bevy/crates/bevy_ecs/src/traversal.rs

33 lines
1.5 KiB
Rust
Raw Normal View History

Minimal Bubbling Observers (#13991) # Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-07-15 13:39:41 +00:00
//! A trait for components that let you traverse the ECS.
use crate::{entity::Entity, query::ReadOnlyQueryData};
Minimal Bubbling Observers (#13991) # Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-07-15 13:39:41 +00:00
/// A component that can point to another entity, and which can be used to define a path through the ECS.
///
/// Traversals are used to [specify the direction] of [event propagation] in [observers].
/// The default query is `()`.
Minimal Bubbling Observers (#13991) # Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-07-15 13:39:41 +00:00
///
/// Infinite loops are possible, and are not checked for. While looping can be desirable in some contexts
/// (for example, an observer that triggers itself multiple times before stopping), following an infinite
/// traversal loop without an eventual exit will cause your application to hang. Each implementer of `Traversal`
Minimal Bubbling Observers (#13991) # Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-07-15 13:39:41 +00:00
/// for documenting possible looping behavior, and consumers of those implementations are responsible for
/// avoiding infinite loops in their code.
///
Window picking (#16103) # Objective On the web, it's common to attach observers to windows. As @viridia has discovered, this can be quite a nice paradigm in bevy as well when applied to observers. The changes here are intended to make this possible. + Adds a new default picking back-end as part to the core picking plugin (which can be disabled) that causes pointers on windows to treat the window entity as the final hit, behind everything else. This means clicking empty space now dispatches normal picking events to the window, and is especially nice for drag-and-drop functionality. + Adds a new traversal type, specific to picking events, that causes them to bubble up to the window entity after they reach the root of the hierarchy. ## Solution The window picking back-end is extremely simple, but the bubbling changes are much more complex, since they require doing a different traversal depending on the picking event. To achieve this, `Traversal` has been made generic over an associated sized data type `D`. Observer bounds have been changed such that `Event::Traversal<D>` is required for `Trigger<D>`. A blanket implementation has been added for `()` and `Parent` that preserves the existing functionality. A new `PointerTraversal` traversal has been implemented, with a blanket implementation for `Traversal<Pointer<E>>`. It is still possible to use `Parent` as the traversal for any event, because of the blanket implementation. It is now possible for users to add other custom traversals, which read event data during traversal. ## Testing I tested these changes locally on some picking UI prototypes I have been playing with. I also tested them on the picking examples. --------- Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2024-12-05 21:14:39 +00:00
/// Traversals may be parameterized with additional data. For example, in observer event propagation, the
/// parameter `D` is the event type given in `Trigger<E>`. This allows traversal to differ depending on event
/// data.
///
Minimal Bubbling Observers (#13991) # Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-07-15 13:39:41 +00:00
/// [specify the direction]: crate::event::Event::Traversal
/// [event propagation]: crate::observer::Trigger::propagate
/// [observers]: crate::observer::Observer
Window picking (#16103) # Objective On the web, it's common to attach observers to windows. As @viridia has discovered, this can be quite a nice paradigm in bevy as well when applied to observers. The changes here are intended to make this possible. + Adds a new default picking back-end as part to the core picking plugin (which can be disabled) that causes pointers on windows to treat the window entity as the final hit, behind everything else. This means clicking empty space now dispatches normal picking events to the window, and is especially nice for drag-and-drop functionality. + Adds a new traversal type, specific to picking events, that causes them to bubble up to the window entity after they reach the root of the hierarchy. ## Solution The window picking back-end is extremely simple, but the bubbling changes are much more complex, since they require doing a different traversal depending on the picking event. To achieve this, `Traversal` has been made generic over an associated sized data type `D`. Observer bounds have been changed such that `Event::Traversal<D>` is required for `Trigger<D>`. A blanket implementation has been added for `()` and `Parent` that preserves the existing functionality. A new `PointerTraversal` traversal has been implemented, with a blanket implementation for `Traversal<Pointer<E>>`. It is still possible to use `Parent` as the traversal for any event, because of the blanket implementation. It is now possible for users to add other custom traversals, which read event data during traversal. ## Testing I tested these changes locally on some picking UI prototypes I have been playing with. I also tested them on the picking examples. --------- Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2024-12-05 21:14:39 +00:00
pub trait Traversal<D: ?Sized>: ReadOnlyQueryData {
Minimal Bubbling Observers (#13991) # Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-07-15 13:39:41 +00:00
/// Returns the next entity to visit.
Window picking (#16103) # Objective On the web, it's common to attach observers to windows. As @viridia has discovered, this can be quite a nice paradigm in bevy as well when applied to observers. The changes here are intended to make this possible. + Adds a new default picking back-end as part to the core picking plugin (which can be disabled) that causes pointers on windows to treat the window entity as the final hit, behind everything else. This means clicking empty space now dispatches normal picking events to the window, and is especially nice for drag-and-drop functionality. + Adds a new traversal type, specific to picking events, that causes them to bubble up to the window entity after they reach the root of the hierarchy. ## Solution The window picking back-end is extremely simple, but the bubbling changes are much more complex, since they require doing a different traversal depending on the picking event. To achieve this, `Traversal` has been made generic over an associated sized data type `D`. Observer bounds have been changed such that `Event::Traversal<D>` is required for `Trigger<D>`. A blanket implementation has been added for `()` and `Parent` that preserves the existing functionality. A new `PointerTraversal` traversal has been implemented, with a blanket implementation for `Traversal<Pointer<E>>`. It is still possible to use `Parent` as the traversal for any event, because of the blanket implementation. It is now possible for users to add other custom traversals, which read event data during traversal. ## Testing I tested these changes locally on some picking UI prototypes I have been playing with. I also tested them on the picking examples. --------- Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2024-12-05 21:14:39 +00:00
fn traverse(item: Self::Item<'_>, data: &D) -> Option<Entity>;
Minimal Bubbling Observers (#13991) # Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-07-15 13:39:41 +00:00
}
Window picking (#16103) # Objective On the web, it's common to attach observers to windows. As @viridia has discovered, this can be quite a nice paradigm in bevy as well when applied to observers. The changes here are intended to make this possible. + Adds a new default picking back-end as part to the core picking plugin (which can be disabled) that causes pointers on windows to treat the window entity as the final hit, behind everything else. This means clicking empty space now dispatches normal picking events to the window, and is especially nice for drag-and-drop functionality. + Adds a new traversal type, specific to picking events, that causes them to bubble up to the window entity after they reach the root of the hierarchy. ## Solution The window picking back-end is extremely simple, but the bubbling changes are much more complex, since they require doing a different traversal depending on the picking event. To achieve this, `Traversal` has been made generic over an associated sized data type `D`. Observer bounds have been changed such that `Event::Traversal<D>` is required for `Trigger<D>`. A blanket implementation has been added for `()` and `Parent` that preserves the existing functionality. A new `PointerTraversal` traversal has been implemented, with a blanket implementation for `Traversal<Pointer<E>>`. It is still possible to use `Parent` as the traversal for any event, because of the blanket implementation. It is now possible for users to add other custom traversals, which read event data during traversal. ## Testing I tested these changes locally on some picking UI prototypes I have been playing with. I also tested them on the picking examples. --------- Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2024-12-05 21:14:39 +00:00
impl<D> Traversal<D> for () {
fn traverse(_: Self::Item<'_>, _data: &D) -> Option<Entity> {
Minimal Bubbling Observers (#13991) # Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-07-15 13:39:41 +00:00
None
}
}