bat/tests/syntax-tests/source/Verilog/div_pipelined.v
2021-06-01 22:36:56 +02:00

172 lines
7.2 KiB
Verilog
Vendored

// Copyright 2018 Schuyler Eldridge
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implements a fixed-point parameterized pipelined division
// operation. Outputs are expected to be on range [-1,1), techincally
// [-1,2^(BITS-1)-1/2^(BITS-1)]. There is no convergent rounding.
//
// [TODO] Implement optional convergent rounding and some form of
// variable output binary point placement. There are arguments in
// these changes that make sense (specifically, adding an additional
// bit results in a gain of one value when all the other 2^6 values
// greater than 1 aren't used). Other improvements that are needed: 1)
// quotient_gen is getting smaller by one bit in every stage, it would
// make more sense to generate this as such, 2) there's some weird
// initial behavior after rst_n is deasserted, you get weird output on
// the quotient line for a number of cycles.
//
// [TODO] This doesn't exactly behave as expected if you specify
// different BITS and STAGES parameters (which for a functional
// module, should be implemented). Note, that this technically works,
// but needs more investigation to fully understand its properties.
`timescale 1ns / 1ps
module div_pipelined
(
input clk,
input rst_n,
input start,
input [BITS-1:0] dividend,
input [BITS-1:0] divisor,
output reg data_valid,
output reg div_by_zero,
output reg [STAGES-1:0] quotient
// output reg [7:0] quotient_correct
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BITS = 8,
STAGES = BITS;
// y = a/bQ
reg [STAGES-1:0] start_gen, negative_quotient_gen, div_by_zero_gen;
reg [BITS*2*(STAGES-1)-1:0] dividend_gen, divisor_gen, quotient_gen;
wire [BITS-1:0] pad_dividend;
wire [BITS-2:0] pad_divisor;
assign pad_dividend = 0;
assign pad_divisor = 0;
// sign conversion stage
always @ (posedge clk or negedge rst_n)
begin
if (!rst_n) begin
div_by_zero_gen[0] <= 0;
start_gen[0] <=0;
negative_quotient_gen[0] <= 0;
dividend_gen[BITS*2-1:0] <= 0;
divisor_gen[BITS*2-1:0] <= 0; end
else begin
div_by_zero_gen[0] <= (divisor == 0);
start_gen[0] <= start;
negative_quotient_gen[0] <= dividend[BITS-1] ^ divisor[BITS-1];
dividend_gen[BITS*2-1:0] <= (dividend[BITS-1]) ? ~{dividend,pad_dividend} + 1 : {dividend,pad_dividend};
divisor_gen[BITS*2-1:0] <= (divisor [BITS-1]) ? ~{1'b1,divisor, pad_divisor} + 1 : {1'b0,divisor, pad_divisor};
end
end
// first computation stage
always @ (posedge clk or negedge rst_n) begin
if (!rst_n) begin
div_by_zero_gen[1] <= 0;
start_gen[1] <= 0;
negative_quotient_gen[1] <= 0;
divisor_gen[BITS*2*2-1:BITS*2] <= 0;
quotient_gen[BITS*2-1:0] <= 0;
dividend_gen[BITS*2*2-1:BITS*2] <= 0;
end
else begin
div_by_zero_gen[1] <= div_by_zero_gen[0];
start_gen[1] <= start_gen[0];
negative_quotient_gen[1] <= negative_quotient_gen[0];
divisor_gen[BITS*2*2-1:BITS*2] <= divisor_gen[BITS*2-1:0] >> 1;
if ( dividend_gen[BITS*2-1:0] >= divisor_gen[BITS*2-1:0]) begin
quotient_gen[BITS*2-1:0] <= 1 << STAGES - 2;
dividend_gen[BITS*2*2-1:BITS*2] <= dividend_gen[BITS*2-1:0] - divisor_gen[BITS*2-1:0];
end
else begin
quotient_gen[BITS*2-1:0] <= 0;
dividend_gen[BITS*2*2-1:BITS*2] <= dividend_gen[BITS*2-1:0];
end
end // else: !if(!rst_n)
end // always @ (posedge clk)
generate
genvar i;
for (i = 1; i < STAGES - 2; i = i + 1) begin : pipeline
always @ (posedge clk or negedge rst_n) begin
if (!rst_n) begin
div_by_zero_gen[i+1] <= 0;
start_gen[i+1] <= 0;
negative_quotient_gen[i+1] <= 0;
divisor_gen[BITS*2*(i+2)-1:BITS*2*(i+1)] <= 0;
quotient_gen[BITS*2*(i+1)-1:BITS*2*i] <= 0;
dividend_gen[BITS*2*(i+2)-1:BITS*2*(i+1)] <= 0;
end
else begin
div_by_zero_gen[i+1] <= div_by_zero_gen[i];
start_gen[i+1] <= start_gen[i];
negative_quotient_gen[i+1] <= negative_quotient_gen[i];
divisor_gen[BITS*2*(i+2)-1:BITS*2*(i+1)] <= divisor_gen[BITS*2*(i+1)-1:BITS*2*i] >> 1;
if (dividend_gen[BITS*2*(i+1)-1:BITS*2*i] >= divisor_gen[BITS*2*(i+1)-1:BITS*2*i]) begin
quotient_gen[BITS*2*(i+1)-1:BITS*2*i] <= quotient_gen[BITS*2*i-1:BITS*2*(i-1)] | (1 << (STAGES-2-i));
dividend_gen[BITS*2*(i+2)-1:BITS*2*(i+1)] <= dividend_gen[BITS*2*(i+1)-1:BITS*2*i] - divisor_gen[BITS*2*(i+1)-1:BITS*2*i];
end
else begin
quotient_gen[BITS*2*(i+1)-1:BITS*2*i] <= quotient_gen[BITS*2*i-1:BITS*2*(i-1)];
dividend_gen[BITS*2*(i+2)-1:BITS*2*(i+1)] <= dividend_gen[BITS*2*(i+1)-1:BITS*2*i];
end
end // else: !if(!rst_n)
end // always @ (posedge clk or negedge rst_n)
end // block: pipeline
endgenerate
// last computation stage
always @ (posedge clk or negedge rst_n) begin
if (!rst_n) begin
div_by_zero_gen[STAGES-1] <= 0;
start_gen[STAGES-1] <= 0;
negative_quotient_gen[STAGES-1] <= 0;
quotient_gen[BITS*2*(STAGES-1)-1:BITS*2*(STAGES-2)] <= 0;
end
else begin
div_by_zero_gen[STAGES-1] <= div_by_zero_gen[STAGES-2];
start_gen[STAGES-1] <= start_gen[STAGES-2];
negative_quotient_gen[STAGES-1] <= negative_quotient_gen[STAGES-2];
if ( dividend_gen[BITS*2*(STAGES-1)-1:BITS*2*(STAGES-2)] >= divisor_gen[BITS*2*(STAGES-1)-1:BITS*2*(STAGES-2)] )
quotient_gen[BITS*2*(STAGES-1)-1:BITS*2*(STAGES-2)] <= quotient_gen[BITS*2*(STAGES-2)-1:BITS*2*(STAGES-3)] | 1;
else
quotient_gen[BITS*2*(STAGES-1)-1:BITS*2*(STAGES-2)] <= quotient_gen[BITS*2*(STAGES-2)-1:BITS*2*(STAGES-3)];
end // else: !if(!rst_n)
end // always @ (posedge clk)
// sign conversion stage
always @ (posedge clk or negedge rst_n) begin
if (!rst_n) begin
div_by_zero <= 0;
data_valid <= 0;
quotient <= 0;
end
else begin
div_by_zero <= div_by_zero_gen[STAGES-1];
data_valid <= start_gen[STAGES-1];
quotient <= (negative_quotient_gen[STAGES-1]) ? ~quotient_gen[BITS*2*(STAGES-1)-1:BITS*2*(STAGES-2)] + 1 : quotient_gen[BITS*2*(STAGES-1)-1:BITS*2*(STAGES-2)];
end
end
endmodule