bevy/crates/bevy_ecs/src/system/exclusive_function_system.rs

299 lines
10 KiB
Rust
Raw Normal View History

Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
use crate::{
archetype::ArchetypeComponentId,
component::{ComponentId, Tick},
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
query::Access,
Replace all labels with interned labels (#7762) # Objective First of all, this PR took heavy inspiration from #7760 and #5715. It intends to also fix #5569, but with a slightly different approach. This also fixes #9335 by reexporting `DynEq`. ## Solution The advantage of this API is that we can intern a value without allocating for zero-sized-types and for enum variants that have no fields. This PR does this automatically in the `SystemSet` and `ScheduleLabel` derive macros for unit structs and fieldless enum variants. So this should cover many internal and external use cases of `SystemSet` and `ScheduleLabel`. In these optimal use cases, no memory will be allocated. - The interning returns a `Interned<dyn SystemSet>`, which is just a wrapper around a `&'static dyn SystemSet`. - `Hash` and `Eq` are implemented in terms of the pointer value of the reference, similar to my first approach of anonymous system sets in #7676. - Therefore, `Interned<T>` does not implement `Borrow<T>`, only `Deref`. - The debug output of `Interned<T>` is the same as the interned value. Edit: - `AppLabel` is now also interned and the old `derive_label`/`define_label` macros were replaced with the new interning implementation. - Anonymous set ids are reused for different `Schedule`s, reducing the amount of leaked memory. ### Pros - `InternedSystemSet` and `InternedScheduleLabel` behave very similar to the current `BoxedSystemSet` and `BoxedScheduleLabel`, but can be copied without an allocation. - Many use cases don't allocate at all. - Very fast lookups and comparisons when using `InternedSystemSet` and `InternedScheduleLabel`. - The `intern` module might be usable in other areas. - `Interned{ScheduleLabel, SystemSet, AppLabel}` does implement `{ScheduleLabel, SystemSet, AppLabel}`, increasing ergonomics. ### Cons - Implementors of `SystemSet` and `ScheduleLabel` still need to implement `Hash` and `Eq` (and `Clone`) for it to work. ## Changelog ### Added - Added `intern` module to `bevy_utils`. - Added reexports of `DynEq` to `bevy_ecs` and `bevy_app`. ### Changed - Replaced `BoxedSystemSet` and `BoxedScheduleLabel` with `InternedSystemSet` and `InternedScheduleLabel`. - Replaced `impl AsRef<dyn ScheduleLabel>` with `impl ScheduleLabel`. - Replaced `AppLabelId` with `InternedAppLabel`. - Changed `AppLabel` to use `Debug` for error messages. - Changed `AppLabel` to use interning. - Changed `define_label`/`derive_label` to use interning. - Replaced `define_boxed_label`/`derive_boxed_label` with `define_label`/`derive_label`. - Changed anonymous set ids to be only unique inside a schedule, not globally. - Made interned label types implement their label trait. ### Removed - Removed `define_boxed_label` and `derive_boxed_label`. ## Migration guide - Replace `BoxedScheduleLabel` and `Box<dyn ScheduleLabel>` with `InternedScheduleLabel` or `Interned<dyn ScheduleLabel>`. - Replace `BoxedSystemSet` and `Box<dyn SystemSet>` with `InternedSystemSet` or `Interned<dyn SystemSet>`. - Replace `AppLabelId` with `InternedAppLabel` or `Interned<dyn AppLabel>`. - Types manually implementing `ScheduleLabel`, `AppLabel` or `SystemSet` need to implement: - `dyn_hash` directly instead of implementing `DynHash` - `as_dyn_eq` - Pass labels to `World::try_schedule_scope`, `World::schedule_scope`, `World::try_run_schedule`. `World::run_schedule`, `Schedules::remove`, `Schedules::remove_entry`, `Schedules::contains`, `Schedules::get` and `Schedules::get_mut` by value instead of by reference. --------- Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-10-25 21:39:23 +00:00
schedule::{InternedSystemSet, SystemSet},
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
system::{
check_system_change_tick, ExclusiveSystemParam, ExclusiveSystemParamItem, In, IntoSystem,
System, SystemMeta,
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
},
world::{unsafe_world_cell::UnsafeWorldCell, World},
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
};
use bevy_utils::all_tuples;
`System::type_id` Consistency (#11728) # Objective - Fixes #11679 ## Solution - Added `IntoSystem::system_type_id` which returns the equivalent of `system.into_system().type_id()` without construction. This allows for getting the `TypeId` of functions (a function is an unnamed type and therefore you cannot call `TypeId::of::<apply_deferred::System>()`) - Added default implementation of `System::type_id` to ensure consistency between implementations. Some returned `Self`, while others were returning an inner value instead. This ensures consistency with `IntoSystem::system_type_id`. ## Migration Guide If you use `System::type_id()` on function systems (exclusive or not), ensure you are comparing its value to other `System::type_id()` calls, or `IntoSystem::system_type_id()`. This code wont require any changes, because `IntoSystem`'s are directly compared to each other. ```rust fn test_system() {} let type_id = test_system.type_id(); // ... // No change required assert_eq!(test_system.type_id(), type_id); ``` Likewise, this code wont, because `System`'s are directly compared. ```rust fn test_system() {} let type_id = IntoSystem::into_system(test_system).type_id(); // ... // No change required assert_eq!(IntoSystem::into_system(test_system).type_id(), type_id); ``` The below _does_ require a change, since you're comparing a `System` type to a `IntoSystem` type. ```rust fn test_system() {} // Before assert_eq!(test_system.type_id(), IntoSystem::into_system(test_system).type_id()); // After assert_eq!(test_system.system_type_id(), IntoSystem::into_system(test_system).type_id()); ```
2024-02-06 14:43:33 +00:00
use std::{borrow::Cow, marker::PhantomData};
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
/// A function system that runs with exclusive [`World`] access.
///
/// You get this by calling [`IntoSystem::into_system`] on a function that only accepts
/// [`ExclusiveSystemParam`]s.
///
/// [`ExclusiveFunctionSystem`] must be `.initialized` before they can be run.
pub struct ExclusiveFunctionSystem<Marker, F>
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
where
F: ExclusiveSystemParamFunction<Marker>,
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
{
func: F,
param_state: Option<<F::Param as ExclusiveSystemParam>::State>,
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
system_meta: SystemMeta,
// NOTE: PhantomData<fn()-> T> gives this safe Send/Sync impls
marker: PhantomData<fn() -> Marker>,
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
}
/// A marker type used to distinguish exclusive function systems from regular function systems.
#[doc(hidden)]
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
pub struct IsExclusiveFunctionSystem;
impl<Marker, F> IntoSystem<F::In, F::Out, (IsExclusiveFunctionSystem, Marker)> for F
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
where
Marker: 'static,
F: ExclusiveSystemParamFunction<Marker>,
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
{
type System = ExclusiveFunctionSystem<Marker, F>;
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
fn into_system(func: Self) -> Self::System {
ExclusiveFunctionSystem {
func,
param_state: None,
system_meta: SystemMeta::new::<F>(),
marker: PhantomData,
}
}
}
const PARAM_MESSAGE: &str = "System's param_state was not found. Did you forget to initialize this system before running it?";
impl<Marker, F> System for ExclusiveFunctionSystem<Marker, F>
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
where
Marker: 'static,
F: ExclusiveSystemParamFunction<Marker>,
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
{
type In = F::In;
type Out = F::Out;
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
#[inline]
fn name(&self) -> Cow<'static, str> {
self.system_meta.name.clone()
}
#[inline]
fn component_access(&self) -> &Access<ComponentId> {
self.system_meta.component_access_set.combined_access()
}
#[inline]
fn archetype_component_access(&self) -> &Access<ArchetypeComponentId> {
&self.system_meta.archetype_component_access
}
#[inline]
fn is_send(&self) -> bool {
// exclusive systems should have access to non-send resources
// the executor runs exclusive systems on the main thread, so this
// field reflects that constraint
false
}
#[inline]
fn is_exclusive(&self) -> bool {
true
}
Auto insert sync points (#9822) # Objective - Users are often confused when their command effects are not visible in the next system. This PR auto inserts sync points if there are deferred buffers on a system and there are dependents on that system (systems with after relationships). - Manual sync points can lead to users adding more than needed and it's hard for the user to have a global understanding of their system graph to know which sync points can be merged. However we can easily calculate which sync points can be merged automatically. ## Solution 1. Add new edge types to allow opting out of new behavior 2. Insert an sync point for each edge whose initial node has deferred system params. 3. Reuse nodes if they're at the number of sync points away. * add opt outs for specific edges with `after_ignore_deferred`, `before_ignore_deferred` and `chain_ignore_deferred`. The `auto_insert_apply_deferred` boolean on `ScheduleBuildSettings` can be set to false to opt out for the whole schedule. ## Perf This has a small negative effect on schedule build times. ```text group auto-sync main-for-auto-sync ----- ----------- ------------------ build_schedule/1000_schedule 1.06 2.8±0.15s ? ?/sec 1.00 2.7±0.06s ? ?/sec build_schedule/1000_schedule_noconstraints 1.01 26.2±0.88ms ? ?/sec 1.00 25.8±0.36ms ? ?/sec build_schedule/100_schedule 1.02 13.1±0.33ms ? ?/sec 1.00 12.9±0.28ms ? ?/sec build_schedule/100_schedule_noconstraints 1.08 505.3±29.30µs ? ?/sec 1.00 469.4±12.48µs ? ?/sec build_schedule/500_schedule 1.00 485.5±6.29ms ? ?/sec 1.00 485.5±9.80ms ? ?/sec build_schedule/500_schedule_noconstraints 1.00 6.8±0.10ms ? ?/sec 1.02 6.9±0.16ms ? ?/sec ``` --- ## Changelog - Auto insert sync points and added `after_ignore_deferred`, `before_ignore_deferred`, `chain_no_deferred` and `auto_insert_apply_deferred` APIs to opt out of this behavior ## Migration Guide - `apply_deferred` points are added automatically when there is ordering relationship with a system that has deferred parameters like `Commands`. If you want to opt out of this you can switch from `after`, `before`, and `chain` to the corresponding `ignore_deferred` API, `after_ignore_deferred`, `before_ignore_deferred` or `chain_ignore_deferred` for your system/set ordering. - You can also set `ScheduleBuildSettings::auto_insert_sync_points` to `false` if you want to do it for the whole schedule. Note that in this mode you can still add `apply_deferred` points manually. - For most manual insertions of `apply_deferred` you should remove them as they cannot be merged with the automatically inserted points and might reduce parallelizability of the system graph. ## TODO - [x] remove any apply_deferred used in the engine - [x] ~~decide if we should deprecate manually using apply_deferred.~~ We'll still allow inserting manual sync points for now for whatever edge cases users might have. - [x] Update migration guide - [x] rerun schedule build benchmarks --------- Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
2023-12-14 16:34:01 +00:00
#[inline]
fn has_deferred(&self) -> bool {
// exclusive systems have no deferred system params
false
}
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
#[inline]
unsafe fn run_unsafe(&mut self, _input: Self::In, _world: UnsafeWorldCell) -> Self::Out {
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
panic!("Cannot run exclusive systems with a shared World reference");
}
fn run(&mut self, input: Self::In, world: &mut World) -> Self::Out {
Add a method for detecting changes within a certain scope (#11687) # Objective Bevy's change detection functionality is invaluable for writing robust apps, but it only works in the context of systems and exclusive systems. Oftentimes it is necessary to detect changes made in earlier code without having to place the code in separate systems, but it is not currently possible to do so since there is no way to set the value of `World::last_change_tick`. `World::clear_trackers` allows you to update the change tick, but this has unintended side effects, since it irreversibly affects the behavior of change and removal detection for the entire app. ## Solution Add a method `World::last_change_tick_scope`. This allows you to set `last_change_tick` to a specific value for a region of code. To ensure that misuse doesn't break unrelated functions, we restore the world's original change tick at the end of the provided scope. ### Example A function that uses this to run an update loop repeatedly, allowing each iteration of the loop to react to changes made in the previous loop iteration. ```rust fn update_loop( world: &mut World, mut update_fn: impl FnMut(&mut World) -> std::ops::ControlFlow<()>, ) { let mut last_change_tick = world.last_change_tick(); // Repeatedly run the update function until it requests a break. loop { // Update once. let control_flow = world.last_change_tick_scope(last_change_tick, |world| { update_fn(world) }); // End the loop when the closure returns `ControlFlow::Break`. if control_flow.is_break() { break; } // Increment the change tick so the next update can detect changes from this update. last_change_tick = world.change_tick(); world.increment_change_tick(); } } ``` --- ## Changelog + Added `World::last_change_tick_scope`, which allows you to specify the reference for change detection within a certain scope.
2024-02-12 15:09:11 +00:00
world.last_change_tick_scope(self.system_meta.last_run, |world| {
#[cfg(feature = "trace")]
let _span_guard = self.system_meta.system_span.enter();
let params = F::Param::get_param(
self.param_state.as_mut().expect(PARAM_MESSAGE),
&self.system_meta,
);
let out = self.func.run(world, input, params);
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
world.flush();
Add a method for detecting changes within a certain scope (#11687) # Objective Bevy's change detection functionality is invaluable for writing robust apps, but it only works in the context of systems and exclusive systems. Oftentimes it is necessary to detect changes made in earlier code without having to place the code in separate systems, but it is not currently possible to do so since there is no way to set the value of `World::last_change_tick`. `World::clear_trackers` allows you to update the change tick, but this has unintended side effects, since it irreversibly affects the behavior of change and removal detection for the entire app. ## Solution Add a method `World::last_change_tick_scope`. This allows you to set `last_change_tick` to a specific value for a region of code. To ensure that misuse doesn't break unrelated functions, we restore the world's original change tick at the end of the provided scope. ### Example A function that uses this to run an update loop repeatedly, allowing each iteration of the loop to react to changes made in the previous loop iteration. ```rust fn update_loop( world: &mut World, mut update_fn: impl FnMut(&mut World) -> std::ops::ControlFlow<()>, ) { let mut last_change_tick = world.last_change_tick(); // Repeatedly run the update function until it requests a break. loop { // Update once. let control_flow = world.last_change_tick_scope(last_change_tick, |world| { update_fn(world) }); // End the loop when the closure returns `ControlFlow::Break`. if control_flow.is_break() { break; } // Increment the change tick so the next update can detect changes from this update. last_change_tick = world.change_tick(); world.increment_change_tick(); } } ``` --- ## Changelog + Added `World::last_change_tick_scope`, which allows you to specify the reference for change detection within a certain scope.
2024-02-12 15:09:11 +00:00
let change_tick = world.change_tick.get_mut();
self.system_meta.last_run.set(*change_tick);
*change_tick = change_tick.wrapping_add(1);
out
})
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
}
#[inline]
fn apply_deferred(&mut self, _world: &mut World) {
// "pure" exclusive systems do not have any buffers to apply.
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
// Systems made by piping a normal system with an exclusive system
// might have buffers to apply, but this is handled by `PipeSystem`.
}
#[inline]
fn queue_deferred(&mut self, _world: crate::world::DeferredWorld) {
// "pure" exclusive systems do not have any buffers to apply.
// Systems made by piping a normal system with an exclusive system
// might have buffers to apply, but this is handled by `PipeSystem`.
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
}
#[inline]
fn initialize(&mut self, world: &mut World) {
self.system_meta.last_run = world.change_tick().relative_to(Tick::MAX);
self.param_state = Some(F::Param::init(world, &mut self.system_meta));
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
}
fn update_archetype_component_access(&mut self, _world: UnsafeWorldCell) {}
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
#[inline]
fn check_change_tick(&mut self, change_tick: Tick) {
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
check_system_change_tick(
&mut self.system_meta.last_run,
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
change_tick,
self.system_meta.name.as_ref(),
);
}
Replace all labels with interned labels (#7762) # Objective First of all, this PR took heavy inspiration from #7760 and #5715. It intends to also fix #5569, but with a slightly different approach. This also fixes #9335 by reexporting `DynEq`. ## Solution The advantage of this API is that we can intern a value without allocating for zero-sized-types and for enum variants that have no fields. This PR does this automatically in the `SystemSet` and `ScheduleLabel` derive macros for unit structs and fieldless enum variants. So this should cover many internal and external use cases of `SystemSet` and `ScheduleLabel`. In these optimal use cases, no memory will be allocated. - The interning returns a `Interned<dyn SystemSet>`, which is just a wrapper around a `&'static dyn SystemSet`. - `Hash` and `Eq` are implemented in terms of the pointer value of the reference, similar to my first approach of anonymous system sets in #7676. - Therefore, `Interned<T>` does not implement `Borrow<T>`, only `Deref`. - The debug output of `Interned<T>` is the same as the interned value. Edit: - `AppLabel` is now also interned and the old `derive_label`/`define_label` macros were replaced with the new interning implementation. - Anonymous set ids are reused for different `Schedule`s, reducing the amount of leaked memory. ### Pros - `InternedSystemSet` and `InternedScheduleLabel` behave very similar to the current `BoxedSystemSet` and `BoxedScheduleLabel`, but can be copied without an allocation. - Many use cases don't allocate at all. - Very fast lookups and comparisons when using `InternedSystemSet` and `InternedScheduleLabel`. - The `intern` module might be usable in other areas. - `Interned{ScheduleLabel, SystemSet, AppLabel}` does implement `{ScheduleLabel, SystemSet, AppLabel}`, increasing ergonomics. ### Cons - Implementors of `SystemSet` and `ScheduleLabel` still need to implement `Hash` and `Eq` (and `Clone`) for it to work. ## Changelog ### Added - Added `intern` module to `bevy_utils`. - Added reexports of `DynEq` to `bevy_ecs` and `bevy_app`. ### Changed - Replaced `BoxedSystemSet` and `BoxedScheduleLabel` with `InternedSystemSet` and `InternedScheduleLabel`. - Replaced `impl AsRef<dyn ScheduleLabel>` with `impl ScheduleLabel`. - Replaced `AppLabelId` with `InternedAppLabel`. - Changed `AppLabel` to use `Debug` for error messages. - Changed `AppLabel` to use interning. - Changed `define_label`/`derive_label` to use interning. - Replaced `define_boxed_label`/`derive_boxed_label` with `define_label`/`derive_label`. - Changed anonymous set ids to be only unique inside a schedule, not globally. - Made interned label types implement their label trait. ### Removed - Removed `define_boxed_label` and `derive_boxed_label`. ## Migration guide - Replace `BoxedScheduleLabel` and `Box<dyn ScheduleLabel>` with `InternedScheduleLabel` or `Interned<dyn ScheduleLabel>`. - Replace `BoxedSystemSet` and `Box<dyn SystemSet>` with `InternedSystemSet` or `Interned<dyn SystemSet>`. - Replace `AppLabelId` with `InternedAppLabel` or `Interned<dyn AppLabel>`. - Types manually implementing `ScheduleLabel`, `AppLabel` or `SystemSet` need to implement: - `dyn_hash` directly instead of implementing `DynHash` - `as_dyn_eq` - Pass labels to `World::try_schedule_scope`, `World::schedule_scope`, `World::try_run_schedule`. `World::run_schedule`, `Schedules::remove`, `Schedules::remove_entry`, `Schedules::contains`, `Schedules::get` and `Schedules::get_mut` by value instead of by reference. --------- Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-10-25 21:39:23 +00:00
fn default_system_sets(&self) -> Vec<InternedSystemSet> {
let set = crate::schedule::SystemTypeSet::<Self>::new();
Replace all labels with interned labels (#7762) # Objective First of all, this PR took heavy inspiration from #7760 and #5715. It intends to also fix #5569, but with a slightly different approach. This also fixes #9335 by reexporting `DynEq`. ## Solution The advantage of this API is that we can intern a value without allocating for zero-sized-types and for enum variants that have no fields. This PR does this automatically in the `SystemSet` and `ScheduleLabel` derive macros for unit structs and fieldless enum variants. So this should cover many internal and external use cases of `SystemSet` and `ScheduleLabel`. In these optimal use cases, no memory will be allocated. - The interning returns a `Interned<dyn SystemSet>`, which is just a wrapper around a `&'static dyn SystemSet`. - `Hash` and `Eq` are implemented in terms of the pointer value of the reference, similar to my first approach of anonymous system sets in #7676. - Therefore, `Interned<T>` does not implement `Borrow<T>`, only `Deref`. - The debug output of `Interned<T>` is the same as the interned value. Edit: - `AppLabel` is now also interned and the old `derive_label`/`define_label` macros were replaced with the new interning implementation. - Anonymous set ids are reused for different `Schedule`s, reducing the amount of leaked memory. ### Pros - `InternedSystemSet` and `InternedScheduleLabel` behave very similar to the current `BoxedSystemSet` and `BoxedScheduleLabel`, but can be copied without an allocation. - Many use cases don't allocate at all. - Very fast lookups and comparisons when using `InternedSystemSet` and `InternedScheduleLabel`. - The `intern` module might be usable in other areas. - `Interned{ScheduleLabel, SystemSet, AppLabel}` does implement `{ScheduleLabel, SystemSet, AppLabel}`, increasing ergonomics. ### Cons - Implementors of `SystemSet` and `ScheduleLabel` still need to implement `Hash` and `Eq` (and `Clone`) for it to work. ## Changelog ### Added - Added `intern` module to `bevy_utils`. - Added reexports of `DynEq` to `bevy_ecs` and `bevy_app`. ### Changed - Replaced `BoxedSystemSet` and `BoxedScheduleLabel` with `InternedSystemSet` and `InternedScheduleLabel`. - Replaced `impl AsRef<dyn ScheduleLabel>` with `impl ScheduleLabel`. - Replaced `AppLabelId` with `InternedAppLabel`. - Changed `AppLabel` to use `Debug` for error messages. - Changed `AppLabel` to use interning. - Changed `define_label`/`derive_label` to use interning. - Replaced `define_boxed_label`/`derive_boxed_label` with `define_label`/`derive_label`. - Changed anonymous set ids to be only unique inside a schedule, not globally. - Made interned label types implement their label trait. ### Removed - Removed `define_boxed_label` and `derive_boxed_label`. ## Migration guide - Replace `BoxedScheduleLabel` and `Box<dyn ScheduleLabel>` with `InternedScheduleLabel` or `Interned<dyn ScheduleLabel>`. - Replace `BoxedSystemSet` and `Box<dyn SystemSet>` with `InternedSystemSet` or `Interned<dyn SystemSet>`. - Replace `AppLabelId` with `InternedAppLabel` or `Interned<dyn AppLabel>`. - Types manually implementing `ScheduleLabel`, `AppLabel` or `SystemSet` need to implement: - `dyn_hash` directly instead of implementing `DynHash` - `as_dyn_eq` - Pass labels to `World::try_schedule_scope`, `World::schedule_scope`, `World::try_run_schedule`. `World::run_schedule`, `Schedules::remove`, `Schedules::remove_entry`, `Schedules::contains`, `Schedules::get` and `Schedules::get_mut` by value instead of by reference. --------- Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-10-25 21:39:23 +00:00
vec![set.intern()]
}
fn get_last_run(&self) -> Tick {
self.system_meta.last_run
}
fn set_last_run(&mut self, last_run: Tick) {
self.system_meta.last_run = last_run;
}
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
}
/// A trait implemented for all exclusive system functions that can be used as [`System`]s.
///
/// This trait can be useful for making your own systems which accept other systems,
/// sometimes called higher order systems.
#[diagnostic::on_unimplemented(
message = "`{Self}` is not an exclusive system",
label = "invalid system"
)]
pub trait ExclusiveSystemParamFunction<Marker>: Send + Sync + 'static {
/// The input type to this system. See [`System::In`].
type In;
/// The return type of this system. See [`System::Out`].
type Out;
/// The [`ExclusiveSystemParam`]'s defined by this system's `fn` parameters.
type Param: ExclusiveSystemParam;
/// Executes this system once. See [`System::run`].
fn run(
&mut self,
world: &mut World,
input: Self::In,
param_value: ExclusiveSystemParamItem<Self::Param>,
) -> Self::Out;
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
}
macro_rules! impl_exclusive_system_function {
($($param: ident),*) => {
#[allow(non_snake_case)]
impl<Out, Func: Send + Sync + 'static, $($param: ExclusiveSystemParam),*> ExclusiveSystemParamFunction<fn($($param,)*) -> Out> for Func
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
where
for <'a> &'a mut Func:
FnMut(&mut World, $($param),*) -> Out +
FnMut(&mut World, $(ExclusiveSystemParamItem<$param>),*) -> Out,
Out: 'static,
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
{
type In = ();
type Out = Out;
type Param = ($($param,)*);
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
#[inline]
fn run(&mut self, world: &mut World, _in: (), param_value: ExclusiveSystemParamItem< ($($param,)*)>) -> Out {
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
// Yes, this is strange, but `rustc` fails to compile this impl
// without using this function. It fails to recognize that `func`
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
// is a function, potentially because of the multiple impls of `FnMut`
#[allow(clippy::too_many_arguments)]
fn call_inner<Out, $($param,)*>(
mut f: impl FnMut(&mut World, $($param,)*) -> Out,
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
world: &mut World,
$($param: $param,)*
) -> Out {
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
f(world, $($param,)*)
}
let ($($param,)*) = param_value;
call_inner(self, world, $($param),*)
}
}
#[allow(non_snake_case)]
impl<Input, Out, Func: Send + Sync + 'static, $($param: ExclusiveSystemParam),*> ExclusiveSystemParamFunction<fn(In<Input>, $($param,)*) -> Out> for Func
where
for <'a> &'a mut Func:
FnMut(In<Input>, &mut World, $($param),*) -> Out +
FnMut(In<Input>, &mut World, $(ExclusiveSystemParamItem<$param>),*) -> Out,
Out: 'static,
{
type In = Input;
type Out = Out;
type Param = ($($param,)*);
#[inline]
fn run(&mut self, world: &mut World, input: Input, param_value: ExclusiveSystemParamItem< ($($param,)*)>) -> Out {
// Yes, this is strange, but `rustc` fails to compile this impl
// without using this function. It fails to recognize that `func`
// is a function, potentially because of the multiple impls of `FnMut`
#[allow(clippy::too_many_arguments)]
fn call_inner<Input, Out, $($param,)*>(
mut f: impl FnMut(In<Input>, &mut World, $($param,)*) -> Out,
input: Input,
world: &mut World,
$($param: $param,)*
) -> Out {
f(In(input), world, $($param,)*)
}
let ($($param,)*) = param_value;
call_inner(self, input, world, $($param),*)
}
}
Exclusive Systems Now Implement `System`. Flexible Exclusive System Params (#6083) # Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ```
2022-09-26 23:57:07 +00:00
};
}
// Note that we rely on the highest impl to be <= the highest order of the tuple impls
// of `SystemParam` created.
all_tuples!(impl_exclusive_system_function, 0, 16, F);
`System::type_id` Consistency (#11728) # Objective - Fixes #11679 ## Solution - Added `IntoSystem::system_type_id` which returns the equivalent of `system.into_system().type_id()` without construction. This allows for getting the `TypeId` of functions (a function is an unnamed type and therefore you cannot call `TypeId::of::<apply_deferred::System>()`) - Added default implementation of `System::type_id` to ensure consistency between implementations. Some returned `Self`, while others were returning an inner value instead. This ensures consistency with `IntoSystem::system_type_id`. ## Migration Guide If you use `System::type_id()` on function systems (exclusive or not), ensure you are comparing its value to other `System::type_id()` calls, or `IntoSystem::system_type_id()`. This code wont require any changes, because `IntoSystem`'s are directly compared to each other. ```rust fn test_system() {} let type_id = test_system.type_id(); // ... // No change required assert_eq!(test_system.type_id(), type_id); ``` Likewise, this code wont, because `System`'s are directly compared. ```rust fn test_system() {} let type_id = IntoSystem::into_system(test_system).type_id(); // ... // No change required assert_eq!(IntoSystem::into_system(test_system).type_id(), type_id); ``` The below _does_ require a change, since you're comparing a `System` type to a `IntoSystem` type. ```rust fn test_system() {} // Before assert_eq!(test_system.type_id(), IntoSystem::into_system(test_system).type_id()); // After assert_eq!(test_system.system_type_id(), IntoSystem::into_system(test_system).type_id()); ```
2024-02-06 14:43:33 +00:00
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn into_system_type_id_consistency() {
fn test<T, In, Out, Marker>(function: T)
where
T: IntoSystem<In, Out, Marker> + Copy,
{
fn reference_system(_world: &mut World) {}
use std::any::TypeId;
let system = IntoSystem::into_system(function);
assert_eq!(
system.type_id(),
function.system_type_id(),
"System::type_id should be consistent with IntoSystem::system_type_id"
);
assert_eq!(
system.type_id(),
TypeId::of::<T::System>(),
"System::type_id should be consistent with TypeId::of::<T::System>()"
);
assert_ne!(
system.type_id(),
IntoSystem::into_system(reference_system).type_id(),
"Different systems should have different TypeIds"
);
}
fn exclusive_function_system(_world: &mut World) {}
test(exclusive_function_system);
}
}