.
///
/// This system may run multiple times before constructing the UI as all of the
/// data may not be available on the first run of the system. This happens if
/// one of the stepping schedules has not yet been run.
fn build_ui(
mut commands: Commands,
asset_server: Res<AssetServer>,
schedules: Res<Schedules>,
mut stepping: ResMut<Stepping>,
mut state: ResMut<State>,
) {
let mut text_sections = Vec::new();
let mut always_run = Vec::new();
let Ok(schedule_order) = stepping.schedules() else {
return;
};
// go through the stepping schedules and construct a list of systems for
// each label
for label in schedule_order {
let schedule = schedules.get(*label).unwrap();
text_sections.push(TextSection::new(
format!("{:?}\n", label),
TextStyle {
font: asset_server.load(FONT_BOLD),
font_size: FONT_SIZE,
color: FONT_COLOR,
},
));
// grab the list of systems in the schedule, in the order the
// single-threaded executor would run them.
let Ok(systems) = schedule.systems() else {
return;
};
for (node_id, system) in systems {
// skip bevy default systems; we don't want to step those
if system.name().starts_with("bevy") {
always_run.push((*label, node_id));
continue;
}
// Add an entry to our systems list so we can find where to draw
// the cursor when the stepping cursor is at this system
state.systems.push((*label, node_id, text_sections.len()));
// Add a text section for displaying the cursor for this system
text_sections.push(TextSection::new(
" ",
TextStyle {
font: asset_server.load(FONT_MEDIUM),
font_size: FONT_SIZE,
color: FONT_COLOR,
},
));
// add the name of the system to the ui
text_sections.push(TextSection::new(
format!("{}\n", system.name()),
TextStyle {
font: asset_server.load(FONT_MEDIUM),
font_size: FONT_SIZE,
color: FONT_COLOR,
},
));
}
}
for (label, node) in always_run.drain(..) {
stepping.always_run_node(label, node);
}
commands.spawn((
SteppingUi,
TextBundle {
text: Text::from_sections(text_sections),
style: Style {
position_type: PositionType::Absolute,
top: state.ui_top,
left: state.ui_left,
padding: UiRect::all(Val::Px(10.0)),
..default()
},
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
background_color: BackgroundColor(Color::srgba(1.0, 1.0, 1.0, 0.33)),
System Stepping implemented as Resource (#8453) # Objective Add interactive system debugging capabilities to bevy, providing step/break/continue style capabilities to running system schedules. * Original implementation: #8063 - `ignore_stepping()` everywhere was too much complexity * Schedule-config & Resource discussion: #8168 - Decided on selective adding of Schedules & Resource-based control ## Solution Created `Stepping` Resource. This resource can be used to enable stepping on a per-schedule basis. Systems within schedules can be individually configured to: * AlwaysRun: Ignore any stepping state and run every frame * NeverRun: Never run while stepping is enabled - this allows for disabling of systems while debugging * Break: If we're running the full frame, stop before this system is run Stepping provides two modes of execution that reflect traditional debuggers: * Step-based: Only execute one system at a time * Continue/Break: Run all systems, but stop before running a system marked as Break ### Demo https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov Breakout has been modified to use Stepping. The game runs normally for a couple of seconds, then stepping is enabled and the game appears to pause. A list of Schedules & Systems appears with a cursor at the first System in the list. The demo then steps forward full frames using the spacebar until the ball is about to hit a brick. Then we step system by system as the ball impacts a brick, showing the cursor moving through the individual systems. Finally the demo switches back to frame stepping as the ball changes course. ### Limitations Due to architectural constraints in bevy, there are some cases systems stepping will not function as a user would expect. #### Event-driven systems Stepping does not support systems that are driven by `Event`s as events are flushed after 1-2 frames. Although game systems are not running while stepping, ignored systems are still running every frame, so events will be flushed. This presents to the user as stepping the event-driven system never executes the system. It does execute, but the events have already been flushed. This can be resolved by changing event handling to use a buffer for events, and only dropping an event once all readers have read it. The work-around to allow these systems to properly execute during stepping is to have them ignore stepping: `app.add_systems(event_driven_system.ignore_stepping())`. This was done in the breakout example to ensure sound played even while stepping. #### Conditional Systems When a system is stepped, it is given an opportunity to run. If the conditions of the system say it should not run, it will not. Similar to Event-driven systems, if a system is conditional, and that condition is only true for a very small time window, then stepping the system may not execute the system. This includes depending on any sort of external clock. This exhibits to the user as the system not always running when it is stepped. A solution to this limitation is to ensure any conditions are consistent while stepping is enabled. For example, all systems that modify any state the condition uses should also enable stepping. #### State-transition Systems Stepping is configured on the per-`Schedule` level, requiring the user to have a `ScheduleLabel`. To support state-transition systems, bevy generates needed schedules dynamically. Currently it’s very difficult (if not impossible, I haven’t verified) for the user to get the labels for these schedules. Without ready access to the dynamically generated schedules, and a resolution for the `Event` lifetime, **stepping of the state-transition systems is not supported** --- ## Changelog - `Schedule::run()` updated to consult `Stepping` Resource to determine which Systems to run each frame - Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting `Schedule::set_label()` and `Schedule::label()` methods - `Stepping` needed to know which `Schedule` was running, and prior to this PR, `Schedule` didn't track its own label - Would have preferred to add `Schedule::with_label()` and remove `Schedule::new()`, but this PR touches enough already - Added calls to `Schedule.set_label()` to `App` and `World` as needed - Added `Stepping` resource - Added `Stepping::begin_frame()` system to `MainSchedulePlugin` - Run before `Main::run_main()` - Notifies any `Stepping` Resource a new render frame is starting ## Migration Guide - Add a call to `Schedule::set_label()` for any custom `Schedule` - This is only required if the `Schedule` will be stepped --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-02-03 05:18:38 +00:00
visibility: Visibility::Hidden,
..default()
},
));
}
fn build_stepping_hint(mut commands: Commands, asset_server: Res<AssetServer>) {
let hint_text = if cfg!(feature = "bevy_debug_stepping") {
"Press ` to toggle stepping mode (S: step system, Space: step frame)"
} else {
"Bevy was compiled without stepping support. Run with `--features=bevy_debug_stepping` to enable stepping."
};
info!("{}", hint_text);
System Stepping implemented as Resource (#8453) # Objective Add interactive system debugging capabilities to bevy, providing step/break/continue style capabilities to running system schedules. * Original implementation: #8063 - `ignore_stepping()` everywhere was too much complexity * Schedule-config & Resource discussion: #8168 - Decided on selective adding of Schedules & Resource-based control ## Solution Created `Stepping` Resource. This resource can be used to enable stepping on a per-schedule basis. Systems within schedules can be individually configured to: * AlwaysRun: Ignore any stepping state and run every frame * NeverRun: Never run while stepping is enabled - this allows for disabling of systems while debugging * Break: If we're running the full frame, stop before this system is run Stepping provides two modes of execution that reflect traditional debuggers: * Step-based: Only execute one system at a time * Continue/Break: Run all systems, but stop before running a system marked as Break ### Demo https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov Breakout has been modified to use Stepping. The game runs normally for a couple of seconds, then stepping is enabled and the game appears to pause. A list of Schedules & Systems appears with a cursor at the first System in the list. The demo then steps forward full frames using the spacebar until the ball is about to hit a brick. Then we step system by system as the ball impacts a brick, showing the cursor moving through the individual systems. Finally the demo switches back to frame stepping as the ball changes course. ### Limitations Due to architectural constraints in bevy, there are some cases systems stepping will not function as a user would expect. #### Event-driven systems Stepping does not support systems that are driven by `Event`s as events are flushed after 1-2 frames. Although game systems are not running while stepping, ignored systems are still running every frame, so events will be flushed. This presents to the user as stepping the event-driven system never executes the system. It does execute, but the events have already been flushed. This can be resolved by changing event handling to use a buffer for events, and only dropping an event once all readers have read it. The work-around to allow these systems to properly execute during stepping is to have them ignore stepping: `app.add_systems(event_driven_system.ignore_stepping())`. This was done in the breakout example to ensure sound played even while stepping. #### Conditional Systems When a system is stepped, it is given an opportunity to run. If the conditions of the system say it should not run, it will not. Similar to Event-driven systems, if a system is conditional, and that condition is only true for a very small time window, then stepping the system may not execute the system. This includes depending on any sort of external clock. This exhibits to the user as the system not always running when it is stepped. A solution to this limitation is to ensure any conditions are consistent while stepping is enabled. For example, all systems that modify any state the condition uses should also enable stepping. #### State-transition Systems Stepping is configured on the per-`Schedule` level, requiring the user to have a `ScheduleLabel`. To support state-transition systems, bevy generates needed schedules dynamically. Currently it’s very difficult (if not impossible, I haven’t verified) for the user to get the labels for these schedules. Without ready access to the dynamically generated schedules, and a resolution for the `Event` lifetime, **stepping of the state-transition systems is not supported** --- ## Changelog - `Schedule::run()` updated to consult `Stepping` Resource to determine which Systems to run each frame - Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting `Schedule::set_label()` and `Schedule::label()` methods - `Stepping` needed to know which `Schedule` was running, and prior to this PR, `Schedule` didn't track its own label - Would have preferred to add `Schedule::with_label()` and remove `Schedule::new()`, but this PR touches enough already - Added calls to `Schedule.set_label()` to `App` and `World` as needed - Added `Stepping` resource - Added `Stepping::begin_frame()` system to `MainSchedulePlugin` - Run before `Main::run_main()` - Notifies any `Stepping` Resource a new render frame is starting ## Migration Guide - Add a call to `Schedule::set_label()` for any custom `Schedule` - This is only required if the `Schedule` will be stepped --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-02-03 05:18:38 +00:00
// stepping description box
commands.spawn((TextBundle::from_sections([TextSection::new(
hint_text,
System Stepping implemented as Resource (#8453) # Objective Add interactive system debugging capabilities to bevy, providing step/break/continue style capabilities to running system schedules. * Original implementation: #8063 - `ignore_stepping()` everywhere was too much complexity * Schedule-config & Resource discussion: #8168 - Decided on selective adding of Schedules & Resource-based control ## Solution Created `Stepping` Resource. This resource can be used to enable stepping on a per-schedule basis. Systems within schedules can be individually configured to: * AlwaysRun: Ignore any stepping state and run every frame * NeverRun: Never run while stepping is enabled - this allows for disabling of systems while debugging * Break: If we're running the full frame, stop before this system is run Stepping provides two modes of execution that reflect traditional debuggers: * Step-based: Only execute one system at a time * Continue/Break: Run all systems, but stop before running a system marked as Break ### Demo https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov Breakout has been modified to use Stepping. The game runs normally for a couple of seconds, then stepping is enabled and the game appears to pause. A list of Schedules & Systems appears with a cursor at the first System in the list. The demo then steps forward full frames using the spacebar until the ball is about to hit a brick. Then we step system by system as the ball impacts a brick, showing the cursor moving through the individual systems. Finally the demo switches back to frame stepping as the ball changes course. ### Limitations Due to architectural constraints in bevy, there are some cases systems stepping will not function as a user would expect. #### Event-driven systems Stepping does not support systems that are driven by `Event`s as events are flushed after 1-2 frames. Although game systems are not running while stepping, ignored systems are still running every frame, so events will be flushed. This presents to the user as stepping the event-driven system never executes the system. It does execute, but the events have already been flushed. This can be resolved by changing event handling to use a buffer for events, and only dropping an event once all readers have read it. The work-around to allow these systems to properly execute during stepping is to have them ignore stepping: `app.add_systems(event_driven_system.ignore_stepping())`. This was done in the breakout example to ensure sound played even while stepping. #### Conditional Systems When a system is stepped, it is given an opportunity to run. If the conditions of the system say it should not run, it will not. Similar to Event-driven systems, if a system is conditional, and that condition is only true for a very small time window, then stepping the system may not execute the system. This includes depending on any sort of external clock. This exhibits to the user as the system not always running when it is stepped. A solution to this limitation is to ensure any conditions are consistent while stepping is enabled. For example, all systems that modify any state the condition uses should also enable stepping. #### State-transition Systems Stepping is configured on the per-`Schedule` level, requiring the user to have a `ScheduleLabel`. To support state-transition systems, bevy generates needed schedules dynamically. Currently it’s very difficult (if not impossible, I haven’t verified) for the user to get the labels for these schedules. Without ready access to the dynamically generated schedules, and a resolution for the `Event` lifetime, **stepping of the state-transition systems is not supported** --- ## Changelog - `Schedule::run()` updated to consult `Stepping` Resource to determine which Systems to run each frame - Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting `Schedule::set_label()` and `Schedule::label()` methods - `Stepping` needed to know which `Schedule` was running, and prior to this PR, `Schedule` didn't track its own label - Would have preferred to add `Schedule::with_label()` and remove `Schedule::new()`, but this PR touches enough already - Added calls to `Schedule.set_label()` to `App` and `World` as needed - Added `Stepping` resource - Added `Stepping::begin_frame()` system to `MainSchedulePlugin` - Run before `Main::run_main()` - Notifies any `Stepping` Resource a new render frame is starting ## Migration Guide - Add a call to `Schedule::set_label()` for any custom `Schedule` - This is only required if the `Schedule` will be stepped --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-02-03 05:18:38 +00:00
TextStyle {
font: asset_server.load(FONT_MEDIUM),
font_size: 18.0,
color: FONT_COLOR,
},
)])
.with_style(Style {
position_type: PositionType::Absolute,
bottom: Val::Px(5.0),
left: Val::Px(5.0),
..default()
}),));
}
fn handle_input(keyboard_input: Res<ButtonInput<KeyCode>>, mut stepping: ResMut<Stepping>) {
if keyboard_input.just_pressed(KeyCode::Slash) {
info!("{:#?}", stepping);
}
// grave key to toggle stepping mode for the FixedUpdate schedule
if keyboard_input.just_pressed(KeyCode::Backquote) {
if stepping.is_enabled() {
stepping.disable();
debug!("disabled stepping");
} else {
stepping.enable();
debug!("enabled stepping");
}
}
if !stepping.is_enabled() {
return;
}
// space key will step the remainder of this frame
if keyboard_input.just_pressed(KeyCode::Space) {
debug!("continue");
stepping.continue_frame();
} else if keyboard_input.just_pressed(KeyCode::KeyS) {
debug!("stepping frame");
stepping.step_frame();
}
}
fn update_ui(
mut commands: Commands,
state: Res<State>,
stepping: Res<Stepping>,
mut ui: Query<(Entity, &mut Text, &Visibility), With<SteppingUi>>,
) {
if ui.is_empty() {
return;
}
// ensure the UI is only visible when stepping is enabled
let (ui, mut text, vis) = ui.single_mut();
match (vis, stepping.is_enabled()) {
(Visibility::Hidden, true) => {
commands.entity(ui).insert(Visibility::Inherited);
}
(Visibility::Hidden, false) | (_, true) => (),
(_, false) => {
commands.entity(ui).insert(Visibility::Hidden);
}
}
// if we're not stepping, there's nothing more to be done here.
if !stepping.is_enabled() {
return;
}
let (cursor_schedule, cursor_system) = match stepping.cursor() {
// no cursor means stepping isn't enabled, so we're done here
None => return,
Some(c) => c,
};
for (schedule, system, text_index) in &state.systems {
let mark = if &cursor_schedule == schedule && *system == cursor_system {
"-> "
} else {
" "
};
text.sections[*text_index].value = mark.to_string();
}
}