bevy/examples/2d/pixel_grid_snap.rs

175 lines
5.2 KiB
Rust
Raw Normal View History

//! Shows how to create graphics that snap to the pixel grid by rendering to a texture in 2D
use bevy::{
prelude::*,
render::{
camera::RenderTarget,
render_resource::{
Extent3d, TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
},
view::RenderLayers,
},
sprite::MaterialMesh2dBundle,
window::WindowResized,
};
/// In-game resolution width.
const RES_WIDTH: u32 = 160;
/// In-game resolution height.
const RES_HEIGHT: u32 = 90;
/// Default render layers for pixel-perfect rendering.
/// You can skip adding this component, as this is the default.
const PIXEL_PERFECT_LAYERS: RenderLayers = RenderLayers::layer(0);
/// Render layers for high-resolution rendering.
const HIGH_RES_LAYERS: RenderLayers = RenderLayers::layer(1);
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(ImagePlugin::default_nearest()))
.insert_resource(Msaa::Off)
.add_systems(Startup, (setup_camera, setup_sprite, setup_mesh))
.add_systems(Update, (rotate, fit_canvas))
.run();
}
/// Low-resolution texture that contains the pixel-perfect world.
/// Canvas itself is rendered to the high-resolution world.
#[derive(Component)]
struct Canvas;
/// Camera that renders the pixel-perfect world to the [`Canvas`].
#[derive(Component)]
struct InGameCamera;
/// Camera that renders the [`Canvas`] (and other graphics on [`HIGH_RES_LAYERS`]) to the screen.
#[derive(Component)]
struct OuterCamera;
#[derive(Component)]
struct Rotate;
fn setup_sprite(mut commands: Commands, asset_server: Res<AssetServer>) {
// the sample sprite that will be rendered to the pixel-perfect canvas
commands.spawn((
SpriteBundle {
texture: asset_server.load("pixel/bevy_pixel_dark.png"),
transform: Transform::from_xyz(-40., 20., 2.),
..default()
},
Rotate,
PIXEL_PERFECT_LAYERS,
));
// the sample sprite that will be rendered to the high-res "outer world"
commands.spawn((
SpriteBundle {
texture: asset_server.load("pixel/bevy_pixel_light.png"),
transform: Transform::from_xyz(-40., -20., 2.),
..default()
},
Rotate,
HIGH_RES_LAYERS,
));
}
/// Spawns a capsule mesh on the pixel-perfect layer.
fn setup_mesh(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<ColorMaterial>>,
) {
commands.spawn((
MaterialMesh2dBundle {
Deprecate shapes in `bevy_render::mesh::shape` (#11773) # Objective #11431 and #11688 implemented meshing support for Bevy's new geometric primitives. The next step is to deprecate the shapes in `bevy_render::mesh::shape` and to later remove them completely for 0.14. ## Solution Deprecate the shapes and reduce code duplication by utilizing the primitive meshing API for the old shapes where possible. Note that some shapes have behavior that can't be exactly reproduced with the new primitives yet: - `Box` is more of an AABB with min/max extents - `Plane` supports a subdivision count - `Quad` has a `flipped` property These types have not been changed to utilize the new primitives yet. --- ## Changelog - Deprecated all shapes in `bevy_render::mesh::shape` - Changed all examples to use new primitives for meshing ## Migration Guide Bevy has previously used rendering-specific types like `UVSphere` and `Quad` for primitive mesh shapes. These have now been deprecated to use the geometric primitives newly introduced in version 0.13. Some examples: ```rust let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0)); let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0)); let before = meshes.add(shape::Quad::default()); let after = meshes.add(Rectangle::default()); let before = meshes.add(shape::Plane::from_size(5.0)); // The surface normal can now also be specified when using `new` let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0)); let before = meshes.add( Mesh::try_from(shape::Icosphere { radius: 0.5, subdivisions: 5, }) .unwrap(), ); let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap()); ```
2024-02-08 18:01:34 +00:00
mesh: meshes.add(Capsule2d::default()).into(),
transform: Transform::from_xyz(40., 0., 2.).with_scale(Vec3::splat(32.)),
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
material: materials.add(Color::BLACK),
..default()
},
Rotate,
PIXEL_PERFECT_LAYERS,
));
}
fn setup_camera(mut commands: Commands, mut images: ResMut<Assets<Image>>) {
let canvas_size = Extent3d {
width: RES_WIDTH,
height: RES_HEIGHT,
..default()
};
// this Image serves as a canvas representing the low-resolution game screen
let mut canvas = Image {
texture_descriptor: TextureDescriptor {
label: None,
size: canvas_size,
dimension: TextureDimension::D2,
format: TextureFormat::Bgra8UnormSrgb,
mip_level_count: 1,
sample_count: 1,
usage: TextureUsages::TEXTURE_BINDING
| TextureUsages::COPY_DST
| TextureUsages::RENDER_ATTACHMENT,
view_formats: &[],
},
..default()
};
// fill image.data with zeroes
canvas.resize(canvas_size);
let image_handle = images.add(canvas);
// this camera renders whatever is on `PIXEL_PERFECT_LAYERS` to the canvas
commands.spawn((
Camera2dBundle {
camera: Camera {
// render before the "main pass" camera
order: -1,
target: RenderTarget::Image(image_handle.clone()),
..default()
},
..default()
},
InGameCamera,
PIXEL_PERFECT_LAYERS,
));
// spawn the canvas
commands.spawn((
SpriteBundle {
texture: image_handle,
..default()
},
Canvas,
HIGH_RES_LAYERS,
));
// the "outer" camera renders whatever is on `HIGH_RES_LAYERS` to the screen.
// here, the canvas and one of the sample sprites will be rendered by this camera
commands.spawn((Camera2dBundle::default(), OuterCamera, HIGH_RES_LAYERS));
}
/// Rotates entities to demonstrate grid snapping.
fn rotate(time: Res<Time>, mut transforms: Query<&mut Transform, With<Rotate>>) {
for mut transform in &mut transforms {
let dt = time.delta_seconds();
transform.rotate_z(dt);
}
}
/// Scales camera projection to fit the window (integer multiples only).
fn fit_canvas(
mut resize_events: EventReader<WindowResized>,
mut projections: Query<&mut OrthographicProjection, With<OuterCamera>>,
) {
for event in resize_events.read() {
let h_scale = event.width / RES_WIDTH as f32;
let v_scale = event.height / RES_HEIGHT as f32;
let mut projection = projections.single_mut();
projection.scale = 1. / h_scale.min(v_scale).round();
}
}