define(["Tone/core/Tone", "Tone/signal/TickSignal", "Tone/core/TimelineState", "Tone/core/Emitter", "Tone/core/Context"], function (Tone) { "use strict"; /** * @class A sample accurate clock which provides a callback at the given rate. * While the callback is not sample-accurate (it is still susceptible to * loose JS timing), the time passed in as the argument to the callback * is precise. For most applications, it is better to use Tone.Transport * instead of the Clock by itself since you can synchronize multiple callbacks. * * @constructor * @extends {Tone.Emitter} * @param {function} callback The callback to be invoked with the time of the audio event * @param {Frequency} frequency The rate of the callback * @example * //the callback will be invoked approximately once a second * //and will print the time exactly once a second apart. * var clock = new Tone.Clock(function(time){ * console.log(time); * }, 1); */ Tone.Clock = function(){ var options = Tone.defaults(arguments, ["callback", "frequency"], Tone.Clock); Tone.Emitter.call(this); /** * The callback function to invoke at the scheduled tick. * @type {Function} */ this.callback = options.callback; /** * The next time the callback is scheduled. * @type {Number} * @private */ this._nextTick = 0; /** * The last state of the clock. * @type {State} * @private */ this._lastState = Tone.State.Stopped; /** * The rate the callback function should be invoked. * @type {BPM} * @signal */ this.frequency = new Tone.TickSignal(options.frequency, Tone.Type.Frequency); this._readOnly("frequency"); /** * The number of times the callback was invoked. Starts counting at 0 * and increments after the callback was invoked. * @type {Ticks} * @readOnly */ this.ticks = 0; /** * The state timeline * @type {Tone.TimelineState} * @private */ this._state = new Tone.TimelineState(Tone.State.Stopped); /** * The loop function bound to its context. * This is necessary to remove the event in the end. * @type {Function} * @private */ this._boundLoop = this._loop.bind(this); //bind a callback to the worker thread this.context.on("tick", this._boundLoop); }; Tone.extend(Tone.Clock, Tone.Emitter); /** * The defaults * @const * @type {Object} */ Tone.Clock.defaults = { "callback" : Tone.noOp, "frequency" : 1, }; /** * Returns the playback state of the source, either "started", "stopped" or "paused". * @type {Tone.State} * @readOnly * @memberOf Tone.Clock# * @name state */ Object.defineProperty(Tone.Clock.prototype, "state", { get : function(){ return this._state.getValueAtTime(this.now()); } }); /** * Start the clock at the given time. Optionally pass in an offset * of where to start the tick counter from. * @param {Time=} time The time the clock should start * @param {Ticks=} offset Where the tick counter starts counting from. * @return {Tone.Clock} this */ Tone.Clock.prototype.start = function(time, offset){ time = this.toSeconds(time); if (this._state.getValueAtTime(time) !== Tone.State.Started){ this._state.setStateAtTime(Tone.State.Started, time); this._state.get(time).offset = offset; } return this; }; /** * Stop the clock. Stopping the clock resets the tick counter to 0. * @param {Time} [time=now] The time when the clock should stop. * @returns {Tone.Clock} this * @example * clock.stop(); */ Tone.Clock.prototype.stop = function(time){ time = this.toSeconds(time); this._state.cancel(time); this._state.setStateAtTime(Tone.State.Stopped, time); return this; }; /** * Pause the clock. Pausing does not reset the tick counter. * @param {Time} [time=now] The time when the clock should stop. * @returns {Tone.Clock} this */ Tone.Clock.prototype.pause = function(time){ time = this.toSeconds(time); if (this._state.getValueAtTime(time) === Tone.State.Started){ this._state.setStateAtTime(Tone.State.Paused, time); } return this; }; /** * The scheduling loop. * @private */ Tone.Clock.prototype._loop = function(){ //the end of the update interval var endTime = this.now() + this.context.updateInterval; //the current event at the time of the loop var event = this._state.get(endTime); if (event){ //state change events if (event.state !== this._lastState){ this._lastState = event.state; switch(event.state){ case Tone.State.Started: if (!Tone.isUndef(event.offset)){ this.ticks = event.offset; } this._nextTick = event.time; this.emit("start", event.time, this.ticks); break; case Tone.State.Stopped: this.ticks = 0; this.emit("stop", event.time); break; case Tone.State.Paused: this.emit("pause", event.time); break; } } //all the tick events while(endTime > this._nextTick && this._state){ var tickTime = this._nextTick; if (this.frequency){ this._nextTick += this.frequency.getDurationOfTicks(1, this._nextTick); if (event.state === Tone.State.Started){ try { this.callback(tickTime); this.ticks++; } catch(e){ this.ticks++; throw e; } } } } } }; /** * Returns the scheduled state at the given time. * @param {Time} time The time to query. * @return {String} The name of the state input in setStateAtTime. * @example * clock.start("+0.1"); * clock.getStateAtTime("+0.1"); //returns "started" */ Tone.Clock.prototype.getStateAtTime = function(time){ time = this.toSeconds(time); return this._state.getValueAtTime(time); }; /** * Clean up * @returns {Tone.Clock} this */ Tone.Clock.prototype.dispose = function(){ Tone.Emitter.prototype.dispose.call(this); this.context.off("tick", this._boundLoop); this._writable("frequency"); this.frequency.dispose(); this.frequency = null; this._boundLoop = null; this._nextTick = Infinity; this.callback = null; this._state.dispose(); this._state = null; }; return Tone.Clock; });