import { Gain } from "../../core/context/Gain";
import { optionsFromArguments } from "../../core/util/Defaults";
import { readOnly } from "../../core/util/Interface";
import { AudioToGain } from "../../signal/AudioToGain";
import { Multiply } from "../../signal/Multiply";
import { Signal } from "../../signal/Signal";
import { Source } from "../Source";
import { Oscillator, OscillatorInterface, ToneOscillatorOptions, ToneOscillatorType } from "./Oscillator";
interface AMOscillatorOptions extends ToneOscillatorOptions {
harmonicity: Positive;
modulationType: ToneOscillatorType;
}
/**
* An amplitude modulated oscillator node. It is implemented with
* two oscillators, one which modulators the other's amplitude
* through a gain node.
*
*
* +-------------+ +----------+
* | Carrier Osc +>------> GainNode |
* +-------------+ | +--->Output
* +---> gain |
* +---------------+ | +----------+
* | Modulator Osc +>---+
* +---------------+
*
*
* @param frequency The starting frequency of the oscillator.
* @param type The type of the carrier oscillator.
* @param modulationType The type of the modulator oscillator.
* @example
* //a sine oscillator frequency-modulated by a square wave
* var fmOsc = new AMOscillator("Ab3", "sine", "square").toMaster().start();
*/
export class AMOscillator extends Source implements OscillatorInterface {
name = "AMOscillator";
/**
* The carrier oscillator
*/
private _carrier: Oscillator = new Oscillator({context : this.context });
/**
* The oscillator's frequency
*/
readonly frequency: Signal = this._carrier.frequency;
/**
* The detune control signal.
*/
readonly detune: Signal = this._carrier.detune;
/**
* The modulating oscillator
*/
private _modulator = new Oscillator({ context : this.context });
/**
* convert the -1,1 output to 0,1
*/
private _modulationScale = new AudioToGain({ context: this.context });
/**
* Harmonicity is the frequency ratio between the carrier and the modulator oscillators.
* A harmonicity of 1 gives both oscillators the same frequency.
* Harmonicity = 2 means a change of an octave.
* @example
* //pitch the modulator an octave below carrier
* synth.harmonicity.value = 0.5;
*/
readonly harmonicity: Signal = new Multiply({
context: this.context,
units: "positive",
});
/**
* the node where the modulation happens
*/
private _modulationNode = new Gain({
context: this.context,
});
constructor(options?: Partial);
constructor(frequency?: Frequency, type?: ToneOscillatorType, modulationType?: ToneOscillatorType);
constructor() {
super(optionsFromArguments(AMOscillator.getDefaults(), arguments, ["frequency", "type", "modulationType"]));
const options = optionsFromArguments(AMOscillator.getDefaults(), arguments, ["frequency", "type", "modulationType"]);
this._carrier.type = options.type;
this._modulator.type = options.modulationType;
this.frequency.setValueAtTime(options.frequency, 0);
this.detune.setValueAtTime(options.detune, 0);
this.harmonicity.setValueAtTime(options.harmonicity, 0);
// connections
this.frequency.chain(this.harmonicity, this._modulator.frequency);
this._modulator.chain(this._modulationScale, this._modulationNode.gain);
this._carrier.chain(this._modulationNode, this.output);
this.phase = options.phase;
readOnly(this, ["frequency", "detune", "harmonicity"]);
}
static getDefaults(): AMOscillatorOptions {
return Object.assign(Oscillator.getDefaults(), {
harmonicity: 1,
modulationType: "square",
});
}
/**
* start the oscillator
*/
protected _start(time: Seconds): void {
this._modulator.start(time);
this._carrier.start(time);
}
/**
* stop the oscillator
*/
protected _stop(time: Seconds): void {
this._modulator.stop(time);
this._carrier.stop(time);
}
/**
* restart the oscillator
*/
restart(time?: Time): this {
this._modulator.restart(time);
this._carrier.restart(time);
return this;
}
/**
* The type of the carrier oscillator
*/
get type(): ToneOscillatorType {
return this._carrier.type;
}
set type(type: ToneOscillatorType) {
this._carrier.type = type;
}
/**
* The oscillator type without the partialsCount appended to the end
* @example
* osc.type = 'sine2'
* osc.baseType //'sine'
* osc.partialCount = 2
*/
get baseType(): OscillatorType {
return this._carrier.baseType;
}
set baseType(baseType: OscillatorType) {
this._carrier.baseType = baseType;
}
/**
* 'partialCount' offers an alternative way to set the number of used partials.
* When partialCount is 0, the maximum number of partials are used when representing
* the waveform using the periodicWave. When 'partials' is set, this value is
* not settable, but equals the length of the partials array.
*/
get partialCount(): number {
return this._carrier.partialCount;
}
set partialCount(partialCount: number) {
this._carrier.partialCount = partialCount;
}
/**
* The type of the modulator oscillator
*/
get modulationType(): ToneOscillatorType {
return this._modulator.type;
}
set modulationType(type: ToneOscillatorType) {
this._modulator.type = type;
}
/**
* The phase of the oscillator in degrees.
*/
get phase(): Degrees {
return this._carrier.phase;
}
set phase(phase: Degrees) {
this._carrier.phase = phase;
this._modulator.phase = phase;
}
/**
* The partials of the carrier waveform. A partial represents
* the amplitude at a harmonic. The first harmonic is the
* fundamental frequency, the second is the octave and so on
* following the harmonic series.
* Setting this value will automatically set the type to "custom".
* The value is an empty array when the type is not "custom".
* @example
* osc.partials = [1, 0.2, 0.01];
*/
get partials(): number[] {
return this._carrier.partials;
}
set partials(partials: number[]) {
this._carrier.partials = partials;
}
/**
* Clean up.
*/
dispose(): this {
super.dispose();
this.frequency.dispose();
this.detune.dispose();
this.harmonicity.dispose();
this._carrier.dispose();
this._modulator.dispose();
this._modulationNode.dispose();
this._modulationScale.dispose();
return this;
}
}