2021-06-08 01:57:24 +00:00
# Bevy ECS
2023-10-15 00:52:31 +00:00
[![License ](https://img.shields.io/badge/license-MIT%2FApache-blue.svg )](https://github.com/bevyengine/bevy#license)
2021-06-08 01:57:24 +00:00
[![Crates.io ](https://img.shields.io/crates/v/bevy_ecs.svg )](https://crates.io/crates/bevy_ecs)
2023-10-15 00:52:31 +00:00
[![Downloads ](https://img.shields.io/crates/d/bevy_ecs.svg )](https://crates.io/crates/bevy_ecs)
[![Docs ](https://docs.rs/bevy_ecs/badge.svg )](https://docs.rs/bevy_ecs/latest/bevy_ecs/)
2021-07-01 20:41:42 +00:00
[![Discord ](https://img.shields.io/discord/691052431525675048.svg?label=&logo=discord&logoColor=ffffff&color=7389D8&labelColor=6A7EC2 )](https://discord.gg/bevy)
2021-06-08 01:57:24 +00:00
## What is Bevy ECS?
2022-07-05 15:49:11 +00:00
Bevy ECS is an Entity Component System custom-built for the [Bevy][bevy] game engine.
It aims to be simple to use, ergonomic, fast, massively parallel, opinionated, and featureful.
It was created specifically for Bevy's needs, but it can easily be used as a standalone crate in other projects.
2021-06-08 01:57:24 +00:00
## ECS
All app logic in Bevy uses the Entity Component System paradigm, which is often shortened to ECS. ECS is a software pattern that involves breaking your program up into Entities, Components, and Systems. Entities are unique "things" that are assigned groups of Components, which are then processed using Systems.
For example, one entity might have a `Position` and `Velocity` component, whereas another entity might have a `Position` and `UI` component. You might have a movement system that runs on all entities with a Position and Velocity component.
The ECS pattern encourages clean, decoupled designs by forcing you to break up your app data and logic into its core components. It also helps make your code faster by optimizing memory access patterns and making parallelism easier.
## Concepts
Bevy ECS is Bevy's implementation of the ECS pattern. Unlike other Rust ECS implementations, which often require complex lifetimes, traits, builder patterns, or macros, Bevy ECS uses normal Rust data types for all of these concepts:
### Components
Components are normal Rust structs. They are data stored in a `World` and specific instances of Components correlate to Entities.
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::prelude::*;
#[derive(Component)]
2021-06-08 01:57:24 +00:00
struct Position { x: f32, y: f32 }
```
### Worlds
2024-04-20 09:15:42 +00:00
Entities, Components, and Resources are stored in a `World` . Worlds, much like `std::collections` 's `HashSet` and `Vec` , expose operations to insert, read, write, and remove the data they store.
2021-06-08 01:57:24 +00:00
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::world::World;
2021-06-08 01:57:24 +00:00
let world = World::default();
```
### Entities
Entities are unique identifiers that correlate to zero or more Components.
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }
let mut world = World::new();
Spawn now takes a Bundle (#6054)
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
2022-09-23 19:55:54 +00:00
let entity = world
.spawn((Position { x: 0.0, y: 0.0 }, Velocity { x: 1.0, y: 0.0 }))
2021-06-08 01:57:24 +00:00
.id();
let entity_ref = world.entity(entity);
let position = entity_ref.get::< Position > ().unwrap();
let velocity = entity_ref.get::< Velocity > ().unwrap();
```
### Systems
Systems are normal Rust functions. Thanks to the Rust type system, Bevy ECS can use function parameter types to determine what data needs to be sent to the system. It also uses this "data access" information to determine what Systems can run in parallel with each other.
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
2021-06-08 01:57:24 +00:00
fn print_position(query: Query< (Entity, & Position)>) {
2022-07-11 15:28:50 +00:00
for (entity, position) in & query {
2021-06-08 01:57:24 +00:00
println!("Entity {:?} is at position: x {}, y {}", entity, position.x, position.y);
}
}
```
### Resources
Apps often require unique resources, such as asset collections, renderers, audio servers, time, etc. Bevy ECS makes this pattern a first class citizen. `Resource` is a special kind of component that does not belong to any entity. Instead, it is identified uniquely by its type:
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::prelude::*;
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
#[derive(Resource, Default)]
2021-06-08 01:57:24 +00:00
struct Time {
seconds: f32,
}
2021-12-18 22:59:55 +00:00
let mut world = World::new();
2021-06-08 01:57:24 +00:00
world.insert_resource(Time::default());
let time = world.get_resource::< Time > ().unwrap();
// You can also access resources from Systems
fn print_time(time: Res< Time > ) {
println!("{}", time.seconds);
}
```
### Schedules
Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
Schedules run a set of Systems according to some execution strategy.
Systems can be added to any number of System Sets, which are used to control their scheduling metadata.
2021-06-08 01:57:24 +00:00
Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
The built in "parallel executor" considers dependencies between systems and (by default) run as many of them in parallel as possible. This maximizes performance, while keeping the system execution safe. To control the system ordering, define explicit dependencies between systems and their sets.
2021-06-08 01:57:24 +00:00
## Using Bevy ECS
Bevy ECS should feel very natural for those familiar with Rust syntax:
```rust
use bevy_ecs::prelude::*;
2021-12-18 22:59:55 +00:00
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }
2021-06-08 01:57:24 +00:00
// This system moves each entity with a Position and Velocity component
2021-12-18 22:59:55 +00:00
fn movement(mut query: Query< (& mut Position, & Velocity)>) {
2022-07-11 15:28:50 +00:00
for (mut position, velocity) in & mut query {
2021-06-08 01:57:24 +00:00
position.x += velocity.x;
position.y += velocity.y;
}
}
fn main() {
// Create a new empty World to hold our Entities and Components
let mut world = World::new();
// Spawn an entity with Position and Velocity components
Spawn now takes a Bundle (#6054)
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
2022-09-23 19:55:54 +00:00
world.spawn((
Position { x: 0.0, y: 0.0 },
Velocity { x: 1.0, y: 0.0 },
));
2021-06-08 01:57:24 +00:00
// Create a new Schedule, which defines an execution strategy for Systems
let mut schedule = Schedule::default();
Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
// Add our system to the schedule
2023-03-18 01:45:34 +00:00
schedule.add_systems(movement);
2021-06-08 01:57:24 +00:00
// Run the schedule once. If your app has a "loop", you would run this once per loop
schedule.run(& mut world);
}
```
## Features
### Query Filters
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Player;
#[derive(Component)]
struct Alive;
// Gets the Position component of all Entities with Player component and without the Alive
// component.
fn system(query: Query< & Position, (With< Player > , Without< Alive > )>) {
2022-07-11 15:28:50 +00:00
for position in & query {
2021-06-08 01:57:24 +00:00
}
}
```
### Change Detection
Bevy ECS tracks _all_ changes to Components and Resources.
Queries can filter for changed Components:
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }
2021-06-08 01:57:24 +00:00
// Gets the Position component of all Entities whose Velocity has changed since the last run of the System
2021-12-18 22:59:55 +00:00
fn system_changed(query: Query< & Position, Changed< Velocity > >) {
2022-07-11 15:28:50 +00:00
for position in & query {
2021-06-08 01:57:24 +00:00
}
}
2022-02-05 17:21:00 +00:00
// Gets the Position component of all Entities that had a Velocity component added since the last run of the System
2021-12-18 22:59:55 +00:00
fn system_added(query: Query< & Position, Added< Velocity > >) {
2022-07-11 15:28:50 +00:00
for position in & query {
2021-06-08 01:57:24 +00:00
}
}
```
Resources also expose change state:
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::prelude::*;
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
#[derive(Resource)]
2021-12-18 22:59:55 +00:00
struct Time(f32);
2021-06-08 01:57:24 +00:00
// Prints "time changed!" if the Time resource has changed since the last run of the System
fn system(time: Res< Time > ) {
if time.is_changed() {
println!("time changed!");
}
}
```
### Component Storage
Bevy ECS supports multiple component storage types.
Components can be stored in:
* **Tables**: Fast and cache friendly iteration, but slower adding and removing of components. This is the default storage type.
* **Sparse Sets**: Fast adding and removing of components, but slower iteration.
2021-10-03 19:23:44 +00:00
Component storage types are configurable, and they default to table storage if the storage is not manually defined.
2021-06-08 01:57:24 +00:00
2021-12-18 22:59:55 +00:00
```rust
use bevy_ecs::prelude::*;
2021-10-03 19:23:44 +00:00
#[derive(Component)]
struct TableStoredComponent;
#[derive(Component)]
#[component(storage = "SparseSet")]
struct SparseStoredComponent;
2021-06-08 01:57:24 +00:00
```
### Component Bundles
Define sets of Components that should be added together.
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::prelude::*;
#[derive(Default, Component)]
struct Player;
#[derive(Default, Component)]
struct Position { x: f32, y: f32 }
#[derive(Default, Component)]
struct Velocity { x: f32, y: f32 }
2021-06-08 01:57:24 +00:00
#[derive(Bundle, Default)]
struct PlayerBundle {
player: Player,
position: Position,
velocity: Velocity,
}
2021-12-18 22:59:55 +00:00
let mut world = World::new();
2021-06-08 01:57:24 +00:00
// Spawn a new entity and insert the default PlayerBundle
Spawn now takes a Bundle (#6054)
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
2022-09-23 19:55:54 +00:00
world.spawn(PlayerBundle::default());
2021-06-08 01:57:24 +00:00
// Bundles play well with Rust's struct update syntax
Spawn now takes a Bundle (#6054)
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
2022-09-23 19:55:54 +00:00
world.spawn(PlayerBundle {
2021-06-08 01:57:24 +00:00
position: Position { x: 1.0, y: 1.0 },
..Default::default()
});
```
### Events
Events offer a communication channel between one or more systems. Events can be sent using the system parameter `EventWriter` and received with `EventReader` .
```rust
2021-12-18 22:59:55 +00:00
use bevy_ecs::prelude::*;
2023-06-06 14:44:32 +00:00
#[derive(Event)]
2021-06-08 01:57:24 +00:00
struct MyEvent {
message: String,
}
fn writer(mut writer: EventWriter< MyEvent > ) {
writer.send(MyEvent {
message: "hello!".to_string(),
});
}
fn reader(mut reader: EventReader< MyEvent > ) {
2023-11-24 16:15:47 +00:00
for event in reader.read() {
2021-06-08 01:57:24 +00:00
}
}
```
Generalised ECS reactivity with Observers (#10839)
# Objective
- Provide an expressive way to register dynamic behavior in response to
ECS changes that is consistent with existing bevy types and traits as to
provide a smooth user experience.
- Provide a mechanism for immediate changes in response to events during
command application in order to facilitate improved query caching on the
path to relations.
## Solution
- A new fundamental ECS construct, the `Observer`; inspired by flec's
observers but adapted to better fit bevy's access patterns and rust's
type system.
---
## Examples
There are 3 main ways to register observers. The first is a "component
observer" that looks like this:
```rust
world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| {
let transform = query.get(trigger.entity()).unwrap();
});
```
The above code will spawn a new entity representing the observer that
will run it's callback whenever the `Transform` component is added to an
entity. This is a system-like function that supports dependency
injection for all the standard bevy types: `Query`, `Res`, `Commands`
etc. It also has a `Trigger` parameter that provides information about
the trigger such as the target entity, and the event being triggered.
Importantly these systems run during command application which is key
for their future use to keep ECS internals up to date. There are similar
events for `OnInsert` and `OnRemove`, and this will be expanded with
things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs.
Another way to register an observer is an "entity observer" that looks
like this:
```rust
world.entity_mut(entity).observe(|trigger: Trigger<Resize>| {
// ...
});
```
Entity observers run whenever an event of their type is triggered
targeting that specific entity. This type of observer will de-spawn
itself if the entity (or entities) it is observing is ever de-spawned so
as to not leave dangling observers.
Entity observers can also be spawned from deferred contexts such as
other observers, systems, or hooks using commands:
```rust
commands.entity(entity).observe(|trigger: Trigger<Resize>| {
// ...
});
```
Observers are not limited to in built event types, they can be used with
any type that implements `Event` (which has been extended to implement
Component). This means events can also carry data:
```rust
#[derive(Event)]
struct Resize { x: u32, y: u32 }
commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| {
let event = trigger.event();
// ...
});
// Will trigger the observer when commands are applied.
commands.trigger_targets(Resize { x: 10, y: 10 }, entity);
```
You can also trigger events that target more than one entity at a time:
```rust
commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]);
```
Additionally, Observers don't _need_ entity targets:
```rust
app.observe(|trigger: Trigger<Quit>| {
})
commands.trigger(Quit);
```
In these cases, `trigger.entity()` will be a placeholder.
Observers are actually just normal entities with an `ObserverState` and
`Observer` component! The `observe()` functions above are just shorthand
for:
```rust
world.spawn(Observer::new(|trigger: Trigger<Resize>| {});
```
This will spawn the `Observer` system and use an `on_add` hook to add
the `ObserverState` component.
Dynamic components and trigger types are also fully supported allowing
for runtime defined trigger types.
## Possible Follow-ups
1. Deprecate `RemovedComponents`, observers should fulfill all use cases
while being more flexible and performant.
2. Queries as entities: Swap queries to entities and begin using
observers listening to archetype creation triggers to keep their caches
in sync, this allows unification of `ObserverState` and `QueryState` as
well as unlocking several API improvements for `Query` and the
management of `QueryState`.
3. Trigger bubbling: For some UI use cases in particular users are
likely to want some form of bubbling for entity observers, this is
trivial to implement naively but ideally this includes an acceleration
structure to cache hierarchy traversals.
4. All kinds of other in-built trigger types.
5. Optimization; in order to not bloat the complexity of the PR I have
kept the implementation straightforward, there are several areas where
performance can be improved. The focus for this PR is to get the
behavior implemented and not incur a performance cost for users who
don't use observers.
I am leaving each of these to follow up PR's in order to keep each of
them reviewable as this already includes significant changes.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
### Observers
Observers are systems that listen for a "trigger" of a specific `Event` :
```rust
use bevy_ecs::prelude::*;
#[derive(Event)]
struct MyEvent {
message: String
}
let mut world = World::new();
2024-10-09 15:39:29 +00:00
world.add_observer(|trigger: Trigger< MyEvent > | {
Generalised ECS reactivity with Observers (#10839)
# Objective
- Provide an expressive way to register dynamic behavior in response to
ECS changes that is consistent with existing bevy types and traits as to
provide a smooth user experience.
- Provide a mechanism for immediate changes in response to events during
command application in order to facilitate improved query caching on the
path to relations.
## Solution
- A new fundamental ECS construct, the `Observer`; inspired by flec's
observers but adapted to better fit bevy's access patterns and rust's
type system.
---
## Examples
There are 3 main ways to register observers. The first is a "component
observer" that looks like this:
```rust
world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| {
let transform = query.get(trigger.entity()).unwrap();
});
```
The above code will spawn a new entity representing the observer that
will run it's callback whenever the `Transform` component is added to an
entity. This is a system-like function that supports dependency
injection for all the standard bevy types: `Query`, `Res`, `Commands`
etc. It also has a `Trigger` parameter that provides information about
the trigger such as the target entity, and the event being triggered.
Importantly these systems run during command application which is key
for their future use to keep ECS internals up to date. There are similar
events for `OnInsert` and `OnRemove`, and this will be expanded with
things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs.
Another way to register an observer is an "entity observer" that looks
like this:
```rust
world.entity_mut(entity).observe(|trigger: Trigger<Resize>| {
// ...
});
```
Entity observers run whenever an event of their type is triggered
targeting that specific entity. This type of observer will de-spawn
itself if the entity (or entities) it is observing is ever de-spawned so
as to not leave dangling observers.
Entity observers can also be spawned from deferred contexts such as
other observers, systems, or hooks using commands:
```rust
commands.entity(entity).observe(|trigger: Trigger<Resize>| {
// ...
});
```
Observers are not limited to in built event types, they can be used with
any type that implements `Event` (which has been extended to implement
Component). This means events can also carry data:
```rust
#[derive(Event)]
struct Resize { x: u32, y: u32 }
commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| {
let event = trigger.event();
// ...
});
// Will trigger the observer when commands are applied.
commands.trigger_targets(Resize { x: 10, y: 10 }, entity);
```
You can also trigger events that target more than one entity at a time:
```rust
commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]);
```
Additionally, Observers don't _need_ entity targets:
```rust
app.observe(|trigger: Trigger<Quit>| {
})
commands.trigger(Quit);
```
In these cases, `trigger.entity()` will be a placeholder.
Observers are actually just normal entities with an `ObserverState` and
`Observer` component! The `observe()` functions above are just shorthand
for:
```rust
world.spawn(Observer::new(|trigger: Trigger<Resize>| {});
```
This will spawn the `Observer` system and use an `on_add` hook to add
the `ObserverState` component.
Dynamic components and trigger types are also fully supported allowing
for runtime defined trigger types.
## Possible Follow-ups
1. Deprecate `RemovedComponents`, observers should fulfill all use cases
while being more flexible and performant.
2. Queries as entities: Swap queries to entities and begin using
observers listening to archetype creation triggers to keep their caches
in sync, this allows unification of `ObserverState` and `QueryState` as
well as unlocking several API improvements for `Query` and the
management of `QueryState`.
3. Trigger bubbling: For some UI use cases in particular users are
likely to want some form of bubbling for entity observers, this is
trivial to implement naively but ideally this includes an acceleration
structure to cache hierarchy traversals.
4. All kinds of other in-built trigger types.
5. Optimization; in order to not bloat the complexity of the PR I have
kept the implementation straightforward, there are several areas where
performance can be improved. The focus for this PR is to get the
behavior implemented and not incur a performance cost for users who
don't use observers.
I am leaving each of these to follow up PR's in order to keep each of
them reviewable as this already includes significant changes.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
println!("{}", trigger.event().message);
});
world.flush();
world.trigger(MyEvent {
message: "hello!".to_string(),
});
```
These differ from `EventReader` and `EventWriter` in that they are "reactive". Rather than happening at a specific point in a schedule, they happen _immediately_ whenever a trigger happens. Triggers can trigger other triggers, and they all will be evaluated at the same time!
Events can also be triggered to target specific entities:
```rust
use bevy_ecs::prelude::*;
#[derive(Event)]
struct Explode;
let mut world = World::new();
let entity = world.spawn_empty().id();
2024-10-09 15:39:29 +00:00
world.add_observer(|trigger: Trigger< Explode > , mut commands: Commands| {
Generalised ECS reactivity with Observers (#10839)
# Objective
- Provide an expressive way to register dynamic behavior in response to
ECS changes that is consistent with existing bevy types and traits as to
provide a smooth user experience.
- Provide a mechanism for immediate changes in response to events during
command application in order to facilitate improved query caching on the
path to relations.
## Solution
- A new fundamental ECS construct, the `Observer`; inspired by flec's
observers but adapted to better fit bevy's access patterns and rust's
type system.
---
## Examples
There are 3 main ways to register observers. The first is a "component
observer" that looks like this:
```rust
world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| {
let transform = query.get(trigger.entity()).unwrap();
});
```
The above code will spawn a new entity representing the observer that
will run it's callback whenever the `Transform` component is added to an
entity. This is a system-like function that supports dependency
injection for all the standard bevy types: `Query`, `Res`, `Commands`
etc. It also has a `Trigger` parameter that provides information about
the trigger such as the target entity, and the event being triggered.
Importantly these systems run during command application which is key
for their future use to keep ECS internals up to date. There are similar
events for `OnInsert` and `OnRemove`, and this will be expanded with
things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs.
Another way to register an observer is an "entity observer" that looks
like this:
```rust
world.entity_mut(entity).observe(|trigger: Trigger<Resize>| {
// ...
});
```
Entity observers run whenever an event of their type is triggered
targeting that specific entity. This type of observer will de-spawn
itself if the entity (or entities) it is observing is ever de-spawned so
as to not leave dangling observers.
Entity observers can also be spawned from deferred contexts such as
other observers, systems, or hooks using commands:
```rust
commands.entity(entity).observe(|trigger: Trigger<Resize>| {
// ...
});
```
Observers are not limited to in built event types, they can be used with
any type that implements `Event` (which has been extended to implement
Component). This means events can also carry data:
```rust
#[derive(Event)]
struct Resize { x: u32, y: u32 }
commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| {
let event = trigger.event();
// ...
});
// Will trigger the observer when commands are applied.
commands.trigger_targets(Resize { x: 10, y: 10 }, entity);
```
You can also trigger events that target more than one entity at a time:
```rust
commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]);
```
Additionally, Observers don't _need_ entity targets:
```rust
app.observe(|trigger: Trigger<Quit>| {
})
commands.trigger(Quit);
```
In these cases, `trigger.entity()` will be a placeholder.
Observers are actually just normal entities with an `ObserverState` and
`Observer` component! The `observe()` functions above are just shorthand
for:
```rust
world.spawn(Observer::new(|trigger: Trigger<Resize>| {});
```
This will spawn the `Observer` system and use an `on_add` hook to add
the `ObserverState` component.
Dynamic components and trigger types are also fully supported allowing
for runtime defined trigger types.
## Possible Follow-ups
1. Deprecate `RemovedComponents`, observers should fulfill all use cases
while being more flexible and performant.
2. Queries as entities: Swap queries to entities and begin using
observers listening to archetype creation triggers to keep their caches
in sync, this allows unification of `ObserverState` and `QueryState` as
well as unlocking several API improvements for `Query` and the
management of `QueryState`.
3. Trigger bubbling: For some UI use cases in particular users are
likely to want some form of bubbling for entity observers, this is
trivial to implement naively but ideally this includes an acceleration
structure to cache hierarchy traversals.
4. All kinds of other in-built trigger types.
5. Optimization; in order to not bloat the complexity of the PR I have
kept the implementation straightforward, there are several areas where
performance can be improved. The focus for this PR is to get the
behavior implemented and not incur a performance cost for users who
don't use observers.
I am leaving each of these to follow up PR's in order to keep each of
them reviewable as this already includes significant changes.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
println!("Entity {:?} goes BOOM!", trigger.entity());
commands.entity(trigger.entity()).despawn();
});
world.flush();
world.trigger_targets(Explode, entity);
```
2021-06-08 01:57:24 +00:00
[bevy]: https://bevyengine.org/