bevy/CREDITS.md

39 lines
2.3 KiB
Markdown
Raw Permalink Normal View History

# Bevy Credits
## Adapted Code
2020-07-12 17:54:40 +00:00
* hecs
* legion_transform
* wgpu-rs examples
Cleanup of Markdown Files and add CI Checking (#1463) I have run the VSCode Extension [markdownlint](https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint) on all Markdown Files in the Repo. The provided Rules are documented here: https://github.com/DavidAnson/markdownlint/blob/v0.23.1/doc/Rules.md Rules I didn't follow/fix: * MD024/no-duplicate-heading * Changelog: Here Heading will always repeat. * Examples Readme: Platform-specific documentation should be symmetrical. * MD025/single-title * MD026/no-trailing-punctuation * Caused by the ! in "Hello, World!". * MD033/no-inline-html * The plugins_guidlines file does need HTML, so the shown badges aren't downscaled too much. * ~~MD036/no-emphasis-as-heading:~~ * ~~This Warning only Appears in the Github Issue Templates and can be ignored.~~ * ~~MD041/first-line-heading~~ * ~~Only appears in the Readme for the AlienCake example Assets, which is unimportant.~~ --- I also sorted the Examples in the Readme and Cargo.toml in this order/Priority: * Topic/Folder * Introductionary Examples * Alphabetical Order The explanation for each case, where it isn't Alphabetical : * Diagnostics * log_diagnostics: The usage of inbuild Diagnostics is more important than creating your own. * ECS (Entity Component System) * ecs_guide: The guide should be read, before diving into other Features. * Reflection * reflection: Basic Explanation should be read, before more advanced Topics. * WASM Examples * hello_wasm: It's "Hello, World!".
2021-02-22 04:50:05 +00:00
* yaks: ArchetypeSet, borrowed some ideas from their scheduler implementation
2020-05-22 00:21:33 +00:00
## Inspiration
2020-07-12 17:54:40 +00:00
* game engines: amethyst, coffee
Cleanup of Markdown Files and add CI Checking (#1463) I have run the VSCode Extension [markdownlint](https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint) on all Markdown Files in the Repo. The provided Rules are documented here: https://github.com/DavidAnson/markdownlint/blob/v0.23.1/doc/Rules.md Rules I didn't follow/fix: * MD024/no-duplicate-heading * Changelog: Here Heading will always repeat. * Examples Readme: Platform-specific documentation should be symmetrical. * MD025/single-title * MD026/no-trailing-punctuation * Caused by the ! in "Hello, World!". * MD033/no-inline-html * The plugins_guidlines file does need HTML, so the shown badges aren't downscaled too much. * ~~MD036/no-emphasis-as-heading:~~ * ~~This Warning only Appears in the Github Issue Templates and can be ignored.~~ * ~~MD041/first-line-heading~~ * ~~Only appears in the Readme for the AlienCake example Assets, which is unimportant.~~ --- I also sorted the Examples in the Readme and Cargo.toml in this order/Priority: * Topic/Folder * Introductionary Examples * Alphabetical Order The explanation for each case, where it isn't Alphabetical : * Diagnostics * log_diagnostics: The usage of inbuild Diagnostics is more important than creating your own. * ECS (Entity Component System) * ecs_guide: The guide should be read, before diving into other Features. * Reflection * reflection: Basic Explanation should be read, before more advanced Topics. * WASM Examples * hello_wasm: It's "Hello, World!".
2021-02-22 04:50:05 +00:00
* ecs: legion, shipyard, yaks
2020-06-04 02:00:19 +00:00
## Assets
* Generic RPG Pack (CC0 license) by [Bakudas](https://twitter.com/bakudas) and [Gabe Fern](https://twitter.com/_Gabrielfer)
Cleanup of Markdown Files and add CI Checking (#1463) I have run the VSCode Extension [markdownlint](https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint) on all Markdown Files in the Repo. The provided Rules are documented here: https://github.com/DavidAnson/markdownlint/blob/v0.23.1/doc/Rules.md Rules I didn't follow/fix: * MD024/no-duplicate-heading * Changelog: Here Heading will always repeat. * Examples Readme: Platform-specific documentation should be symmetrical. * MD025/single-title * MD026/no-trailing-punctuation * Caused by the ! in "Hello, World!". * MD033/no-inline-html * The plugins_guidlines file does need HTML, so the shown badges aren't downscaled too much. * ~~MD036/no-emphasis-as-heading:~~ * ~~This Warning only Appears in the Github Issue Templates and can be ignored.~~ * ~~MD041/first-line-heading~~ * ~~Only appears in the Readme for the AlienCake example Assets, which is unimportant.~~ --- I also sorted the Examples in the Readme and Cargo.toml in this order/Priority: * Topic/Folder * Introductionary Examples * Alphabetical Order The explanation for each case, where it isn't Alphabetical : * Diagnostics * log_diagnostics: The usage of inbuild Diagnostics is more important than creating your own. * ECS (Entity Component System) * ecs_guide: The guide should be read, before diving into other Features. * Reflection * reflection: Basic Explanation should be read, before more advanced Topics. * WASM Examples * hello_wasm: It's "Hello, World!".
2021-02-22 04:50:05 +00:00
* Environment maps (`.hdr` files) from [HDRIHaven](https://hdrihaven.com) (CC0 license)
* Alien from [Kenney's Space Kit](https://www.kenney.nl/assets/space-kit) (CC0 1.0 Universal)
* Cake from [Kenney's Food Kit](https://www.kenney.nl/assets/food-kit) (CC0 1.0 Universal)
* Ground tile from [Kenney's Tower Defense Kit](https://www.kenney.nl/assets/tower-defense-kit) (CC0 1.0 Universal)
* Game icons from [Kenney's Game Icons](https://www.kenney.nl/assets/game-icons) (CC0 1.0 Universal)
* Space ships from [Kenny's Simple Space Kit](https://www.kenney.nl/assets/simple-space) (CC0 1.0 Universal)
UI Texture 9 slice (#11600) > Follow up to #10588 > Closes #11749 (Supersedes #11756) Enable Texture slicing for the following UI nodes: - `ImageBundle` - `ButtonBundle` <img width="739" alt="Screenshot 2024-01-29 at 13 57 43" src="https://github.com/bevyengine/bevy/assets/26703856/37675681-74eb-4689-ab42-024310cf3134"> I also added a collection of `fantazy-ui-borders` from [Kenney's](www.kenney.nl) assets, with the appropriate license (CC). If it's a problem I can use the same textures as the `sprite_slice` example # Work done Added the `ImageScaleMode` component to the targetted bundles, most of the logic is directly reused from `bevy_sprite`. The only additional internal component is the UI specific `ComputedSlices`, which does the same thing as its spritee equivalent but adapted to UI code. Again the slicing is not compatible with `TextureAtlas`, it's something I need to tackle more deeply in the future # Fixes * [x] I noticed that `TextureSlicer::compute_slices` could infinitely loop if the border was larger that the image half extents, now an error is triggered and the texture will fallback to being stretched * [x] I noticed that when using small textures with very small *tiling* options we could generate hundred of thousands of slices. Now I set a minimum size of 1 pixel per slice, which is already ridiculously small, and a warning will be sent at runtime when slice count goes above 1000 * [x] Sprite slicing with `flip_x` or `flip_y` would give incorrect results, correct flipping is now supported to both sprites and ui image nodes thanks to @odecay observation # GPU Alternative I create a separate branch attempting to implementing 9 slicing and tiling directly through the `ui.wgsl` fragment shader. It works but requires sending more data to the GPU: - slice border - tiling factors And more importantly, the actual quad *scale* which is hard to put in the shader with the current code, so that would be for a later iteration
2024-02-07 20:07:53 +00:00
* UI borders from [Kenny's Fantasy UI Borders Kit](https://kenney.nl/assets/fantasy-ui-borders) (CC0 1.0 Universal)
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
* glTF animated fox from [glTF Sample Models][fox]
* Low poly fox [by PixelMannen] (CC0 1.0 Universal)
* Rigging and animation [by @tomkranis on Sketchfab] ([CC-BY 4.0])
* FiraMono by The Mozilla Foundation and Telefonica S.A (SIL Open Font License, Version 1.1: assets/fonts/FiraMono-LICENSE)
* Barycentric from [mk_bary_gltf](https://github.com/komadori/mk_bary_gltf) (MIT OR Apache-2.0)
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
* `MorphStressTest.gltf`, [MorphStressTest] ([CC-BY 4.0] by Analytical Graphics, Inc, Model and textures by Ed Mackey)
* Mysterious acoustic guitar music sample from [florianreichelt](https://freesound.org/people/florianreichelt/sounds/412429/) (CC0 license)
* Epic orchestra music sample, modified to loop, from [Migfus20](https://freesound.org/people/Migfus20/sounds/560449/) ([CC BY 4.0 DEED](https://creativecommons.org/licenses/by/4.0/))
Add morph targets (#8158) # Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
[MorphStressTest]: https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/MorphStressTest
[fox]: https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/Fox
[by PixelMannen]: https://opengameart.org/content/fox-and-shiba
[by @tomkranis on Sketchfab]: https://sketchfab.com/models/371dea88d7e04a76af5763f2a36866bc
[CC-BY 4.0]: https://creativecommons.org/licenses/by/4.0/