bevy/crates/bevy_time/src/time.rs

729 lines
27 KiB
Rust
Raw Normal View History

Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577) *This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
use bevy_ecs::{reflect::ReflectResource, system::Resource};
use bevy_reflect::{FromReflect, Reflect};
use bevy_utils::{Duration, Instant};
2019-12-03 08:30:30 +00:00
/// A clock that tracks how much it has advanced (and how much real time has elapsed) since
/// its previous update and since its creation.
#[derive(Resource, Reflect, FromReflect, Debug, Clone)]
remove blanket `Serialize + Deserialize` requirement for `Reflect` on generic types (#5197) # Objective Some generic types like `Option<T>`, `Vec<T>` and `HashMap<K, V>` implement `Reflect` when where their generic types `T`/`K`/`V` implement `Serialize + for<'de> Deserialize<'de>`. This is so that in their `GetTypeRegistration` impl they can insert the `ReflectSerialize` and `ReflectDeserialize` type data structs. This has the annoying side effect that if your struct contains a `Option<NonSerdeStruct>` you won't be able to derive reflect (https://github.com/bevyengine/bevy/issues/4054). ## Solution - remove the `Serialize + Deserialize` bounds on wrapper types - this means that `ReflectSerialize` and `ReflectDeserialize` will no longer be inserted even for `.register::<Option<DoesImplSerde>>()` - add `register_type_data<T, D>` shorthand for `registry.get_mut(T).insert(D::from_type<T>())` - require users to register their specific generic types **and the serde types** separately like ```rust .register_type::<Option<String>>() .register_type_data::<Option<String>, ReflectSerialize>() .register_type_data::<Option<String>, ReflectDeserialize>() ``` I believe this is the best we can do for extensibility and convenience without specialization. ## Changelog - `.register_type` for generic types like `Option<T>`, `Vec<T>`, `HashMap<K, V>` will no longer insert `ReflectSerialize` and `ReflectDeserialize` type data. Instead you need to register it separately for concrete generic types like so: ```rust .register_type::<Option<String>>() .register_type_data::<Option<String>, ReflectSerialize>() .register_type_data::<Option<String>, ReflectDeserialize>() ``` TODO: more docs and tweaks to the scene example to demonstrate registering generic types.
2022-07-21 14:57:37 +00:00
#[reflect(Resource)]
2019-12-03 08:30:30 +00:00
pub struct Time {
startup: Instant,
first_update: Option<Instant>,
last_update: Option<Instant>,
// pausing
paused: bool,
// scaling
relative_speed: f64, // using `f64` instead of `f32` to minimize drift from rounding errors
delta: Duration,
delta_seconds: f32,
delta_seconds_f64: f64,
elapsed: Duration,
elapsed_seconds: f32,
elapsed_seconds_f64: f64,
raw_delta: Duration,
raw_delta_seconds: f32,
raw_delta_seconds_f64: f64,
raw_elapsed: Duration,
raw_elapsed_seconds: f32,
raw_elapsed_seconds_f64: f64,
// wrapping
wrap_period: Duration,
elapsed_wrapped: Duration,
elapsed_seconds_wrapped: f32,
elapsed_seconds_wrapped_f64: f64,
raw_elapsed_wrapped: Duration,
raw_elapsed_seconds_wrapped: f32,
raw_elapsed_seconds_wrapped_f64: f64,
2019-12-03 08:30:30 +00:00
}
2020-05-13 23:35:38 +00:00
impl Default for Time {
fn default() -> Self {
Self {
2020-05-31 04:32:47 +00:00
startup: Instant::now(),
first_update: None,
last_update: None,
paused: false,
relative_speed: 1.0,
delta: Duration::ZERO,
2019-12-03 08:30:30 +00:00
delta_seconds: 0.0,
delta_seconds_f64: 0.0,
elapsed: Duration::ZERO,
elapsed_seconds: 0.0,
elapsed_seconds_f64: 0.0,
raw_delta: Duration::ZERO,
raw_delta_seconds: 0.0,
raw_delta_seconds_f64: 0.0,
raw_elapsed: Duration::ZERO,
raw_elapsed_seconds: 0.0,
raw_elapsed_seconds_f64: 0.0,
wrap_period: Duration::from_secs(3600), // 1 hour
elapsed_wrapped: Duration::ZERO,
elapsed_seconds_wrapped: 0.0,
elapsed_seconds_wrapped_f64: 0.0,
raw_elapsed_wrapped: Duration::ZERO,
raw_elapsed_seconds_wrapped: 0.0,
raw_elapsed_seconds_wrapped_f64: 0.0,
2019-12-03 08:30:30 +00:00
}
}
2020-05-13 23:35:38 +00:00
}
2019-12-03 08:30:30 +00:00
2020-05-13 23:35:38 +00:00
impl Time {
/// Constructs a new `Time` instance with a specific startup `Instant`.
pub fn new(startup: Instant) -> Self {
Self {
startup,
..Default::default()
}
}
/// Updates the internal time measurements.
///
/// Calling this method as part of your app will most likely result in inaccurate timekeeping,
/// as the `Time` resource is ordinarily managed by the [`TimePlugin`](crate::TimePlugin).
2020-05-31 04:15:39 +00:00
pub fn update(&mut self) {
let now = Instant::now();
self.update_with_instant(now);
}
/// Updates time with a specified [`Instant`].
///
/// This method is provided for use in tests. Calling this method as part of your app will most
/// likely result in inaccurate timekeeping, as the `Time` resource is ordinarily managed by the
/// [`TimePlugin`](crate::TimePlugin).
///
/// # Examples
///
/// ```
/// # use bevy_time::prelude::*;
/// # use bevy_ecs::prelude::*;
/// # use bevy_utils::Duration;
/// # fn main () {
/// # test_health_system();
/// # }
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577) *This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
/// #[derive(Resource)]
/// struct Health {
/// // Health value between 0.0 and 1.0
/// health_value: f32,
/// }
///
/// fn health_system(time: Res<Time>, mut health: ResMut<Health>) {
/// // Increase health value by 0.1 per second, independent of frame rate,
/// // but not beyond 1.0
/// health.health_value = (health.health_value + 0.1 * time.delta_seconds()).min(1.0);
/// }
///
/// // Mock time in tests
/// fn test_health_system() {
/// let mut world = World::default();
/// let mut time = Time::default();
/// time.update();
/// world.insert_resource(time);
/// world.insert_resource(Health { health_value: 0.2 });
///
Migrate engine to Schedule v3 (#7267) Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
/// let mut schedule = Schedule::new();
/// schedule.add_system(health_system);
///
/// // Simulate that 30 ms have passed
/// let mut time = world.resource_mut::<Time>();
/// let last_update = time.last_update().unwrap();
/// time.update_with_instant(last_update + Duration::from_millis(30));
///
/// // Run system
Migrate engine to Schedule v3 (#7267) Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
/// schedule.run(&mut world);
///
/// // Check that 0.003 has been added to the health value
/// let expected_health_value = 0.2 + 0.1 * 0.03;
/// let actual_health_value = world.resource::<Health>().health_value;
/// assert_eq!(expected_health_value, actual_health_value);
/// }
/// ```
pub fn update_with_instant(&mut self, instant: Instant) {
let raw_delta = instant - self.last_update.unwrap_or(self.startup);
let delta = if self.paused {
Duration::ZERO
} else if self.relative_speed != 1.0 {
raw_delta.mul_f64(self.relative_speed)
} else {
// avoid rounding when at normal speed
raw_delta
};
if self.last_update.is_some() {
self.delta = delta;
2020-06-04 02:53:41 +00:00
self.delta_seconds = self.delta.as_secs_f32();
self.delta_seconds_f64 = self.delta.as_secs_f64();
self.raw_delta = raw_delta;
self.raw_delta_seconds = self.raw_delta.as_secs_f32();
self.raw_delta_seconds_f64 = self.raw_delta.as_secs_f64();
} else {
self.first_update = Some(instant);
2020-05-31 04:15:39 +00:00
}
2020-05-31 04:32:47 +00:00
self.elapsed += delta;
self.elapsed_seconds = self.elapsed.as_secs_f32();
self.elapsed_seconds_f64 = self.elapsed.as_secs_f64();
self.raw_elapsed += raw_delta;
self.raw_elapsed_seconds = self.raw_elapsed.as_secs_f32();
self.raw_elapsed_seconds_f64 = self.raw_elapsed.as_secs_f64();
self.elapsed_wrapped = duration_div_rem(self.elapsed, self.wrap_period).1;
self.elapsed_seconds_wrapped = self.elapsed_wrapped.as_secs_f32();
self.elapsed_seconds_wrapped_f64 = self.elapsed_wrapped.as_secs_f64();
self.raw_elapsed_wrapped = duration_div_rem(self.raw_elapsed, self.wrap_period).1;
self.raw_elapsed_seconds_wrapped = self.raw_elapsed_wrapped.as_secs_f32();
self.raw_elapsed_seconds_wrapped_f64 = self.raw_elapsed_wrapped.as_secs_f64();
self.last_update = Some(instant);
}
/// Returns the [`Instant`] the clock was created.
///
/// This usually represents when the app was started.
#[inline]
pub fn startup(&self) -> Instant {
self.startup
}
/// Returns the [`Instant`] when [`update`](#method.update) was first called, if it exists.
///
/// This usually represents when the first app update started.
#[inline]
pub fn first_update(&self) -> Option<Instant> {
self.first_update
}
/// Returns the [`Instant`] when [`update`](#method.update) was last called, if it exists.
///
/// This usually represents when the current app update started.
#[inline]
pub fn last_update(&self) -> Option<Instant> {
self.last_update
}
/// Returns how much time has advanced since the last [`update`](#method.update), as a [`Duration`].
#[inline]
pub fn delta(&self) -> Duration {
self.delta
}
/// Returns how much time has advanced since the last [`update`](#method.update), as [`f32`] seconds.
#[inline]
pub fn delta_seconds(&self) -> f32 {
self.delta_seconds
}
/// Returns how much time has advanced since the last [`update`](#method.update), as [`f64`] seconds.
#[inline]
pub fn delta_seconds_f64(&self) -> f64 {
self.delta_seconds_f64
}
/// Returns how much time has advanced since [`startup`](#method.startup), as [`Duration`].
#[inline]
pub fn elapsed(&self) -> Duration {
self.elapsed
}
/// Returns how much time has advanced since [`startup`](#method.startup), as [`f32`] seconds.
///
/// **Note:** This is a monotonically increasing value. It's precision will degrade over time.
/// If you need an `f32` but that precision loss is unacceptable,
/// use [`elapsed_seconds_wrapped`](#method.elapsed_seconds_wrapped).
#[inline]
pub fn elapsed_seconds(&self) -> f32 {
self.elapsed_seconds
}
/// Returns how much time has advanced since [`startup`](#method.startup), as [`f64`] seconds.
#[inline]
pub fn elapsed_seconds_f64(&self) -> f64 {
self.elapsed_seconds_f64
}
/// Returns how much time has advanced since [`startup`](#method.startup) modulo
/// the [`wrap_period`](#method.wrap_period), as [`Duration`].
#[inline]
pub fn elapsed_wrapped(&self) -> Duration {
self.elapsed_wrapped
}
/// Returns how much time has advanced since [`startup`](#method.startup) modulo
/// the [`wrap_period`](#method.wrap_period), as [`f32`] seconds.
///
/// This method is intended for applications (e.g. shaders) that require an [`f32`] value but
/// suffer from the gradual precision loss of [`elapsed_seconds`](#method.elapsed_seconds).
#[inline]
pub fn elapsed_seconds_wrapped(&self) -> f32 {
self.elapsed_seconds_wrapped
}
/// Returns how much time has advanced since [`startup`](#method.startup) modulo
/// the [`wrap_period`](#method.wrap_period), as [`f64`] seconds.
#[inline]
pub fn elapsed_seconds_wrapped_f64(&self) -> f64 {
self.elapsed_seconds_wrapped_f64
}
/// Returns how much real time has elapsed since the last [`update`](#method.update), as a [`Duration`].
#[inline]
pub fn raw_delta(&self) -> Duration {
self.raw_delta
}
/// Returns how much real time has elapsed since the last [`update`](#method.update), as [`f32`] seconds.
#[inline]
pub fn raw_delta_seconds(&self) -> f32 {
self.raw_delta_seconds
}
/// Returns how much real time has elapsed since the last [`update`](#method.update), as [`f64`] seconds.
#[inline]
pub fn raw_delta_seconds_f64(&self) -> f64 {
self.raw_delta_seconds_f64
}
/// Returns how much real time has elapsed since [`startup`](#method.startup), as [`Duration`].
#[inline]
pub fn raw_elapsed(&self) -> Duration {
self.raw_elapsed
}
/// Returns how much real time has elapsed since [`startup`](#method.startup), as [`f32`] seconds.
///
/// **Note:** This is a monotonically increasing value. It's precision will degrade over time.
/// If you need an `f32` but that precision loss is unacceptable,
/// use [`raw_elapsed_seconds_wrapped`](#method.raw_elapsed_seconds_wrapped).
#[inline]
pub fn raw_elapsed_seconds(&self) -> f32 {
self.raw_elapsed_seconds
}
/// Returns how much real time has elapsed since [`startup`](#method.startup), as [`f64`] seconds.
#[inline]
pub fn raw_elapsed_seconds_f64(&self) -> f64 {
self.raw_elapsed_seconds_f64
}
/// Returns how much real time has elapsed since [`startup`](#method.startup) modulo
/// the [`wrap_period`](#method.wrap_period), as [`Duration`].
#[inline]
pub fn raw_elapsed_wrapped(&self) -> Duration {
self.raw_elapsed_wrapped
}
/// Returns how much real time has elapsed since [`startup`](#method.startup) modulo
/// the [`wrap_period`](#method.wrap_period), as [`f32`] seconds.
///
/// This method is intended for applications (e.g. shaders) that require an [`f32`] value but
/// suffer from the gradual precision loss of [`raw_elapsed_seconds`](#method.raw_elapsed_seconds).
#[inline]
pub fn raw_elapsed_seconds_wrapped(&self) -> f32 {
self.raw_elapsed_seconds_wrapped
}
/// Returns how much real time has elapsed since [`startup`](#method.startup) modulo
/// the [`wrap_period`](#method.wrap_period), as [`f64`] seconds.
#[inline]
pub fn raw_elapsed_seconds_wrapped_f64(&self) -> f64 {
self.raw_elapsed_seconds_wrapped_f64
}
/// Returns the modulus used to calculate [`elapsed_wrapped`](#method.elapsed_wrapped) and
/// [`raw_elapsed_wrapped`](#method.raw_elapsed_wrapped).
///
/// **Note:** The default modulus is one hour.
#[inline]
pub fn wrap_period(&self) -> Duration {
self.wrap_period
}
/// Sets the modulus used to calculate [`elapsed_wrapped`](#method.elapsed_wrapped) and
/// [`raw_elapsed_wrapped`](#method.raw_elapsed_wrapped).
///
/// **Note:** This will not take effect until the next update.
///
/// # Panics
///
/// Panics if `wrap_period` is a zero-length duration.
#[inline]
pub fn set_wrap_period(&mut self, wrap_period: Duration) {
assert!(!wrap_period.is_zero(), "division by zero");
self.wrap_period = wrap_period;
}
/// Returns the speed the clock advances relative to your system clock, as [`f32`].
/// This is known as "time scaling" or "time dilation" in other engines.
///
/// **Note:** This function will return zero when time is paused.
#[inline]
pub fn relative_speed(&self) -> f32 {
self.relative_speed_f64() as f32
}
/// Returns the speed the clock advances relative to your system clock, as [`f64`].
/// This is known as "time scaling" or "time dilation" in other engines.
///
/// **Note:** This function will return zero when time is paused.
#[inline]
pub fn relative_speed_f64(&self) -> f64 {
if self.paused {
0.0
} else {
self.relative_speed
}
}
/// Sets the speed the clock advances relative to your system clock, given as an [`f32`].
///
/// For example, setting this to `2.0` will make the clock advance twice as fast as your system clock.
///
/// **Note:** This does not affect the `raw_*` measurements.
///
/// # Panics
///
/// Panics if `ratio` is negative or not finite.
#[inline]
pub fn set_relative_speed(&mut self, ratio: f32) {
self.set_relative_speed_f64(ratio as f64);
2019-12-03 08:30:30 +00:00
}
2020-05-31 04:32:47 +00:00
/// Sets the speed the clock advances relative to your system clock, given as an [`f64`].
///
/// For example, setting this to `2.0` will make the clock advance twice as fast as your system clock.
///
/// **Note:** This does not affect the `raw_*` measurements.
///
/// # Panics
///
/// Panics if `ratio` is negative or not finite.
#[inline]
pub fn set_relative_speed_f64(&mut self, ratio: f64) {
assert!(ratio.is_finite(), "tried to go infinitely fast");
assert!(ratio >= 0.0, "tried to go back in time");
self.relative_speed = ratio;
}
/// Stops the clock, preventing it from advancing until resumed.
///
/// **Note:** This does affect the `raw_*` measurements.
#[inline]
pub fn pause(&mut self) {
self.paused = true;
}
/// Resumes the clock if paused.
#[inline]
pub fn unpause(&mut self) {
self.paused = false;
2020-05-31 04:32:47 +00:00
}
/// Returns `true` if the clock is currently paused.
#[inline]
pub fn is_paused(&self) -> bool {
self.paused
}
}
fn duration_div_rem(dividend: Duration, divisor: Duration) -> (u32, Duration) {
// `Duration` does not have a built-in modulo operation
let quotient = (dividend.as_nanos() / divisor.as_nanos()) as u32;
let remainder = dividend - (quotient * divisor);
(quotient, remainder)
2020-01-11 10:11:27 +00:00
}
2020-04-06 03:19:02 +00:00
#[cfg(test)]
#[allow(clippy::float_cmp)]
mod tests {
use super::Time;
use bevy_utils::{Duration, Instant};
fn assert_float_eq(a: f32, b: f32) {
assert!((a - b).abs() <= f32::EPSILON, "{a} != {b}");
}
#[test]
fn update_test() {
let start_instant = Instant::now();
let mut time = Time::new(start_instant);
// Ensure `time` was constructed correctly.
assert_eq!(time.startup(), start_instant);
assert_eq!(time.first_update(), None);
assert_eq!(time.last_update(), None);
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.delta_seconds(), 0.0);
assert_eq!(time.delta_seconds_f64(), 0.0);
assert_eq!(time.raw_delta(), Duration::ZERO);
assert_eq!(time.raw_delta_seconds(), 0.0);
assert_eq!(time.raw_delta_seconds_f64(), 0.0);
assert_eq!(time.elapsed(), Duration::ZERO);
assert_eq!(time.elapsed_seconds(), 0.0);
assert_eq!(time.elapsed_seconds_f64(), 0.0);
assert_eq!(time.raw_elapsed(), Duration::ZERO);
assert_eq!(time.raw_elapsed_seconds(), 0.0);
assert_eq!(time.raw_elapsed_seconds_f64(), 0.0);
// Update `time` and check results.
// The first update to `time` normally happens before other systems have run,
// so the first delta doesn't appear until the second update.
let first_update_instant = Instant::now();
time.update_with_instant(first_update_instant);
assert_eq!(time.startup(), start_instant);
assert_eq!(time.first_update(), Some(first_update_instant));
assert_eq!(time.last_update(), Some(first_update_instant));
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.delta_seconds(), 0.0);
assert_eq!(time.delta_seconds_f64(), 0.0);
assert_eq!(time.raw_delta(), Duration::ZERO);
assert_eq!(time.raw_delta_seconds(), 0.0);
assert_eq!(time.raw_delta_seconds_f64(), 0.0);
assert_eq!(time.elapsed(), first_update_instant - start_instant,);
assert_eq!(
time.elapsed_seconds(),
(first_update_instant - start_instant).as_secs_f32(),
);
assert_eq!(
time.elapsed_seconds_f64(),
(first_update_instant - start_instant).as_secs_f64(),
);
assert_eq!(time.raw_elapsed(), first_update_instant - start_instant,);
assert_eq!(
time.raw_elapsed_seconds(),
(first_update_instant - start_instant).as_secs_f32(),
);
assert_eq!(
time.raw_elapsed_seconds_f64(),
(first_update_instant - start_instant).as_secs_f64(),
);
// Update `time` again and check results.
// At this point its safe to use time.delta().
let second_update_instant = Instant::now();
time.update_with_instant(second_update_instant);
assert_eq!(time.startup(), start_instant);
assert_eq!(time.first_update(), Some(first_update_instant));
assert_eq!(time.last_update(), Some(second_update_instant));
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.delta(), second_update_instant - first_update_instant);
assert_eq!(
time.delta_seconds(),
(second_update_instant - first_update_instant).as_secs_f32(),
);
assert_eq!(
time.delta_seconds_f64(),
(second_update_instant - first_update_instant).as_secs_f64(),
);
assert_eq!(
time.raw_delta(),
second_update_instant - first_update_instant,
);
assert_eq!(
time.raw_delta_seconds(),
(second_update_instant - first_update_instant).as_secs_f32(),
);
assert_eq!(
time.raw_delta_seconds_f64(),
(second_update_instant - first_update_instant).as_secs_f64(),
);
assert_eq!(time.elapsed(), second_update_instant - start_instant,);
assert_eq!(
time.elapsed_seconds(),
(second_update_instant - start_instant).as_secs_f32(),
);
assert_eq!(
time.elapsed_seconds_f64(),
(second_update_instant - start_instant).as_secs_f64(),
);
assert_eq!(time.raw_elapsed(), second_update_instant - start_instant,);
assert_eq!(
time.raw_elapsed_seconds(),
(second_update_instant - start_instant).as_secs_f32(),
);
assert_eq!(
time.raw_elapsed_seconds_f64(),
(second_update_instant - start_instant).as_secs_f64(),
);
}
#[test]
fn wrapping_test() {
let start_instant = Instant::now();
let mut time = Time {
startup: start_instant,
wrap_period: Duration::from_secs(3),
..Default::default()
};
assert_eq!(time.elapsed_seconds_wrapped(), 0.0);
time.update_with_instant(start_instant + Duration::from_secs(1));
assert_float_eq(time.elapsed_seconds_wrapped(), 1.0);
time.update_with_instant(start_instant + Duration::from_secs(2));
assert_float_eq(time.elapsed_seconds_wrapped(), 2.0);
time.update_with_instant(start_instant + Duration::from_secs(3));
assert_float_eq(time.elapsed_seconds_wrapped(), 0.0);
time.update_with_instant(start_instant + Duration::from_secs(4));
assert_float_eq(time.elapsed_seconds_wrapped(), 1.0);
}
#[test]
fn relative_speed_test() {
let start_instant = Instant::now();
let mut time = Time::new(start_instant);
let first_update_instant = Instant::now();
time.update_with_instant(first_update_instant);
// Update `time` again and check results.
// At this point its safe to use time.delta().
let second_update_instant = Instant::now();
time.update_with_instant(second_update_instant);
assert_eq!(time.startup(), start_instant);
assert_eq!(time.first_update(), Some(first_update_instant));
assert_eq!(time.last_update(), Some(second_update_instant));
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.delta(), second_update_instant - first_update_instant);
assert_eq!(
time.delta_seconds(),
(second_update_instant - first_update_instant).as_secs_f32(),
);
assert_eq!(
time.delta_seconds_f64(),
(second_update_instant - first_update_instant).as_secs_f64(),
);
assert_eq!(
time.raw_delta(),
second_update_instant - first_update_instant,
);
assert_eq!(
time.raw_delta_seconds(),
(second_update_instant - first_update_instant).as_secs_f32(),
);
assert_eq!(
time.raw_delta_seconds_f64(),
(second_update_instant - first_update_instant).as_secs_f64(),
);
assert_eq!(time.elapsed(), second_update_instant - start_instant,);
assert_eq!(
time.elapsed_seconds(),
(second_update_instant - start_instant).as_secs_f32(),
);
assert_eq!(
time.elapsed_seconds_f64(),
(second_update_instant - start_instant).as_secs_f64(),
);
assert_eq!(time.raw_elapsed(), second_update_instant - start_instant,);
assert_eq!(
time.raw_elapsed_seconds(),
(second_update_instant - start_instant).as_secs_f32(),
);
assert_eq!(
time.raw_elapsed_seconds_f64(),
(second_update_instant - start_instant).as_secs_f64(),
);
// Make app time advance at 2x the rate of your system clock.
time.set_relative_speed(2.0);
// Update `time` again 1 second later.
let elapsed = Duration::from_secs(1);
let third_update_instant = second_update_instant + elapsed;
time.update_with_instant(third_update_instant);
// Since app is advancing 2x your system clock, expect time
// to have advanced by twice the amount of real time elapsed.
assert_eq!(time.startup(), start_instant);
assert_eq!(time.first_update(), Some(first_update_instant));
assert_eq!(time.last_update(), Some(third_update_instant));
assert_eq!(time.relative_speed(), 2.0);
assert_eq!(time.delta(), elapsed.mul_f32(2.0));
assert_eq!(time.delta_seconds(), elapsed.mul_f32(2.0).as_secs_f32());
assert_eq!(time.delta_seconds_f64(), elapsed.mul_f32(2.0).as_secs_f64());
assert_eq!(time.raw_delta(), elapsed);
assert_eq!(time.raw_delta_seconds(), elapsed.as_secs_f32());
assert_eq!(time.raw_delta_seconds_f64(), elapsed.as_secs_f64());
assert_eq!(
time.elapsed(),
second_update_instant - start_instant + elapsed.mul_f32(2.0),
);
assert_eq!(
time.elapsed_seconds(),
(second_update_instant - start_instant + elapsed.mul_f32(2.0)).as_secs_f32(),
);
assert_eq!(
time.elapsed_seconds_f64(),
(second_update_instant - start_instant + elapsed.mul_f32(2.0)).as_secs_f64(),
);
assert_eq!(
time.raw_elapsed(),
second_update_instant - start_instant + elapsed,
);
assert_eq!(
time.raw_elapsed_seconds(),
(second_update_instant - start_instant + elapsed).as_secs_f32(),
);
assert_eq!(
time.raw_elapsed_seconds_f64(),
(second_update_instant - start_instant + elapsed).as_secs_f64(),
);
}
#[test]
fn pause_test() {
let start_instant = Instant::now();
let mut time = Time::new(start_instant);
let first_update_instant = Instant::now();
time.update_with_instant(first_update_instant);
assert!(!time.is_paused());
assert_eq!(time.relative_speed(), 1.0);
time.pause();
assert!(time.is_paused());
assert_eq!(time.relative_speed(), 0.0);
let second_update_instant = Instant::now();
time.update_with_instant(second_update_instant);
assert_eq!(time.startup(), start_instant);
assert_eq!(time.first_update(), Some(first_update_instant));
assert_eq!(time.last_update(), Some(second_update_instant));
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(
time.raw_delta(),
second_update_instant - first_update_instant,
);
assert_eq!(time.elapsed(), first_update_instant - start_instant);
assert_eq!(time.raw_elapsed(), second_update_instant - start_instant);
time.unpause();
assert!(!time.is_paused());
assert_eq!(time.relative_speed(), 1.0);
let third_update_instant = Instant::now();
time.update_with_instant(third_update_instant);
assert_eq!(time.startup(), start_instant);
assert_eq!(time.first_update(), Some(first_update_instant));
assert_eq!(time.last_update(), Some(third_update_instant));
assert_eq!(time.delta(), third_update_instant - second_update_instant);
assert_eq!(
time.raw_delta(),
third_update_instant - second_update_instant,
);
assert_eq!(
time.elapsed(),
(third_update_instant - second_update_instant) + (first_update_instant - start_instant),
);
assert_eq!(time.raw_elapsed(), third_update_instant - start_instant);
}
}