Tone.js/Tone/control/CtrlMarkov.js
2018-03-05 12:25:33 -05:00

124 lines
3.5 KiB
JavaScript

define(["Tone/core/Tone"], function(Tone){
"use strict";
/**
* @class Tone.CtrlMarkov represents a Markov Chain where each call
* to Tone.CtrlMarkov.next will move to the next state. If the next
* state choice is an array, the next state is chosen randomly with
* even probability for all of the choices. For a weighted probability
* of the next choices, pass in an object with "state" and "probability" attributes.
* The probabilities will be normalized and then chosen. If no next options
* are given for the current state, the state will stay there.
* @extends {Tone}
* @example
* var chain = new Tone.CtrlMarkov({
* "beginning" : ["end", "middle"],
* "middle" : "end"
* });
* chain.value = "beginning";
* chain.next(); //returns "end" or "middle" with 50% probability
*
* @example
* var chain = new Tone.CtrlMarkov({
* "beginning" : [{"value" : "end", "probability" : 0.8},
* {"value" : "middle", "probability" : 0.2}],
* "middle" : "end"
* });
* chain.value = "beginning";
* chain.next(); //returns "end" with 80% probability or "middle" with 20%.
* @param {Object} values An object with the state names as the keys
* and the next state(s) as the values.
*/
Tone.CtrlMarkov = function(values, initial){
Tone.call(this);
/**
* The Markov values with states as the keys
* and next state(s) as the values.
* @type {Object}
*/
this.values = Tone.defaultArg(values, {});
/**
* The current state of the Markov values. The next
* state will be evaluated and returned when Tone.CtrlMarkov.next
* is invoked.
* @type {String}
*/
this.value = Tone.defaultArg(initial, Object.keys(this.values)[0]);
};
Tone.extend(Tone.CtrlMarkov);
/**
* Returns the next state of the Markov values.
* @return {String}
*/
Tone.CtrlMarkov.prototype.next = function(){
if (this.values.hasOwnProperty(this.value)){
var next = this.values[this.value];
if (Tone.isArray(next)){
var distribution = this._getProbDistribution(next);
var rand = Math.random();
var total = 0;
for (var i = 0; i < distribution.length; i++){
var dist = distribution[i];
if (rand > total && rand < total + dist){
var chosen = next[i];
if (Tone.isObject(chosen)){
this.value = chosen.value;
} else {
this.value = chosen;
}
}
total += dist;
}
} else {
this.value = next;
}
}
return this.value;
};
/**
* Choose randomly from an array weighted options in the form
* {"state" : string, "probability" : number} or an array of values
* @param {Array} options
* @return {Array} The randomly selected choice
* @private
*/
Tone.CtrlMarkov.prototype._getProbDistribution = function(options){
var distribution = [];
var total = 0;
var needsNormalizing = false;
for (var i = 0; i < options.length; i++){
var option = options[i];
if (Tone.isObject(option)){
needsNormalizing = true;
distribution[i] = option.probability;
} else {
distribution[i] = 1 / options.length;
}
total += distribution[i];
}
if (needsNormalizing){
//normalize the values
for (var j = 0; j < distribution.length; j++){
distribution[j] = distribution[j] / total;
}
}
return distribution;
};
/**
* Clean up
* @return {Tone.CtrlMarkov} this
*/
Tone.CtrlMarkov.prototype.dispose = function(){
this.values = null;
};
return Tone.CtrlMarkov;
});