bevy/crates/bevy_time/src/stopwatch.rs

206 lines
5.9 KiB
Rust
Raw Normal View History

add `#[reflect(Default)]` to create default value for reflected types (#3733) ### Problem It currently isn't possible to construct the default value of a reflected type. Because of that, it isn't possible to use `add_component` of `ReflectComponent` to add a new component to an entity because you can't know what the initial value should be. ### Solution 1. add `ReflectDefault` type ```rust #[derive(Clone)] pub struct ReflectDefault { default: fn() -> Box<dyn Reflect>, } impl ReflectDefault { pub fn default(&self) -> Box<dyn Reflect> { (self.default)() } } impl<T: Reflect + Default> FromType<T> for ReflectDefault { fn from_type() -> Self { ReflectDefault { default: || Box::new(T::default()), } } } ``` 2. add `#[reflect(Default)]` to all component types that implement `Default` and are user facing (so not `ComputedSize`, `CubemapVisibleEntities` etc.) This makes it possible to add the default value of a component to an entity without any compile-time information: ```rust fn main() { let mut app = App::new(); app.register_type::<Camera>(); let type_registry = app.world.get_resource::<TypeRegistry>().unwrap(); let type_registry = type_registry.read(); let camera_registration = type_registry.get(std::any::TypeId::of::<Camera>()).unwrap(); let reflect_default = camera_registration.data::<ReflectDefault>().unwrap(); let reflect_component = camera_registration .data::<ReflectComponent>() .unwrap() .clone(); let default = reflect_default.default(); drop(type_registry); let entity = app.world.spawn().id(); reflect_component.add_component(&mut app.world, entity, &*default); let camera = app.world.entity(entity).get::<Camera>().unwrap(); dbg!(&camera); } ``` ### Open questions - should we have `ReflectDefault` or `ReflectFromWorld` or both?
2022-05-03 19:20:13 +00:00
use bevy_reflect::prelude::*;
use bevy_reflect::Reflect;
use bevy_utils::Duration;
/// A Stopwatch is a struct that track elapsed time when started.
///
/// # Examples
///
/// ```
/// # use bevy_time::*;
/// use std::time::Duration;
/// let mut stopwatch = Stopwatch::new();
/// assert_eq!(stopwatch.elapsed_secs(), 0.0);
2021-04-16 19:13:08 +00:00
///
/// stopwatch.tick(Duration::from_secs_f32(1.0)); // tick one second
/// assert_eq!(stopwatch.elapsed_secs(), 1.0);
2021-04-16 19:13:08 +00:00
///
/// stopwatch.pause();
/// stopwatch.tick(Duration::from_secs_f32(1.0)); // paused stopwatches don't tick
/// assert_eq!(stopwatch.elapsed_secs(), 1.0);
2021-04-16 19:13:08 +00:00
///
/// stopwatch.reset(); // reset the stopwatch
/// assert!(stopwatch.paused());
/// assert_eq!(stopwatch.elapsed_secs(), 0.0);
/// ```
bevy_reflect: `FromReflect` Ergonomics Implementation (#6056) # Objective **This implementation is based on https://github.com/bevyengine/rfcs/pull/59.** --- Resolves #4597 Full details and motivation can be found in the RFC, but here's a brief summary. `FromReflect` is a very powerful and important trait within the reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to be formed into Real ones (e.g., `Vec<i32>`, etc.). This mainly comes into play concerning deserialization, where the reflection deserializers both return a `Box<dyn Reflect>` that almost always contain one of these Dynamic representations of a Real type. To convert this to our Real type, we need to use `FromReflect`. It also sneaks up in other ways. For example, it's a required bound for `T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`. It's also required by all fields of an enum as it's used as part of the `Reflect::apply` implementation. So in other words, much like `GetTypeRegistration` and `Typed`, it is very much a core reflection trait. The problem is that it is not currently treated like a core trait and is not automatically derived alongside `Reflect`. This makes using it a bit cumbersome and easy to forget. ## Solution Automatically derive `FromReflect` when deriving `Reflect`. Users can then choose to opt-out if needed using the `#[reflect(from_reflect = false)]` attribute. ```rust #[derive(Reflect)] struct Foo; #[derive(Reflect)] #[reflect(from_reflect = false)] struct Bar; fn test<T: FromReflect>(value: T) {} test(Foo); // <-- OK test(Bar); // <-- Panic! Bar does not implement trait `FromReflect` ``` #### `ReflectFromReflect` This PR also automatically adds the `ReflectFromReflect` (introduced in #6245) registration to the derived `GetTypeRegistration` impl— if the type hasn't opted out of `FromReflect` of course. <details> <summary><h4>Improved Deserialization</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. And since we can do all the above, we might as well improve deserialization. We can now choose to deserialize into a Dynamic type or automatically convert it using `FromReflect` under the hood. `[Un]TypedReflectDeserializer::new` will now perform the conversion and return the `Box`'d Real type. `[Un]TypedReflectDeserializer::new_dynamic` will work like what we have now and simply return the `Box`'d Dynamic type. ```rust // Returns the Real type let reflect_deserializer = UntypedReflectDeserializer::new(&registry); let mut deserializer = ron::de::Deserializer::from_str(input)?; let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // Returns the Dynamic type let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry); let mut deserializer = ron::de::Deserializer::from_str(input)?; let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` </details> --- ## Changelog * `FromReflect` is now automatically derived within the `Reflect` derive macro * This includes auto-registering `ReflectFromReflect` in the derived `GetTypeRegistration` impl * ~~Renamed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped** * ~~Changed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to automatically convert the deserialized output using `FromReflect`~~ **Descoped** ## Migration Guide * `FromReflect` is now automatically derived within the `Reflect` derive macro. Items with both derives will need to remove the `FromReflect` one. ```rust // OLD #[derive(Reflect, FromReflect)] struct Foo; // NEW #[derive(Reflect)] struct Foo; ``` If using a manual implementation of `FromReflect` and the `Reflect` derive, users will need to opt-out of the automatic implementation. ```rust // OLD #[derive(Reflect)] struct Foo; impl FromReflect for Foo {/* ... */} // NEW #[derive(Reflect)] #[reflect(from_reflect = false)] struct Foo; impl FromReflect for Foo {/* ... */} ``` <details> <summary><h4>Removed Migrations</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. * The reflect deserializers now perform a `FromReflect` conversion internally. The expected output of `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` is no longer a Dynamic (e.g., `DynamicList`), but its Real counterpart (e.g., `Vec<i32>`). ```rust let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry); let mut deserializer = ron::de::Deserializer::from_str(input)?; // OLD let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // NEW let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` Alternatively, if this behavior isn't desired, use the `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic` methods instead: ```rust // OLD let reflect_deserializer = UntypedReflectDeserializer::new(&registry); // NEW let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry); ``` </details> --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-29 01:31:34 +00:00
#[derive(Clone, Debug, Default, PartialEq, Eq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Deserialize, serde::Serialize))]
add `#[reflect(Default)]` to create default value for reflected types (#3733) ### Problem It currently isn't possible to construct the default value of a reflected type. Because of that, it isn't possible to use `add_component` of `ReflectComponent` to add a new component to an entity because you can't know what the initial value should be. ### Solution 1. add `ReflectDefault` type ```rust #[derive(Clone)] pub struct ReflectDefault { default: fn() -> Box<dyn Reflect>, } impl ReflectDefault { pub fn default(&self) -> Box<dyn Reflect> { (self.default)() } } impl<T: Reflect + Default> FromType<T> for ReflectDefault { fn from_type() -> Self { ReflectDefault { default: || Box::new(T::default()), } } } ``` 2. add `#[reflect(Default)]` to all component types that implement `Default` and are user facing (so not `ComputedSize`, `CubemapVisibleEntities` etc.) This makes it possible to add the default value of a component to an entity without any compile-time information: ```rust fn main() { let mut app = App::new(); app.register_type::<Camera>(); let type_registry = app.world.get_resource::<TypeRegistry>().unwrap(); let type_registry = type_registry.read(); let camera_registration = type_registry.get(std::any::TypeId::of::<Camera>()).unwrap(); let reflect_default = camera_registration.data::<ReflectDefault>().unwrap(); let reflect_component = camera_registration .data::<ReflectComponent>() .unwrap() .clone(); let default = reflect_default.default(); drop(type_registry); let entity = app.world.spawn().id(); reflect_component.add_component(&mut app.world, entity, &*default); let camera = app.world.entity(entity).get::<Camera>().unwrap(); dbg!(&camera); } ``` ### Open questions - should we have `ReflectDefault` or `ReflectFromWorld` or both?
2022-05-03 19:20:13 +00:00
#[reflect(Default)]
pub struct Stopwatch {
elapsed: Duration,
paused: bool,
}
impl Stopwatch {
/// Create a new unpaused `Stopwatch` with no elapsed time.
///
/// # Examples
/// ```
/// # use bevy_time::*;
/// let stopwatch = Stopwatch::new();
/// assert_eq!(stopwatch.elapsed_secs(), 0.0);
/// assert_eq!(stopwatch.paused(), false);
/// ```
pub fn new() -> Self {
Default::default()
}
/// Returns the elapsed time since the last [`reset`](Stopwatch::reset)
/// of the stopwatch.
///
/// # Examples
/// ```
/// # use bevy_time::*;
/// use std::time::Duration;
/// let mut stopwatch = Stopwatch::new();
/// stopwatch.tick(Duration::from_secs(1));
/// assert_eq!(stopwatch.elapsed(), Duration::from_secs(1));
/// ```
///
/// # See Also
///
/// [`elapsed_secs`](Stopwatch::elapsed_secs) - if an `f32` value is desirable instead.
/// [`elapsed_secs_f64`](Stopwatch::elapsed_secs_f64) - if an `f64` is desirable instead.
#[inline]
pub fn elapsed(&self) -> Duration {
self.elapsed
}
/// Returns the elapsed time since the last [`reset`](Stopwatch::reset)
/// of the stopwatch, in seconds.
///
/// # Examples
/// ```
/// # use bevy_time::*;
/// use std::time::Duration;
/// let mut stopwatch = Stopwatch::new();
/// stopwatch.tick(Duration::from_secs(1));
/// assert_eq!(stopwatch.elapsed_secs(), 1.0);
/// ```
///
/// # See Also
///
/// [`elapsed`](Stopwatch::elapsed) - if a `Duration` is desirable instead.
/// [`elapsed_secs_f64`](Stopwatch::elapsed_secs_f64) - if an `f64` is desirable instead.
#[inline]
pub fn elapsed_secs(&self) -> f32 {
self.elapsed().as_secs_f32()
}
/// Returns the elapsed time since the last [`reset`](Stopwatch::reset)
/// of the stopwatch, in seconds, as f64.
///
/// # See Also
///
/// [`elapsed`](Stopwatch::elapsed) - if a `Duration` is desirable instead.
/// [`elapsed_secs`](Stopwatch::elapsed_secs) - if an `f32` is desirable instead.
#[inline]
pub fn elapsed_secs_f64(&self) -> f64 {
self.elapsed().as_secs_f64()
}
/// Sets the elapsed time of the stopwatch.
///
/// # Examples
/// ```
/// # use bevy_time::*;
/// use std::time::Duration;
/// let mut stopwatch = Stopwatch::new();
/// stopwatch.set_elapsed(Duration::from_secs_f32(1.0));
/// assert_eq!(stopwatch.elapsed_secs(), 1.0);
/// ```
#[inline]
pub fn set_elapsed(&mut self, time: Duration) {
self.elapsed = time;
}
/// Advance the stopwatch by `delta` seconds.
/// If the stopwatch is paused, ticking will not have any effect
/// on elapsed time.
///
/// # Examples
/// ```
/// # use bevy_time::*;
/// use std::time::Duration;
/// let mut stopwatch = Stopwatch::new();
/// stopwatch.tick(Duration::from_secs_f32(1.5));
/// assert_eq!(stopwatch.elapsed_secs(), 1.5);
/// ```
pub fn tick(&mut self, delta: Duration) -> &Self {
if !self.paused() {
self.elapsed += delta;
}
self
}
/// Pauses the stopwatch. Any call to [`tick`](Stopwatch::tick) while
/// paused will not have any effect on the elapsed time.
///
/// # Examples
/// ```
/// # use bevy_time::*;
/// use std::time::Duration;
/// let mut stopwatch = Stopwatch::new();
/// stopwatch.pause();
/// stopwatch.tick(Duration::from_secs_f32(1.5));
/// assert!(stopwatch.paused());
/// assert_eq!(stopwatch.elapsed_secs(), 0.0);
/// ```
#[inline]
pub fn pause(&mut self) {
self.paused = true;
}
/// Unpauses the stopwatch. Resume the effect of ticking on elapsed time.
///
/// # Examples
/// ```
/// # use bevy_time::*;
/// use std::time::Duration;
/// let mut stopwatch = Stopwatch::new();
/// stopwatch.pause();
/// stopwatch.tick(Duration::from_secs_f32(1.0));
/// stopwatch.unpause();
/// stopwatch.tick(Duration::from_secs_f32(1.0));
/// assert!(!stopwatch.paused());
/// assert_eq!(stopwatch.elapsed_secs(), 1.0);
/// ```
#[inline]
pub fn unpause(&mut self) {
self.paused = false;
}
/// Returns `true` if the stopwatch is paused.
///
/// # Examples
/// ```
/// # use bevy_time::*;
/// let mut stopwatch = Stopwatch::new();
/// assert!(!stopwatch.paused());
/// stopwatch.pause();
/// assert!(stopwatch.paused());
/// stopwatch.unpause();
/// assert!(!stopwatch.paused());
/// ```
#[inline]
pub fn paused(&self) -> bool {
self.paused
}
/// Resets the stopwatch. The reset doesn't affect the paused state of the stopwatch.
///
/// # Examples
/// ```
/// # use bevy_time::*;
/// use std::time::Duration;
/// let mut stopwatch = Stopwatch::new();
/// stopwatch.tick(Duration::from_secs_f32(1.5));
/// stopwatch.reset();
/// assert_eq!(stopwatch.elapsed_secs(), 0.0);
/// ```
#[inline]
pub fn reset(&mut self) {
self.elapsed = Default::default();
}
}