(function (root) { "use strict"; var Tone; //constructs the main Tone object function Main(func){ Tone = func(); } //invokes each of the modules with the main Tone object as the argument function Module(func){ func(Tone); } /** * Tone.js * @author Yotam Mann * @license http://opensource.org/licenses/MIT MIT License * @copyright 2014-2015 Yotam Mann */ Main(function () { ////////////////////////////////////////////////////////////////////////// // WEB AUDIO CONTEXT /////////////////////////////////////////////////////////////////////////// //borrowed from underscore.js function isUndef(val) { return val === void 0; } //borrowed from underscore.js function isFunction(val) { return typeof val === 'function'; } var audioContext; //polyfill for AudioContext and OfflineAudioContext if (isUndef(window.AudioContext)) { window.AudioContext = window.webkitAudioContext; } if (isUndef(window.OfflineAudioContext)) { window.OfflineAudioContext = window.webkitOfflineAudioContext; } if (!isUndef(AudioContext)) { audioContext = new AudioContext(); } else { throw new Error('Web Audio is not supported in this browser'); } //SHIMS//////////////////////////////////////////////////////////////////// if (!isFunction(AudioContext.prototype.createGain)) { AudioContext.prototype.createGain = AudioContext.prototype.createGainNode; } if (!isFunction(AudioContext.prototype.createDelay)) { AudioContext.prototype.createDelay = AudioContext.prototype.createDelayNode; } if (!isFunction(AudioContext.prototype.createPeriodicWave)) { AudioContext.prototype.createPeriodicWave = AudioContext.prototype.createWaveTable; } if (!isFunction(AudioBufferSourceNode.prototype.start)) { AudioBufferSourceNode.prototype.start = AudioBufferSourceNode.prototype.noteGrainOn; } if (!isFunction(AudioBufferSourceNode.prototype.stop)) { AudioBufferSourceNode.prototype.stop = AudioBufferSourceNode.prototype.noteOff; } if (!isFunction(OscillatorNode.prototype.start)) { OscillatorNode.prototype.start = OscillatorNode.prototype.noteOn; } if (!isFunction(OscillatorNode.prototype.stop)) { OscillatorNode.prototype.stop = OscillatorNode.prototype.noteOff; } if (!isFunction(OscillatorNode.prototype.setPeriodicWave)) { OscillatorNode.prototype.setPeriodicWave = OscillatorNode.prototype.setWaveTable; } //extend the connect function to include Tones AudioNode.prototype._nativeConnect = AudioNode.prototype.connect; AudioNode.prototype.connect = function (B, outNum, inNum) { if (B.input) { if (Array.isArray(B.input)) { if (isUndef(inNum)) { inNum = 0; } this.connect(B.input[inNum]); } else { this.connect(B.input, outNum, inNum); } } else { try { if (B instanceof AudioNode) { this._nativeConnect(B, outNum, inNum); } else { this._nativeConnect(B, outNum); } } catch (e) { throw new Error('error connecting to node: ' + B); } } }; /////////////////////////////////////////////////////////////////////////// // TONE /////////////////////////////////////////////////////////////////////////// /** * @class Tone is the base class of all other classes. It provides * a lot of methods and functionality to all classes that extend * it. * * @constructor * @alias Tone * @param {number} [inputs=1] the number of input nodes * @param {number} [outputs=1] the number of output nodes */ var Tone = function (inputs, outputs) { /** * the input node(s) * @type {GainNode|Array} */ if (isUndef(inputs) || inputs === 1) { this.input = this.context.createGain(); } else if (inputs > 1) { this.input = new Array(inputs); } /** * the output node(s) * @type {GainNode|Array} */ if (isUndef(outputs) || outputs === 1) { this.output = this.context.createGain(); } else if (outputs > 1) { this.output = new Array(inputs); } }; /** * Set the parameters at once. Either pass in an * object mapping parameters to values, or to set a * single parameter, by passing in a string and value. * The last argument is an optional ramp time which * will ramp any signal values to their destination value * over the duration of the rampTime. * @param {Object|string} params * @param {number=} value * @param {Time=} rampTime * @returns {Tone} this * @example * //set values using an object * filter.set({ * "frequency" : 300, * "type" : highpass * }); * @example * filter.set("type", "highpass"); * @example * //ramp to the value 220 over 3 seconds. * oscillator.set({ * "frequency" : 220 * }, 3); */ Tone.prototype.set = function (params, value, rampTime) { if (typeof params === 'object') { rampTime = value; } else if (typeof params === 'string') { var tmpObj = {}; tmpObj[params] = value; params = tmpObj; } for (var attr in params) { value = params[attr]; var parent = this; if (attr.indexOf('.') !== -1) { var attrSplit = attr.split('.'); for (var i = 0; i < attrSplit.length - 1; i++) { parent = parent[attrSplit[i]]; } attr = attrSplit[attrSplit.length - 1]; } var param = parent[attr]; if (isUndef(param)) { continue; } if (Tone.Signal && param instanceof Tone.Signal || Tone.Param && param instanceof Tone.Param) { if (param.value !== value) { if (isUndef(rampTime)) { param.value = value; } else { param.rampTo(value, rampTime); } } } else if (param instanceof AudioParam) { if (param.value !== value) { param.value = value; } } else if (param instanceof Tone) { param.set(value); } else if (param !== value) { parent[attr] = value; } } return this; }; /** * Get the object's attributes. Given no arguments get * will return all available object properties and their corresponding * values. Pass in a single attribute to retrieve or an array * of attributes. The attribute strings can also include a "." * to access deeper properties. * @example * osc.get(); * //returns {"type" : "sine", "frequency" : 440, ...etc} * @example * osc.get("type"); * //returns { "type" : "sine"} * @example * //use dot notation to access deep properties * synth.get(["envelope.attack", "envelope.release"]); * //returns {"envelope" : {"attack" : 0.2, "release" : 0.4}} * @param {Array=|string|undefined} params the parameters to get, otherwise will return * all available. * @returns {Object} */ Tone.prototype.get = function (params) { if (isUndef(params)) { params = this._collectDefaults(this.constructor); } else if (typeof params === 'string') { params = [params]; } var ret = {}; for (var i = 0; i < params.length; i++) { var attr = params[i]; var parent = this; var subRet = ret; if (attr.indexOf('.') !== -1) { var attrSplit = attr.split('.'); for (var j = 0; j < attrSplit.length - 1; j++) { var subAttr = attrSplit[j]; subRet[subAttr] = subRet[subAttr] || {}; subRet = subRet[subAttr]; parent = parent[subAttr]; } attr = attrSplit[attrSplit.length - 1]; } var param = parent[attr]; if (typeof params[attr] === 'object') { subRet[attr] = param.get(); } else if (Tone.Signal && param instanceof Tone.Signal) { subRet[attr] = param.value; } else if (Tone.Param && param instanceof Tone.Param) { subRet[attr] = param.value; } else if (param instanceof AudioParam) { subRet[attr] = param.value; } else if (param instanceof Tone) { subRet[attr] = param.get(); } else if (!isFunction(param) && !isUndef(param)) { subRet[attr] = param; } } return ret; }; /** * collect all of the default attributes in one * @private * @param {function} constr the constructor to find the defaults from * @return {Array} all of the attributes which belong to the class */ Tone.prototype._collectDefaults = function (constr) { var ret = []; if (!isUndef(constr.defaults)) { ret = Object.keys(constr.defaults); } if (!isUndef(constr._super)) { var superDefs = this._collectDefaults(constr._super); //filter out repeats for (var i = 0; i < superDefs.length; i++) { if (ret.indexOf(superDefs[i]) === -1) { ret.push(superDefs[i]); } } } return ret; }; /** * Set the preset if it exists. * @param {string} presetName the name of the preset * @returns {Tone} this */ Tone.prototype.setPreset = function (presetName) { if (!this.isUndef(this.preset) && this.preset.hasOwnProperty(presetName)) { this.set(this.preset[presetName]); } return this; }; /** * @returns {string} returns the name of the class as a string */ Tone.prototype.toString = function () { for (var className in Tone) { var isLetter = className[0].match(/^[A-Z]$/); var sameConstructor = Tone[className] === this.constructor; if (isFunction(Tone[className]) && isLetter && sameConstructor) { return className; } } return 'Tone'; }; /////////////////////////////////////////////////////////////////////////// // CLASS VARS /////////////////////////////////////////////////////////////////////////// /** * A static pointer to the audio context accessible as Tone.context. * @type {AudioContext} */ Tone.context = audioContext; /** * The audio context. * @type {AudioContext} */ Tone.prototype.context = Tone.context; /** * the default buffer size * @type {number} * @static * @const */ Tone.prototype.bufferSize = 2048; /** * The delay time of a single frame (128 samples according to the spec). * @type {number} * @static * @const */ Tone.prototype.blockTime = 128 / Tone.context.sampleRate; /////////////////////////////////////////////////////////////////////////// // CONNECTIONS /////////////////////////////////////////////////////////////////////////// /** * disconnect and dispose * @returns {Tone} this */ Tone.prototype.dispose = function () { if (!this.isUndef(this.input)) { if (this.input instanceof AudioNode) { this.input.disconnect(); } this.input = null; } if (!this.isUndef(this.output)) { if (this.output instanceof AudioNode) { this.output.disconnect(); } this.output = null; } return this; }; /** * a silent connection to the DesinationNode * which will ensure that anything connected to it * will not be garbage collected * * @private */ var _silentNode = null; /** * makes a connection to ensure that the node will not be garbage collected * until 'dispose' is explicitly called * * use carefully. circumvents JS and WebAudio's normal Garbage Collection behavior * @returns {Tone} this */ Tone.prototype.noGC = function () { this.output.connect(_silentNode); return this; }; AudioNode.prototype.noGC = function () { this.connect(_silentNode); return this; }; /** * connect the output of a ToneNode to an AudioParam, AudioNode, or ToneNode * @param {Tone | AudioParam | AudioNode} unit * @param {number} [outputNum=0] optionally which output to connect from * @param {number} [inputNum=0] optionally which input to connect to * @returns {Tone} this */ Tone.prototype.connect = function (unit, outputNum, inputNum) { if (Array.isArray(this.output)) { outputNum = this.defaultArg(outputNum, 0); this.output[outputNum].connect(unit, 0, inputNum); } else { this.output.connect(unit, outputNum, inputNum); } return this; }; /** * disconnect the output * @returns {Tone} this */ Tone.prototype.disconnect = function (outputNum) { if (Array.isArray(this.output)) { outputNum = this.defaultArg(outputNum, 0); this.output[outputNum].disconnect(); } else { this.output.disconnect(); } return this; }; /** * connect together all of the arguments in series * @param {...AudioParam|Tone|AudioNode} * @returns {Tone} this */ Tone.prototype.connectSeries = function () { if (arguments.length > 1) { var currentUnit = arguments[0]; for (var i = 1; i < arguments.length; i++) { var toUnit = arguments[i]; currentUnit.connect(toUnit); currentUnit = toUnit; } } return this; }; /** * fan out the connection from the first argument to the rest of the arguments * @param {...AudioParam|Tone|AudioNode} * @returns {Tone} this */ Tone.prototype.connectParallel = function () { var connectFrom = arguments[0]; if (arguments.length > 1) { for (var i = 1; i < arguments.length; i++) { var connectTo = arguments[i]; connectFrom.connect(connectTo); } } return this; }; /** * Connect the output of this node to the rest of the nodes in series. * @example * //connect a node to an effect, panVol and then to the master output * node.chain(effect, panVol, Tone.Master); * @param {...AudioParam|Tone|AudioNode} nodes * @returns {Tone} this */ Tone.prototype.chain = function () { if (arguments.length > 0) { var currentUnit = this; for (var i = 0; i < arguments.length; i++) { var toUnit = arguments[i]; currentUnit.connect(toUnit); currentUnit = toUnit; } } return this; }; /** * connect the output of this node to the rest of the nodes in parallel. * @param {...AudioParam|Tone|AudioNode} * @returns {Tone} this */ Tone.prototype.fan = function () { if (arguments.length > 0) { for (var i = 0; i < arguments.length; i++) { this.connect(arguments[i]); } } return this; }; //give native nodes chain and fan methods AudioNode.prototype.chain = Tone.prototype.chain; AudioNode.prototype.fan = Tone.prototype.fan; /////////////////////////////////////////////////////////////////////////// // UTILITIES / HELPERS / MATHS /////////////////////////////////////////////////////////////////////////// /** * If a the given is undefined, use the fallback. * If both given and fallback are objects, given * will be augmented with whatever properties it's * missing which are in fallback. It will recurse nested * objects unless shallowCopy is true. *

* WARNING: if object is self referential, it will go into an an * infinite recursive loop if shallowCopy is set to true. * * @param {*} given * @param {*} fallback * @param {Boolean} [shallowCopy=false] Shallow copies avoid recursively * accessing nested objects. * @return {*} */ Tone.prototype.defaultArg = function (given, fallback, shallowCopy) { shallowCopy = isUndef(shallowCopy) ? false : shallowCopy; if (typeof given === 'object' && typeof fallback === 'object' && !Array.isArray(given) && !Array.isArray(fallback)) { var ret = {}; //make a deep copy of the given object for (var givenProp in given) { if (shallowCopy) { ret[givenProp] = isUndef(fallback[givenProp]) ? given[givenProp] : fallback[givenProp]; } else { ret[givenProp] = this.defaultArg(fallback[givenProp], given[givenProp]); } } for (var fallbackProp in fallback) { if (shallowCopy) { ret[fallbackProp] = isUndef(given[fallbackProp]) ? fallback[fallbackProp] : given[fallbackProp]; } else { ret[fallbackProp] = this.defaultArg(given[fallbackProp], fallback[fallbackProp]); } } return ret; } else { return isUndef(given) ? fallback : given; } }; /** * returns the args as an options object with given arguments * mapped to the names provided. * * if the args given is an array containing only one object, it is assumed * that that's already the options object and will just return it. * * @param {Array} values the 'arguments' object of the function * @param {Array} keys the names of the arguments as they * should appear in the options object * @param {Object=} defaults optional defaults to mixin to the returned * options object * @param {Boolean} [shallowCopy=false] Shallow copies avoid recursively * accessing nested objects. * @return {Object} the options object with the names mapped to the arguments */ Tone.prototype.optionsObject = function (values, keys, defaults, shallowCopy) { var options = {}; if (values.length === 1 && Object.prototype.toString.call(values[0]) === '[object Object]') { options = values[0]; } else { for (var i = 0; i < keys.length; i++) { options[keys[i]] = values[i]; } } if (!this.isUndef(defaults)) { return this.defaultArg(options, defaults, shallowCopy); } else { return options; } }; /** * test if the arg is undefined * @param {*} arg the argument to test * @returns {boolean} true if the arg is undefined * @function */ Tone.prototype.isUndef = isUndef; /** * test if the arg is a function * @param {*} arg the argument to test * @returns {boolean} true if the arg is a function * @function */ Tone.prototype.isFunction = isFunction; /** * Test if the argument is a number. * @param {*} arg the argument to test * @returns {boolean} true if the arg is a number */ Tone.prototype.isNumber = function (arg) { return typeof arg === 'number'; }; /** * Test if the argument is a boolean. * @param {*} arg the argument to test * @returns {boolean} true if the arg is a boolean */ Tone.prototype.isBoolean = function (arg) { return typeof arg === 'boolean'; }; /** * An empty function. * @static */ Tone.noOp = function () { }; /** * Make the property not writable. Internal use only. * @private * @param {string} property the property to make not writable */ Tone.prototype._readOnly = function (property) { if (Array.isArray(property)) { for (var i = 0; i < property.length; i++) { this._readOnly(property[i]); } } else { Object.defineProperty(this, property, { writable: false, enumerable: true }); } }; /** * Make an attribute writeable. Interal use only. * @private * @param {string} property the property to make writable */ Tone.prototype._writable = function (property) { if (Array.isArray(property)) { for (var i = 0; i < property.length; i++) { this._writable(property[i]); } } else { Object.defineProperty(this, property, { writable: true }); } }; /** * Possible play states. * @enum {string} */ Tone.State = { Started: 'started', Stopped: 'stopped', Paused: 'paused' }; /////////////////////////////////////////////////////////////////////////// // GAIN CONVERSIONS /////////////////////////////////////////////////////////////////////////// /** * Equal power gain scale. Good for cross-fading. * @param {NormalRange} percent (0-1) * @return {Gain} output gain (0-1) */ Tone.prototype.equalPowerScale = function (percent) { var piFactor = 0.5 * Math.PI; return Math.sin(percent * piFactor); }; /** * Convert decibels into gain. * @param {Decibels} db * @return {Gain} */ Tone.prototype.dbToGain = function (db) { return Math.pow(2, db / 6); }; /** * Convert gain to decibels. * @param {Gain} gain (0-1) * @return {Decibels} */ Tone.prototype.gainToDb = function (gain) { return 20 * (Math.log(gain) / Math.LN10); }; /////////////////////////////////////////////////////////////////////////// // TIMING /////////////////////////////////////////////////////////////////////////// /** * Return the current time of the clock + a single buffer frame. * If this value is used to schedule a value to change, the earliest * it could be scheduled is the following frame. * @return {number} the currentTime from the AudioContext */ Tone.prototype.now = function () { return this.context.currentTime; }; /////////////////////////////////////////////////////////////////////////// // INHERITANCE /////////////////////////////////////////////////////////////////////////// /** * have a child inherit all of Tone's (or a parent's) prototype * to inherit the parent's properties, make sure to call * Parent.call(this) in the child's constructor * * based on closure library's inherit function * * @static * @param {function} child * @param {function=} parent (optional) parent to inherit from * if no parent is supplied, the child * will inherit from Tone */ Tone.extend = function (child, parent) { if (isUndef(parent)) { parent = Tone; } function TempConstructor() { } TempConstructor.prototype = parent.prototype; child.prototype = new TempConstructor(); /** @override */ child.prototype.constructor = child; child._super = parent; }; /////////////////////////////////////////////////////////////////////////// // CONTEXT /////////////////////////////////////////////////////////////////////////// /** * array of callbacks to be invoked when a new context is added * @private * @private */ var newContextCallbacks = []; /** * invoke this callback when a new context is added * will be invoked initially with the first context * @private * @static * @param {function(AudioContext)} callback the callback to be invoked * with the audio context */ Tone._initAudioContext = function (callback) { //invoke the callback with the existing AudioContext callback(Tone.context); //add it to the array newContextCallbacks.push(callback); }; /** * Tone automatically creates a context on init, but if you are working * with other libraries which also create an AudioContext, it can be * useful to set your own. If you are going to set your own context, * be sure to do it at the start of your code, before creating any objects. * @static * @param {AudioContext} ctx The new audio context to set */ Tone.setContext = function (ctx) { //set the prototypes Tone.prototype.context = ctx; Tone.context = ctx; //invoke all the callbacks for (var i = 0; i < newContextCallbacks.length; i++) { newContextCallbacks[i](ctx); } }; /** * Bind this to a touchstart event to start the audio on mobile devices. *
* http://stackoverflow.com/questions/12517000/no-sound-on-ios-6-web-audio-api/12569290#12569290 * @static */ Tone.startMobile = function () { var osc = Tone.context.createOscillator(); var silent = Tone.context.createGain(); silent.gain.value = 0; osc.connect(silent); silent.connect(Tone.context.destination); var now = Tone.context.currentTime; osc.start(now); osc.stop(now + 1); }; //setup the context Tone._initAudioContext(function (audioContext) { //set the blockTime Tone.prototype.blockTime = 128 / audioContext.sampleRate; _silentNode = audioContext.createGain(); _silentNode.gain.value = 0; _silentNode.connect(audioContext.destination); }); Tone.version = 'r6-dev'; console.log('%c * Tone.js ' + Tone.version + ' * ', 'background: #000; color: #fff'); return Tone; }); Module(function (Tone) { /** * @class Base class for all Signals. Used Internally. * * @constructor * @extends {Tone} */ Tone.SignalBase = function () { }; Tone.extend(Tone.SignalBase); /** * When signals connect to other signals or AudioParams, * they take over the output value of that signal or AudioParam. * For all other nodes, the behavior is the same as a default connect. * * @override * @param {AudioParam|AudioNode|Tone.Signal|Tone} node * @param {number} [outputNumber=0] The output number to connect from. * @param {number} [inputNumber=0] The input number to connect to. * @returns {Tone.SignalBase} this */ Tone.SignalBase.prototype.connect = function (node, outputNumber, inputNumber) { //zero it out so that the signal can have full control if (Tone.Signal && Tone.Signal === node.constructor || Tone.Param && Tone.Param === node.constructor || Tone.TimelineSignal && Tone.TimelineSignal === node.constructor) { //cancel changes node._param.cancelScheduledValues(0); //reset the value node._param.value = 0; //mark the value as overridden node.overridden = true; } else if (node instanceof AudioParam) { node.cancelScheduledValues(0); node.value = 0; } Tone.prototype.connect.call(this, node, outputNumber, inputNumber); return this; }; return Tone.SignalBase; }); Module(function (Tone) { /** * @class Wraps the native Web Audio API * [WaveShaperNode](http://webaudio.github.io/web-audio-api/#the-waveshapernode-interface). * * @extends {Tone.SignalBase} * @constructor * @param {function|Array|Number} mapping The function used to define the values. * The mapping function should take two arguments: * the first is the value at the current position * and the second is the array position. * If the argument is an array, that array will be * set as the wave shaping function. The input * signal is an AudioRange [-1, 1] value and the output * signal can take on any numerical values. * * @param {Number} [bufferLen=1024] The length of the WaveShaperNode buffer. * @example * var timesTwo = new Tone.WaveShaper(function(val){ * return val * 2; * }, 2048); * @example * //a waveshaper can also be constructed with an array of values * var invert = new Tone.WaveShaper([1, -1]); */ Tone.WaveShaper = function (mapping, bufferLen) { /** * the waveshaper * @type {WaveShaperNode} * @private */ this._shaper = this.input = this.output = this.context.createWaveShaper(); /** * the waveshapers curve * @type {Float32Array} * @private */ this._curve = null; if (Array.isArray(mapping)) { this.curve = mapping; } else if (isFinite(mapping) || this.isUndef(mapping)) { this._curve = new Float32Array(this.defaultArg(mapping, 1024)); } else if (this.isFunction(mapping)) { this._curve = new Float32Array(this.defaultArg(bufferLen, 1024)); this.setMap(mapping); } }; Tone.extend(Tone.WaveShaper, Tone.SignalBase); /** * Uses a mapping function to set the value of the curve. * @param {function} mapping The function used to define the values. * The mapping function take two arguments: * the first is the value at the current position * which goes from -1 to 1 over the number of elements * in the curve array. The second argument is the array position. * @returns {Tone.WaveShaper} this * @example * //map the input signal from [-1, 1] to [0, 10] * shaper.setMap(function(val, index){ * return (val + 1) * 5; * }) */ Tone.WaveShaper.prototype.setMap = function (mapping) { for (var i = 0, len = this._curve.length; i < len; i++) { var normalized = i / len * 2 - 1; this._curve[i] = mapping(normalized, i); } this._shaper.curve = this._curve; return this; }; /** * The array to set as the waveshaper curve. For linear curves * array length does not make much difference, but for complex curves * longer arrays will provide smoother interpolation. * @memberOf Tone.WaveShaper# * @type {Array} * @name curve */ Object.defineProperty(Tone.WaveShaper.prototype, 'curve', { get: function () { return this._shaper.curve; }, set: function (mapping) { this._curve = new Float32Array(mapping); this._shaper.curve = this._curve; } }); /** * Specifies what type of oversampling (if any) should be used when * applying the shaping curve. Can either be "none", "2x" or "4x". * @memberOf Tone.WaveShaper# * @type {string} * @name oversample */ Object.defineProperty(Tone.WaveShaper.prototype, 'oversample', { get: function () { return this._shaper.oversample; }, set: function (oversampling) { if ([ 'none', '2x', '4x' ].indexOf(oversampling) !== -1) { this._shaper.oversample = oversampling; } else { throw new Error('invalid oversampling: ' + oversampling); } } }); /** * Clean up. * @returns {Tone.WaveShaper} this */ Tone.WaveShaper.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._shaper.disconnect(); this._shaper = null; this._curve = null; return this; }; return Tone.WaveShaper; }); Module(function (Tone) { /////////////////////////////////////////////////////////////////////////// // TYPES /////////////////////////////////////////////////////////////////////////// /** * Units which a value can take on. * @enum {String} */ Tone.Type = { /** * The default value is a number which can take on any value between [-Infinity, Infinity] */ Default: 'number', /** * Time can be described in a number of ways. Read more [Time](https://github.com/Tonejs/Tone.js/wiki/Time). * * * * @typedef {Time} */ Time: 'time', /** * Frequency can be described similar to time, except ultimately the * values are converted to frequency instead of seconds. A number * is taken literally as the value in hertz. Additionally any of the * Time encodings can be used. Note names in the form * of NOTE OCTAVE (i.e. C4) are also accepted and converted to their * frequency value. * @typedef {Frequency} */ Frequency: 'frequency', /** * Gain is the ratio between the input and the output value of a signal. * @typedef {Gain} */ Gain: 'gain', /** * Normal values are within the range [0, 1]. * @typedef {NormalRange} */ NormalRange: 'normalRange', /** * AudioRange values are between [-1, 1]. * @typedef {AudioRange} */ AudioRange: 'audioRange', /** * Decibels are a logarithmic unit of measurement which is useful for volume * because of the logarithmic way that we perceive loudness. 0 decibels * means no change in volume. -10db is approximately half as loud and 10db * is twice is loud. * @typedef {Decibels} */ Decibels: 'db', /** * Half-step note increments, i.e. 12 is an octave above the root. and 1 is a half-step up. * @typedef {Interval} */ Interval: 'interval', /** * Beats per minute. * @typedef {BPM} */ BPM: 'bpm', /** * The value must be greater than 0. * @typedef {Positive} */ Positive: 'positive', /** * A cent is a hundredth of a semitone. * @typedef {Cents} */ Cents: 'cents', /** * Angle between 0 and 360. * @typedef {Degrees} */ Degrees: 'degrees', /** * A number representing a midi note. * @typedef {MIDI} */ MIDI: 'midi', /** * A colon-separated representation of time in the form of * BARS:QUARTERS:SIXTEENTHS. * @typedef {TransportTime} */ TransportTime: 'transportTime', /** * Ticks are the basic subunit of the Transport. They are * the smallest unit of time that the Transport supports. * @typedef {Ticks} */ Ticks: 'tick', /** * A frequency represented by a letter name, * accidental and octave. This system is known as * [Scientific Pitch Notation](https://en.wikipedia.org/wiki/Scientific_pitch_notation). * @typedef {Note} */ Note: 'note', /** * One millisecond is a thousandth of a second. * @typedef {Milliseconds} */ Milliseconds: 'milliseconds', /** * A string representing a duration relative to a measure. * * @typedef {Notation} */ Notation: 'notation' }; /////////////////////////////////////////////////////////////////////////// // MATCHING TESTS /////////////////////////////////////////////////////////////////////////// /** * Test if a function is "now-relative", i.e. starts with "+". * * @param {String} str The string to test * @return {boolean} * @method isNowRelative * @lends Tone.prototype.isNowRelative */ Tone.prototype.isNowRelative = function () { var nowRelative = new RegExp(/^\W*\+(.)+/i); return function (note) { return nowRelative.test(note); }; }(); /** * Tests if a string is in Ticks notation. * * @param {String} str The string to test * @return {boolean} * @method isTicks * @lends Tone.prototype.isTicks */ Tone.prototype.isTicks = function () { var tickFormat = new RegExp(/^\d+i$/i); return function (note) { return tickFormat.test(note); }; }(); /** * Tests if a string is musical notation. * i.e.: * * * @param {String} str The string to test * @return {boolean} * @method isNotation * @lends Tone.prototype.isNotation */ Tone.prototype.isNotation = function () { var notationFormat = new RegExp(/^[0-9]+[mnt]$/i); return function (note) { return notationFormat.test(note); }; }(); /** * Test if a string is in the transportTime format. * "Bars:Beats:Sixteenths" * @param {String} transportTime * @return {boolean} * @method isTransportTime * @lends Tone.prototype.isTransportTime */ Tone.prototype.isTransportTime = function () { var transportTimeFormat = new RegExp(/^(\d+(\.\d+)?\:){1,2}(\d+(\.\d+)?)?$/i); return function (transportTime) { return transportTimeFormat.test(transportTime); }; }(); /** * Test if a string is in Scientific Pitch Notation: i.e. "C4". * @param {String} note The note to test * @return {boolean} true if it's in the form of a note * @method isNote * @lends Tone.prototype.isNote * @function */ Tone.prototype.isNote = function () { var noteFormat = new RegExp(/^[a-g]{1}(b|#|x|bb)?-?[0-9]+$/i); return function (note) { return noteFormat.test(note); }; }(); /** * Test if the input is in the format of number + hz * i.e.: 10hz * * @param {String} freq * @return {boolean} * @function */ Tone.prototype.isFrequency = function () { var freqFormat = new RegExp(/^\d*\.?\d+hz$/i); return function (freq) { return freqFormat.test(freq); }; }(); /////////////////////////////////////////////////////////////////////////// // TO SECOND CONVERSIONS /////////////////////////////////////////////////////////////////////////// /** * @private * @return {Object} The Transport's BPM if the Transport exists, * otherwise returns reasonable defaults. */ function getTransportBpm() { if (Tone.Transport && Tone.Transport.bpm) { return Tone.Transport.bpm.value; } else { return 120; } } /** * @private * @return {Object} The Transport's Time Signature if the Transport exists, * otherwise returns reasonable defaults. */ function getTransportTimeSignature() { if (Tone.Transport && Tone.Transport.timeSignature) { return Tone.Transport.timeSignature; } else { return 4; } } /** * * convert notation format strings to seconds * * @param {String} notation * @param {BPM=} bpm * @param {number=} timeSignature * @return {number} * */ Tone.prototype.notationToSeconds = function (notation, bpm, timeSignature) { bpm = this.defaultArg(bpm, getTransportBpm()); timeSignature = this.defaultArg(timeSignature, getTransportTimeSignature()); var beatTime = 60 / bpm; //special case: 1n = 1m if (notation === '1n') { notation = '1m'; } var subdivision = parseInt(notation, 10); var beats = 0; if (subdivision === 0) { beats = 0; } var lastLetter = notation.slice(-1); if (lastLetter === 't') { beats = 4 / subdivision * 2 / 3; } else if (lastLetter === 'n') { beats = 4 / subdivision; } else if (lastLetter === 'm') { beats = subdivision * timeSignature; } else { beats = 0; } return beatTime * beats; }; /** * convert transportTime into seconds. * * ie: 4:2:3 == 4 measures + 2 quarters + 3 sixteenths * * @param {TransportTime} transportTime * @param {BPM=} bpm * @param {number=} timeSignature * @return {number} seconds * * @lends Tone.prototype.transportTimeToSeconds */ Tone.prototype.transportTimeToSeconds = function (transportTime, bpm, timeSignature) { bpm = this.defaultArg(bpm, getTransportBpm()); timeSignature = this.defaultArg(timeSignature, getTransportTimeSignature()); var measures = 0; var quarters = 0; var sixteenths = 0; var split = transportTime.split(':'); if (split.length === 2) { measures = parseFloat(split[0]); quarters = parseFloat(split[1]); } else if (split.length === 1) { quarters = parseFloat(split[0]); } else if (split.length === 3) { measures = parseFloat(split[0]); quarters = parseFloat(split[1]); sixteenths = parseFloat(split[2]); } var beats = measures * timeSignature + quarters + sixteenths / 4; return beats * this.notationToSeconds('4n', bpm, timeSignature); }; /** * convert ticks into seconds * * @param {Ticks} ticks * @param {BPM=} bpm * @param {number=} timeSignature * @return {number} seconds * @private */ Tone.prototype.ticksToSeconds = function (ticks, bpm, timeSignature) { if (this.isUndef(Tone.Transport)) { return 0; } ticks = parseInt(ticks); var quater = this.notationToSeconds('4n', bpm, timeSignature); return quater * ticks / Tone.Transport.PPQ; }; /** * Convert a frequency into seconds. * Accepts numbers and strings: i.e. "10hz" or * 10 both return 0.1. * * @param {Frequency} freq * @return {number} */ Tone.prototype.frequencyToSeconds = function (freq) { return 1 / parseFloat(freq); }; /** * Convert a sample count to seconds. * @param {number} samples * @return {number} */ Tone.prototype.samplesToSeconds = function (samples) { return samples / this.context.sampleRate; }; /** * Convert from seconds to samples. * @param {number} seconds * @return {number} The number of samples */ Tone.prototype.secondsToSamples = function (seconds) { return seconds * this.context.sampleRate; }; /////////////////////////////////////////////////////////////////////////// // FROM SECOND CONVERSIONS /////////////////////////////////////////////////////////////////////////// /** * Convert seconds to transportTime in the form * "measures:quarters:sixteenths" * * @param {Number} seconds * @param {BPM=} bpm * @param {Number=} timeSignature * @return {TransportTime} */ Tone.prototype.secondsToTransportTime = function (seconds, bpm, timeSignature) { bpm = this.defaultArg(bpm, getTransportBpm()); timeSignature = this.defaultArg(timeSignature, getTransportTimeSignature()); var quarterTime = this.notationToSeconds('4n', bpm, timeSignature); var quarters = seconds / quarterTime; var measures = Math.floor(quarters / timeSignature); var sixteenths = quarters % 1 * 4; quarters = Math.floor(quarters) % timeSignature; var progress = [ measures, quarters, sixteenths ]; return progress.join(':'); }; /** * Convert a number in seconds to a frequency. * @param {number} seconds * @return {number} */ Tone.prototype.secondsToFrequency = function (seconds) { return 1 / seconds; }; /////////////////////////////////////////////////////////////////////////// // GENERALIZED CONVERSIONS /////////////////////////////////////////////////////////////////////////// /** * Convert seconds to the closest transportTime in the form * measures:quarters:sixteenths * * @method toTransportTime * * @param {Time} time * @param {BPM=} bpm * @param {number=} timeSignature * @return {TransportTime} * * @lends Tone.prototype.toTransportTime */ Tone.prototype.toTransportTime = function (time, bpm, timeSignature) { var seconds = this.toSeconds(time, bpm, timeSignature); return this.secondsToTransportTime(seconds, bpm, timeSignature); }; /** * Convert a frequency representation into a number. * * @param {Frequency} freq * @param {number=} now if passed in, this number will be * used for all 'now' relative timings * @return {number} the frequency in hertz */ Tone.prototype.toFrequency = function (freq, now) { if (this.isFrequency(freq)) { return parseFloat(freq); } else if (this.isNotation(freq) || this.isTransportTime(freq)) { return this.secondsToFrequency(this.toSeconds(freq, now)); } else if (this.isNote(freq)) { return this.noteToFrequency(freq); } else { return freq; } }; /** * Convert the time representation into ticks. * Now-Relative timing will be relative to the current * Tone.Transport.ticks. * @param {Time} time * @return {Ticks} * @private */ Tone.prototype.toTicks = function (time, bpm, timeSignature) { if (this.isUndef(Tone.Transport)) { return 0; } //get the seconds var plusNow = 0; if (this.isNowRelative(time)) { time = time.replace(/^\W*/, ''); plusNow = Tone.Transport.ticks; } else if (this.isUndef(time)) { return Tone.Transport.ticks; } var seconds = this.toSeconds(time); var quarter = this.notationToSeconds('4n', bpm, timeSignature); var quarters = seconds / quarter; var tickNum = quarters * Tone.Transport.PPQ; //quantize to tick value return Math.round(tickNum) + plusNow; }; /** * convert a time into samples * * @param {Time} time * @return {number} */ Tone.prototype.toSamples = function (time) { var seconds = this.toSeconds(time); return Math.round(seconds * this.context.sampleRate); }; /** * Convert Time into seconds. * * Unlike the method which it overrides, this takes into account * transporttime and musical notation. * * Time : 1.40 * Notation: 4n|1m|2t * TransportTime: 2:4:1 (measure:quarters:sixteens) * Now Relative: +3n * Math: 3n+16n or even very complicated expressions ((3n*2)/6 + 1) * * @override * @param {Time} time * @param {number=} now if passed in, this number will be * used for all 'now' relative timings * @return {number} */ Tone.prototype.toSeconds = function (time, now) { now = this.defaultArg(now, this.now()); if (typeof time === 'number') { return time; //assuming that it's seconds } else if (typeof time === 'string') { var plusTime = 0; if (this.isNowRelative(time)) { time = time.replace(/^\W*/, ''); plusTime = now; } var components = time.split(/[\(\)\-\+\/\*]/); if (components.length > 1) { var originalTime = time; for (var i = 0; i < components.length; i++) { var symb = components[i].trim(); if (symb !== '') { var val = this.toSeconds(symb); time = time.replace(symb, val); } } try { //eval is evil, but i think it's safe here time = eval(time); // jshint ignore:line } catch (e) { throw new EvalError('problem evaluating Time: ' + originalTime); } } else if (this.isNotation(time)) { time = this.notationToSeconds(time); } else if (this.isTransportTime(time)) { time = this.transportTimeToSeconds(time); } else if (this.isFrequency(time)) { time = this.frequencyToSeconds(time); } else if (this.isTicks(time)) { time = this.ticksToSeconds(time); } else { time = parseFloat(time); } return time + plusTime; } else { return now; } }; /** * Convert a Time to Notation. Values will be thresholded to the nearest 128th note. * @param {Time} time * @param {BPM=} bpm * @param {number=} timeSignature * @return {Notation} */ Tone.prototype.toNotation = function (time, bpm, timeSignature) { var testNotations = [ '1m', '2n', '4n', '8n', '16n', '32n', '64n', '128n' ]; var retNotation = toNotationHelper.call(this, time, bpm, timeSignature, testNotations); //try the same thing but with tripelets var testTripletNotations = [ '1m', '2n', '2t', '4n', '4t', '8n', '8t', '16n', '16t', '32n', '32t', '64n', '64t', '128n' ]; var retTripletNotation = toNotationHelper.call(this, time, bpm, timeSignature, testTripletNotations); //choose the simpler expression of the two if (retTripletNotation.split('+').length < retNotation.split('+').length) { return retTripletNotation; } else { return retNotation; } }; /** * Helper method for Tone.toNotation * @private */ function toNotationHelper(time, bpm, timeSignature, testNotations) { var seconds = this.toSeconds(time); var threshold = this.notationToSeconds(testNotations[testNotations.length - 1], bpm, timeSignature); var retNotation = ''; for (var i = 0; i < testNotations.length; i++) { var notationTime = this.notationToSeconds(testNotations[i], bpm, timeSignature); //account for floating point errors (i.e. round up if the value is 0.999999) var multiple = seconds / notationTime; var floatingPointError = 0.000001; if (1 - multiple % 1 < floatingPointError) { multiple += floatingPointError; } multiple = Math.floor(multiple); if (multiple > 0) { if (multiple === 1) { retNotation += testNotations[i]; } else { retNotation += multiple.toString() + '*' + testNotations[i]; } seconds -= multiple * notationTime; if (seconds < threshold) { break; } else { retNotation += ' + '; } } } return retNotation; } /////////////////////////////////////////////////////////////////////////// // FREQUENCY CONVERSIONS /////////////////////////////////////////////////////////////////////////// /** * Note to scale index * @type {Object} */ var noteToScaleIndex = { 'cbb': -2, 'cb': -1, 'c': 0, 'c#': 1, 'cx': 2, 'dbb': 0, 'db': 1, 'd': 2, 'd#': 3, 'dx': 4, 'ebb': 2, 'eb': 3, 'e': 4, 'e#': 5, 'ex': 6, 'fbb': 3, 'fb': 4, 'f': 5, 'f#': 6, 'fx': 7, 'gbb': 5, 'gb': 6, 'g': 7, 'g#': 8, 'gx': 9, 'abb': 7, 'ab': 8, 'a': 9, 'a#': 10, 'ax': 11, 'bbb': 9, 'bb': 10, 'b': 11, 'b#': 12, 'bx': 13 }; /** * scale index to note (sharps) * @type {Array} */ var scaleIndexToNote = [ 'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B' ]; /** * The [concert pitch](https://en.wikipedia.org/wiki/Concert_pitch, * A4's values in Hertz. * @type {Frequency} * @static */ Tone.A4 = 440; /** * Convert a note name to frequency. * @param {String} note * @return {number} * @example * var freq = tone.noteToFrequency("A4"); //returns 440 */ Tone.prototype.noteToFrequency = function (note) { //break apart the note by frequency and octave var parts = note.split(/(-?\d+)/); if (parts.length === 3) { var index = noteToScaleIndex[parts[0].toLowerCase()]; var octave = parts[1]; var noteNumber = index + (parseInt(octave, 10) + 1) * 12; return this.midiToFrequency(noteNumber); } else { return 0; } }; /** * Convert a frequency to a note name (i.e. A4, C#5). * @param {number} freq * @return {String} */ Tone.prototype.frequencyToNote = function (freq) { var log = Math.log(freq / Tone.A4) / Math.LN2; var noteNumber = Math.round(12 * log) + 57; var octave = Math.floor(noteNumber / 12); if (octave < 0) { noteNumber += -12 * octave; } var noteName = scaleIndexToNote[noteNumber % 12]; return noteName + octave.toString(); }; /** * Convert an interval (in semitones) to a frequency ratio. * * @param {Interval} interval the number of semitones above the base note * @return {number} the frequency ratio * @example * tone.intervalToFrequencyRatio(0); // returns 1 * tone.intervalToFrequencyRatio(12); // returns 2 */ Tone.prototype.intervalToFrequencyRatio = function (interval) { return Math.pow(2, interval / 12); }; /** * Convert a midi note number into a note name. * * @param {MIDI} midiNumber the midi note number * @return {String} the note's name and octave * @example * tone.midiToNote(60); // returns "C3" */ Tone.prototype.midiToNote = function (midiNumber) { var octave = Math.floor(midiNumber / 12) - 1; var note = midiNumber % 12; return scaleIndexToNote[note] + octave; }; /** * Convert a note to it's midi value. * * @param {String} note the note name (i.e. "C3") * @return {MIDI} the midi value of that note * @example * tone.noteToMidi("C3"); // returns 60 */ Tone.prototype.noteToMidi = function (note) { //break apart the note by frequency and octave var parts = note.split(/(\d+)/); if (parts.length === 3) { var index = noteToScaleIndex[parts[0].toLowerCase()]; var octave = parts[1]; return index + (parseInt(octave, 10) + 1) * 12; } else { return 0; } }; /** * Convert a MIDI note to frequency value. * * @param {MIDI} midi The midi number to convert. * @return {Frequency} the corresponding frequency value * @example * tone.midiToFrequency(57); // returns 440 */ Tone.prototype.midiToFrequency = function (midi) { return Tone.A4 * Math.pow(2, (midi - 69) / 12); }; return Tone; }); Module(function (Tone) { /** * @class Tone.Param wraps the native Web Audio's AudioParam to provide * additional unit conversion functionality. It also * serves as a base-class for classes which have a single, * automatable parameter. * @extends {Tone} * @param {AudioParam} param The parameter to wrap. * @param {Tone.Type} units The units of the audio param. * @param {Boolean} convert If the param should be converted. */ Tone.Param = function () { var options = this.optionsObject(arguments, [ 'param', 'units', 'convert' ], Tone.Param.defaults); /** * The native parameter to control * @type {AudioParam} * @private */ this._param = this.input = options.param; /** * The units of the parameter * @type {Tone.Type} */ this.units = options.units; /** * If the value should be converted or not * @type {Boolean} */ this.convert = options.convert; /** * True if the signal value is being overridden by * a connected signal. * @readOnly * @type {boolean} * @private */ this.overridden = false; if (!this.isUndef(options.value)) { this.value = options.value; } }; Tone.extend(Tone.Param); /** * Defaults * @type {Object} * @const */ Tone.Param.defaults = { 'units': Tone.Type.Default, 'convert': true, 'param': undefined }; /** * The current value of the parameter. * @memberOf Tone.Param# * @type {Number} * @name value */ Object.defineProperty(Tone.Param.prototype, 'value', { get: function () { return this._toUnits(this._param.value); }, set: function (value) { var convertedVal = this._fromUnits(value); this._param.value = convertedVal; } }); /** * Convert the given value from the type specified by Tone.Param.units * into the destination value (such as Gain or Frequency). * @private * @param {*} val the value to convert * @return {number} the number which the value should be set to */ Tone.Param.prototype._fromUnits = function (val) { if (this.convert || this.isUndef(this.convert)) { switch (this.units) { case Tone.Type.Time: return this.toSeconds(val); case Tone.Type.Frequency: return this.toFrequency(val); case Tone.Type.Decibels: return this.dbToGain(val); case Tone.Type.NormalRange: return Math.min(Math.max(val, 0), 1); case Tone.Type.AudioRange: return Math.min(Math.max(val, -1), 1); case Tone.Type.Positive: return Math.max(val, 0); default: return val; } } else { return val; } }; /** * Convert the parameters value into the units specified by Tone.Param.units. * @private * @param {number} val the value to convert * @return {number} */ Tone.Param.prototype._toUnits = function (val) { if (this.convert || this.isUndef(this.convert)) { switch (this.units) { case Tone.Type.Decibels: return this.gainToDb(val); default: return val; } } else { return val; } }; /** * the minimum output value * @type {Number} * @private */ Tone.Param.prototype._minOutput = 0.00001; /** * Schedules a parameter value change at the given time. * @param {*} value The value to set the signal. * @param {Time} time The time when the change should occur. * @returns {Tone.Param} this * @example * //set the frequency to "G4" in exactly 1 second from now. * freq.setValueAtTime("G4", "+1"); */ Tone.Param.prototype.setValueAtTime = function (value, time) { value = this._fromUnits(value); this._param.setValueAtTime(value, this.toSeconds(time)); return this; }; /** * Creates a schedule point with the current value at the current time. * This is useful for creating an automation anchor point in order to * schedule changes from the current value. * * @param {number=} now (Optionally) pass the now value in. * @returns {Tone.Param} this */ Tone.Param.prototype.setRampPoint = function (now) { now = this.defaultArg(now, this.now()); var currentVal = this._param.value; this._param.setValueAtTime(currentVal, now); return this; }; /** * Schedules a linear continuous change in parameter value from the * previous scheduled parameter value to the given value. * * @param {number} value * @param {Time} endTime * @returns {Tone.Param} this */ Tone.Param.prototype.linearRampToValueAtTime = function (value, endTime) { value = this._fromUnits(value); this._param.linearRampToValueAtTime(value, this.toSeconds(endTime)); return this; }; /** * Schedules an exponential continuous change in parameter value from * the previous scheduled parameter value to the given value. * * @param {number} value * @param {Time} endTime * @returns {Tone.Param} this */ Tone.Param.prototype.exponentialRampToValueAtTime = function (value, endTime) { value = this._fromUnits(value); value = Math.max(this._minOutput, value); this._param.exponentialRampToValueAtTime(value, this.toSeconds(endTime)); return this; }; /** * Schedules an exponential continuous change in parameter value from * the current time and current value to the given value over the * duration of the rampTime. * * @param {number} value The value to ramp to. * @param {Time} rampTime the time that it takes the * value to ramp from it's current value * @returns {Tone.Param} this * @example * //exponentially ramp to the value 2 over 4 seconds. * signal.exponentialRampToValue(2, 4); */ Tone.Param.prototype.exponentialRampToValue = function (value, rampTime) { var now = this.now(); // exponentialRampToValueAt cannot ever ramp from 0, apparently. // More info: https://bugzilla.mozilla.org/show_bug.cgi?id=1125600#c2 var currentVal = this.value; this.setValueAtTime(Math.max(currentVal, this._minOutput), now); this.exponentialRampToValueAtTime(value, now + this.toSeconds(rampTime)); return this; }; /** * Schedules an linear continuous change in parameter value from * the current time and current value to the given value over the * duration of the rampTime. * * @param {number} value The value to ramp to. * @param {Time} rampTime the time that it takes the * value to ramp from it's current value * @returns {Tone.Param} this * @example * //linearly ramp to the value 4 over 3 seconds. * signal.linearRampToValue(4, 3); */ Tone.Param.prototype.linearRampToValue = function (value, rampTime) { var now = this.now(); this.setRampPoint(now); this.linearRampToValueAtTime(value, now + this.toSeconds(rampTime)); return this; }; /** * Start exponentially approaching the target value at the given time with * a rate having the given time constant. * @param {number} value * @param {Time} startTime * @param {number} timeConstant * @returns {Tone.Param} this */ Tone.Param.prototype.setTargetAtTime = function (value, startTime, timeConstant) { value = this._fromUnits(value); // The value will never be able to approach without timeConstant > 0. // http://www.w3.org/TR/webaudio/#dfn-setTargetAtTime, where the equation // is described. 0 results in a division by 0. value = Math.max(this._minOutput, value); timeConstant = Math.max(this._minOutput, timeConstant); this._param.setTargetAtTime(value, this.toSeconds(startTime), timeConstant); return this; }; /** * Sets an array of arbitrary parameter values starting at the given time * for the given duration. * * @param {Array} values * @param {Time} startTime * @param {Time} duration * @returns {Tone.Param} this */ Tone.Param.prototype.setValueCurveAtTime = function (values, startTime, duration) { for (var i = 0; i < values.length; i++) { values[i] = this._fromUnits(values[i]); } this._param.setValueCurveAtTime(values, this.toSeconds(startTime), this.toSeconds(duration)); return this; }; /** * Cancels all scheduled parameter changes with times greater than or * equal to startTime. * * @param {Time} startTime * @returns {Tone.Param} this */ Tone.Param.prototype.cancelScheduledValues = function (startTime) { this._param.cancelScheduledValues(this.toSeconds(startTime)); return this; }; /** * Ramps to the given value over the duration of the rampTime. * Automatically selects the best ramp type (exponential or linear) * depending on the `units` of the signal * * @param {number} value * @param {Time} rampTime the time that it takes the * value to ramp from it's current value * @returns {Tone.Param} this * @example * //ramp to the value either linearly or exponentially * //depending on the "units" value of the signal * signal.rampTo(0, 10); */ Tone.Param.prototype.rampTo = function (value, rampTime) { rampTime = this.defaultArg(rampTime, 0); if (this.units === Tone.Type.Frequency || this.units === Tone.Type.BPM) { this.exponentialRampToValue(value, rampTime); } else { this.linearRampToValue(value, rampTime); } return this; }; /** * Clean up * @returns {Tone.Param} this */ Tone.Param.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._param = null; return this; }; return Tone.Param; }); Module(function (Tone) { /** * @class A thin wrapper around the Native Web Audio GainNode. * The GainNode is a basic building block of the Web Audio * API and is useful for routing audio and adjusting gains. * @extends {Tone} * @param {Number=} value The initial gain of the GainNode * @param {Tone.Type=} units The units of the gain parameter. */ Tone.Gain = function () { var options = this.optionsObject(arguments, [ 'value', 'units' ], Tone.Gain.defaults); /** * The GainNode * @type {GainNode} * @private */ this._gainNode = this.context.createGain(); options.param = this._gainNode.gain; Tone.Param.call(this, options); this.input = this.output = this._gainNode; /** * The gain parameter of the gain node. * @type {AudioParam} * @signal */ this.gain = this._param; this._readOnly('gain'); }; Tone.extend(Tone.Gain, Tone.Param); /** * The defaults * @const * @type {Object} */ Tone.Gain.defaults = { 'value': 1, 'units': Tone.Type.Gain, 'convert': true }; /** * Clean up. * @return {Tone.Gain} this */ Tone.Gain.prototype.dispose = function () { Tone.Param.prototype.dispose.call(this); this._gainNode.disconnect(); this._gainNode = null; this._writable('gain'); this.gain = null; }; return Tone.Gain; }); Module(function (Tone) { /** * @class A signal is an audio-rate value. Tone.Signal is a core component of the library. * Unlike a number, Signals can be scheduled with sample-level accuracy. Tone.Signal * has all of the methods available to native Web Audio * [AudioParam](http://webaudio.github.io/web-audio-api/#the-audioparam-interface) * as well as additional conveniences. Read more about working with signals * [here](https://github.com/Tonejs/Tone.js/wiki/Signals). * * @constructor * @extends {Tone.SignalBase} * @param {Number|AudioParam} [value] Initial value of the signal. If an AudioParam * is passed in, that parameter will be wrapped * and controlled by the Signal. * @param {string} [units=Number] unit The units the signal is in. * @example * var signal = new Tone.Signal(10); */ Tone.Signal = function () { var options = this.optionsObject(arguments, [ 'value', 'units' ], Tone.Signal.defaults); /** * The node where the constant signal value is scaled. * @type {GainNode} * @private */ this.output = this._gain = new Tone.Gain(options); options.param = this._gain.gain; Tone.Param.call(this, options); /** * The node where the value is set. * @type {Tone.Param} * @private */ this.input = this._param = this._gain.gain; //connect the const output to the node output Tone.Signal._constant.chain(this._gain); }; Tone.extend(Tone.Signal, Tone.Param); /** * The default values * @type {Object} * @static * @const */ Tone.Signal.defaults = { 'value': 0, 'units': Tone.Type.Default, 'convert': true }; /** * When signals connect to other signals or AudioParams, * they take over the output value of that signal or AudioParam. * For all other nodes, the behavior is the same as a default connect. * * @override * @param {AudioParam|AudioNode|Tone.Signal|Tone} node * @param {number} [outputNumber=0] The output number to connect from. * @param {number} [inputNumber=0] The input number to connect to. * @returns {Tone.SignalBase} this * @method */ Tone.Signal.prototype.connect = Tone.SignalBase.prototype.connect; /** * dispose and disconnect * @returns {Tone.Signal} this */ Tone.Signal.prototype.dispose = function () { Tone.Param.prototype.dispose.call(this); this._param = null; this._gain.dispose(); this._gain = null; return this; }; /////////////////////////////////////////////////////////////////////////// // STATIC /////////////////////////////////////////////////////////////////////////// /** * Generates a constant output of 1. * @static * @private * @const * @type {AudioBufferSourceNode} */ Tone.Signal._constant = null; /** * initializer function */ Tone._initAudioContext(function (audioContext) { var buffer = audioContext.createBuffer(1, 128, audioContext.sampleRate); var arr = buffer.getChannelData(0); for (var i = 0; i < arr.length; i++) { arr[i] = 1; } Tone.Signal._constant = audioContext.createBufferSource(); Tone.Signal._constant.channelCount = 1; Tone.Signal._constant.channelCountMode = 'explicit'; Tone.Signal._constant.buffer = buffer; Tone.Signal._constant.loop = true; Tone.Signal._constant.start(0); Tone.Signal._constant.noGC(); }); return Tone.Signal; }); Module(function (Tone) { /** * @class A Timeline class for scheduling and maintaining state * along a timeline. All events must have a "time" property. * Internally, events are stored in time order for fast * retrieval. * @extends {Tone} */ Tone.Timeline = function () { /** * The array of scheduled timeline events * @type {Array} * @private */ this._timeline = []; }; Tone.extend(Tone.Timeline); /** * The number of items in the timeline. * @type {Number} * @memberOf Tone.Timeline# * @name length * @readOnly */ Object.defineProperty(Tone.Timeline.prototype, 'length', { get: function () { return this._timeline.length; } }); /** * Insert an event object onto the timeline. Events must have a "time" attribute. * @param {Object} event The event object to insert into the * timeline. * @returns {Tone.Timeline} this */ Tone.Timeline.prototype.addEvent = function (event) { //the event needs to have a time attribute if (this.isUndef(event.time)) { throw new Error('events must have a time attribute'); } event.time = this.toSeconds(event.time); if (this._timeline.length) { var index = this._search(event.time); this._timeline.splice(index + 1, 0, event); } else { this._timeline.push(event); } return this; }; /** * Remove an event from the timeline. * @param {Object} event The event object to remove from the list. * @returns {Tone.Timeline} this */ Tone.Timeline.prototype.removeEvent = function (event) { this.forEachAtTime(event.time, function (testEvent, index) { if (testEvent === event) { this._timeline.splice(index, 1); } }.bind(this)); return this; }; /** * Get the event whose time is less than or equal to the given time. * @param {Number} time The time to query. * @returns {Object} The event object set after that time. */ Tone.Timeline.prototype.getEvent = function (time) { time = this.toSeconds(time); var index = this._search(time); if (index !== -1) { return this._timeline[index]; } else { return null; } }; /** * Get the event which is scheduled after the given time. * @param {Number} time The time to query. * @returns {Object} The event object after the given time */ Tone.Timeline.prototype.getEventAfter = function (time) { time = this.toSeconds(time); var index = this._search(time); if (index + 1 < this._timeline.length) { return this._timeline[index + 1]; } else { return null; } }; /** * Get the event before the event at the given time. * @param {Number} time The time to query. * @returns {Object} The event object before the given time */ Tone.Timeline.prototype.getEventBefore = function (time) { time = this.toSeconds(time); var index = this._search(time); if (index - 1 >= 0) { return this._timeline[index - 1]; } else { return null; } }; /** * Cancel events after the given time * @param {Time} time The time to query. * @returns {Tone.Timeline} this */ Tone.Timeline.prototype.cancel = function (after) { if (this._timeline.length) { after = this.toSeconds(after); var index = this._search(after); if (index >= 0) { this._timeline = this._timeline.slice(0, index); } else { this._timeline = []; } } return this; }; /** * Cancel events before or equal to the given time. * @param {Time} time The time to cancel before. * @returns {Tone.Timeline} this */ Tone.Timeline.prototype.cancelBefore = function (time) { if (this._timeline.length) { time = this.toSeconds(time); var index = this._search(time); if (index >= 0) { this._timeline = this._timeline.slice(index + 1); } } return this; }; /** * Does a binary serach on the timeline array and returns the * event which is after or equal to the time. * @param {Number} time * @return {Number} the index in the timeline array * @private */ Tone.Timeline.prototype._search = function (time) { var beginning = 0; var len = this._timeline.length; var end = len; // continue searching while [imin,imax] is not empty while (beginning <= end && beginning < len) { // calculate the midpoint for roughly equal partition var midPoint = Math.floor(beginning + (end - beginning) / 2); var event = this._timeline[midPoint]; if (event.time === time) { //choose the last one that has the same time for (var i = midPoint; i < this._timeline.length; i++) { var testEvent = this._timeline[i]; if (testEvent.time === time) { midPoint = i; } } return midPoint; } else if (event.time > time) { //search lower end = midPoint - 1; } else if (event.time < time) { //search upper beginning = midPoint + 1; } } return beginning - 1; }; /** * Iterate over everything in the array * @param {Function} callback The callback to invoke with every item * @returns {Tone.Timeline} this */ Tone.Timeline.prototype.forEach = function (callback) { //iterate over the items in reverse so that removing an item doesn't break things for (var i = this._timeline.length - 1; i >= 0; i--) { callback(this._timeline[i], i); } return this; }; /** * Iterate over everything in the array at or before the given time. * @param {Time} time The time to check if items are before * @param {Function} callback The callback to invoke with every item * @returns {Tone.Timeline} this */ Tone.Timeline.prototype.forEachBefore = function (time, callback) { //iterate over the items in reverse so that removing an item doesn't break things time = this.toSeconds(time); var startIndex = this._search(time); if (startIndex !== -1) { for (var i = startIndex; i >= 0; i--) { callback(this._timeline[i], i); } } return this; }; /** * Iterate over everything in the array after the given time. * @param {Time} time The time to check if items are before * @param {Function} callback The callback to invoke with every item * @returns {Tone.Timeline} this */ Tone.Timeline.prototype.forEachAfter = function (time, callback) { //iterate over the items in reverse so that removing an item doesn't break things time = this.toSeconds(time); var endIndex = this._search(time); for (var i = this._timeline.length - 1; i > endIndex; i--) { callback(this._timeline[i], i); } return this; }; /** * Iterate over everything in the array at or after the given time. Similar to * forEachAfter, but includes the item(s) at the given time. * @param {Time} time The time to check if items are before * @param {Function} callback The callback to invoke with every item * @returns {Tone.Timeline} this */ Tone.Timeline.prototype.forEachFrom = function (time, callback) { //iterate over the items in reverse so that removing an item doesn't break things time = this.toSeconds(time); var endIndex = this._search(time); //work backwards until the event time is less than time while (endIndex >= 0 && this._timeline[endIndex].time >= time) { endIndex--; } for (var i = this._timeline.length - 1; i > endIndex; i--) { callback(this._timeline[i], i); } return this; }; /** * Iterate over everything in the array at the given time * @param {Time} time The time to check if items are before * @param {Function} callback The callback to invoke with every item * @returns {Tone.Timeline} this */ Tone.Timeline.prototype.forEachAtTime = function (time, callback) { //iterate over the items in reverse so that removing an item doesn't break things time = this.toSeconds(time); var index = this._search(time); if (index !== -1) { for (var i = index; i >= 0; i--) { var event = this._timeline[i]; if (event.time === time) { callback(event, i); } else { break; } } } return this; }; /** * Clean up. * @return {Tone.Timeline} this */ Tone.Timeline.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._timeline = null; }; return Tone.Timeline; }); Module(function (Tone) { /** * @class A signal which adds the method getValueAtTime. * Code and inspiration from https://github.com/jsantell/web-audio-automation-timeline */ Tone.TimelineSignal = function () { var options = this.optionsObject(arguments, [ 'value', 'units' ], Tone.Signal.defaults); //constructors Tone.Signal.apply(this, options); options.param = this._param; Tone.Param.call(this, options); /** * The scheduled events * @type {Tone.Timeline} * @private */ this._events = new Tone.Timeline(); /** * The initial scheduled value * @type {Number} * @private */ this._initial = this._fromUnits(this._param.value); }; Tone.extend(Tone.TimelineSignal, Tone.Param); /** * The event types of a schedulable signal. * @enum {String} */ Tone.TimelineSignal.Type = { Linear: 'linear', Exponential: 'exponential', Target: 'target', Set: 'set' }; /** * The current value of the signal. * @memberOf Tone.TimelineSignal# * @type {Number} * @name value */ Object.defineProperty(Tone.TimelineSignal.prototype, 'value', { get: function () { return this._toUnits(this._param.value); }, set: function (value) { var convertedVal = this._fromUnits(value); this._initial = convertedVal; this._param.value = convertedVal; } }); /////////////////////////////////////////////////////////////////////////// // SCHEDULING /////////////////////////////////////////////////////////////////////////// /** * Schedules a parameter value change at the given time. * @param {*} value The value to set the signal. * @param {Time} time The time when the change should occur. * @returns {Tone.TimelineSignal} this * @example * //set the frequency to "G4" in exactly 1 second from now. * freq.setValueAtTime("G4", "+1"); */ Tone.TimelineSignal.prototype.setValueAtTime = function (value, startTime) { value = this._fromUnits(value); startTime = this.toSeconds(startTime); this._events.addEvent({ 'type': Tone.TimelineSignal.Type.Set, 'value': value, 'time': startTime }); //invoke the original event this._param.setValueAtTime(value, startTime); return this; }; /** * Schedules a linear continuous change in parameter value from the * previous scheduled parameter value to the given value. * * @param {number} value * @param {Time} endTime * @returns {Tone.TimelineSignal} this */ Tone.TimelineSignal.prototype.linearRampToValueAtTime = function (value, endTime) { value = this._fromUnits(value); endTime = this.toSeconds(endTime); this._events.addEvent({ 'type': Tone.TimelineSignal.Type.Linear, 'value': value, 'time': endTime }); this._param.linearRampToValueAtTime(value, endTime); return this; }; /** * Schedules an exponential continuous change in parameter value from * the previous scheduled parameter value to the given value. * * @param {number} value * @param {Time} endTime * @returns {Tone.TimelineSignal} this */ Tone.TimelineSignal.prototype.exponentialRampToValueAtTime = function (value, endTime) { value = this._fromUnits(value); value = Math.max(this._minOutput, value); endTime = this.toSeconds(endTime); this._events.addEvent({ 'type': Tone.TimelineSignal.Type.Exponential, 'value': value, 'time': endTime }); this._param.exponentialRampToValueAtTime(value, endTime); return this; }; /** * Start exponentially approaching the target value at the given time with * a rate having the given time constant. * @param {number} value * @param {Time} startTime * @param {number} timeConstant * @returns {Tone.TimelineSignal} this */ Tone.TimelineSignal.prototype.setTargetAtTime = function (value, startTime, timeConstant) { value = this._fromUnits(value); value = Math.max(this._minOutput, value); startTime = this.toSeconds(startTime); this._events.addEvent({ 'type': Tone.TimelineSignal.Type.Target, 'value': value, 'time': startTime, 'constant': timeConstant }); this._param.setTargetAtTime(value, startTime, timeConstant); return this; }; /** * Cancels all scheduled parameter changes with times greater than or * equal to startTime. * * @param {Time} startTime * @returns {Tone.TimelineSignal} this */ Tone.TimelineSignal.prototype.cancelScheduledValues = function (after) { this._events.clear(after); this._param.cancelScheduledValues(this.toSeconds(after)); return this; }; /** * Sets the computed value at the given time. This provides * a point from which a linear or exponential curve * can be scheduled after. * @param {Time} time When to set the ramp point * @returns {Tone.TimelineSignal} this */ Tone.TimelineSignal.prototype.setRampPoint = function (time) { time = this.toSeconds(time); //get the value at the given time var val = this.getValueAtTime(time); this.setValueAtTime(val, time); return this; }; /** * Do a linear ramp to the given value between the start and finish times. * @param {Number} value The value to ramp to. * @param {Time} start The beginning anchor point to do the linear ramp * @param {Time} finish The ending anchor point by which the value of * the signal will equal the given value. * @returns {Tone.TimelineSignal} this */ Tone.TimelineSignal.prototype.linearRampToValueBetween = function (value, start, finish) { this.setRampPoint(start); this.linearRampToValueAtTime(value, finish); return this; }; /** * Do a exponential ramp to the given value between the start and finish times. * @param {Number} value The value to ramp to. * @param {Time} start The beginning anchor point to do the exponential ramp * @param {Time} finish The ending anchor point by which the value of * the signal will equal the given value. * @returns {Tone.TimelineSignal} this */ Tone.TimelineSignal.prototype.exponentialRampToValueBetween = function (value, start, finish) { this.setRampPoint(start); this.exponentialRampToValueAtTime(value, finish); return this; }; /////////////////////////////////////////////////////////////////////////// // GETTING SCHEDULED VALUES /////////////////////////////////////////////////////////////////////////// /** * Returns the value before or equal to the given time * @param {Number} time The time to query * @return {Object} The event at or before the given time. * @private */ Tone.TimelineSignal.prototype._searchBefore = function (time) { return this._events.getEvent(time); }; /** * The event after the given time * @param {Number} time The time to query. * @return {Object} The next event after the given time * @private */ Tone.TimelineSignal.prototype._searchAfter = function (time) { return this._events.getEventAfter(time); }; /** * Get the scheduled value at the given time. * @param {Number} time The time in seconds. * @return {Number} The scheduled value at the given time. */ Tone.TimelineSignal.prototype.getValueAtTime = function (time) { var after = this._searchAfter(time); var before = this._searchBefore(time); //if it was set by if (before === null) { return this._initial; } else if (before.type === Tone.TimelineSignal.Type.Target) { var previous = this._searchBefore(before.time - 0.0001); var previouVal; if (previous === null) { previouVal = this._initial; } else { previouVal = previous.value; } return this._exponentialApproach(before.time, previouVal, before.value, before.constant, time); } else if (after === null) { return before.value; } else if (after.type === Tone.TimelineSignal.Type.Linear) { return this._linearInterpolate(before.time, before.value, after.time, after.value, time); } else if (after.type === Tone.TimelineSignal.Type.Exponential) { return this._exponentialInterpolate(before.time, before.value, after.time, after.value, time); } else { return before.value; } return this._param.getValueAtTime(time); }; /** * When signals connect to other signals or AudioParams, * they take over the output value of that signal or AudioParam. * For all other nodes, the behavior is the same as a default connect. * * @override * @param {AudioParam|AudioNode|Tone.Signal|Tone} node * @param {number} [outputNumber=0] The output number to connect from. * @param {number} [inputNumber=0] The input number to connect to. * @returns {Tone.TimelineSignal} this * @method */ Tone.TimelineSignal.prototype.connect = Tone.SignalBase.prototype.connect; /////////////////////////////////////////////////////////////////////////// // AUTOMATION CURVE CALCULATIONS // MIT License, copyright (c) 2014 Jordan Santell /////////////////////////////////////////////////////////////////////////// /** * Calculates the the value along the curve produced by setTargetAtTime * @private */ Tone.TimelineSignal.prototype._exponentialApproach = function (t0, v0, v1, timeConstant, t) { return v1 + (v0 - v1) * Math.exp(-(t - t0) / timeConstant); }; /** * Calculates the the value along the curve produced by linearRampToValueAtTime * @private */ Tone.TimelineSignal.prototype._linearInterpolate = function (t0, v0, t1, v1, t) { return v0 + (v1 - v0) * ((t - t0) / (t1 - t0)); }; /** * Calculates the the value along the curve produced by exponentialRampToValueAtTime * @private */ Tone.TimelineSignal.prototype._exponentialInterpolate = function (t0, v0, t1, v1, t) { v0 = Math.max(this._minOutput, v0); return v0 * Math.pow(v1 / v0, (t - t0) / (t1 - t0)); }; /** * Clean up. * @return {Tone.TimelineSignal} this */ Tone.TimelineSignal.prototype.dispose = function () { Tone.Signal.prototype.dispose.call(this); Tone.Param.prototype.dispose.call(this); this._events.dispose(); this._events = null; }; return Tone.TimelineSignal; }); Module(function (Tone) { /** * @class Pow applies an exponent to the incoming signal. The incoming signal * must be AudioRange. * * @extends {Tone.SignalBase} * @constructor * @param {Positive} exp The exponent to apply to the incoming signal, must be at least 2. * @example * var pow = new Tone.Pow(2); * var sig = new Tone.Signal(0.5).connect(pow); * //output of pow is 0.25. */ Tone.Pow = function (exp) { /** * the exponent * @private * @type {number} */ this._exp = this.defaultArg(exp, 1); /** * @type {WaveShaperNode} * @private */ this._expScaler = this.input = this.output = new Tone.WaveShaper(this._expFunc(this._exp), 8192); }; Tone.extend(Tone.Pow, Tone.SignalBase); /** * The value of the exponent. * @memberOf Tone.Pow# * @type {number} * @name value */ Object.defineProperty(Tone.Pow.prototype, 'value', { get: function () { return this._exp; }, set: function (exp) { this._exp = exp; this._expScaler.setMap(this._expFunc(this._exp)); } }); /** * the function which maps the waveshaper * @param {number} exp * @return {function} * @private */ Tone.Pow.prototype._expFunc = function (exp) { return function (val) { return Math.pow(Math.abs(val), exp); }; }; /** * Clean up. * @returns {Tone.Pow} this */ Tone.Pow.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._expScaler.dispose(); this._expScaler = null; return this; }; return Tone.Pow; }); Module(function (Tone) { /** * @class Tone.Envelope is an [ADSR](https://en.wikipedia.org/wiki/Synthesizer#ADSR_envelope) * envelope generator. Tone.Envelope outputs a signal which * can be connected to an AudioParam or Tone.Signal. * * * @constructor * @extends {Tone} * @param {Time} [attack] The amount of time it takes for the envelope to go from * 0 to it's maximum value. * @param {Time} [decay] The period of time after the attack that it takes for the envelope * to fall to the sustain value. * @param {NormalRange} [sustain] The percent of the maximum value that the envelope rests at until * the release is triggered. * @param {Time} [release] The amount of time after the release is triggered it takes to reach 0. * @example * //an amplitude envelope * var gainNode = Tone.context.createGain(); * var env = new Tone.Envelope({ * "attack" : 0.1, * "decay" : 0.2, * "sustain" : 1, * "release" : 0.8, * }); * env.connect(gainNode.gain); */ Tone.Envelope = function () { //get all of the defaults var options = this.optionsObject(arguments, [ 'attack', 'decay', 'sustain', 'release' ], Tone.Envelope.defaults); /** * When triggerAttack is called, the attack time is the amount of * time it takes for the envelope to reach it's maximum value. * @type {Time} */ this.attack = options.attack; /** * After the attack portion of the envelope, the value will fall * over the duration of the decay time to it's sustain value. * @type {Time} */ this.decay = options.decay; /** * The sustain value is the value * which the envelope rests at after triggerAttack is * called, but before triggerRelease is invoked. * @type {NormalRange} */ this.sustain = options.sustain; /** * After triggerRelease is called, the envelope's * value will fall to it's miminum value over the * duration of the release time. * @type {Time} */ this.release = options.release; /** * the next time the envelope is at standby * @type {number} * @private */ this._attackCurve = Tone.Envelope.Type.Linear; /** * the next time the envelope is at standby * @type {number} * @private */ this._releaseCurve = Tone.Envelope.Type.Exponential; /** * the minimum output value * @type {number} * @private */ this._minOutput = 0.00001; /** * the signal * @type {Tone.TimelineSignal} * @private */ this._sig = this.output = new Tone.TimelineSignal(); this._sig.setValueAtTime(0, 0); //set the attackCurve initially this.attackCurve = options.attackCurve; this.releaseCurve = options.releaseCurve; }; Tone.extend(Tone.Envelope); /** * the default parameters * @static * @const */ Tone.Envelope.defaults = { 'attack': 0.01, 'decay': 0.1, 'sustain': 0.5, 'release': 1, 'attackCurve': 'linear', 'releaseCurve': 'exponential' }; /** * the envelope time multipler * @type {number} * @private */ Tone.Envelope.prototype._timeMult = 0.25; /** * Read the current value of the envelope. Useful for * syncronizing visual output to the envelope. * @memberOf Tone.Envelope# * @type {Number} * @name value * @readOnly */ Object.defineProperty(Tone.Envelope.prototype, 'value', { get: function () { return this._sig.value; } }); /** * The slope of the attack. Either "linear" or "exponential". * @memberOf Tone.Envelope# * @type {string} * @name attackCurve * @example * env.attackCurve = "linear"; */ Object.defineProperty(Tone.Envelope.prototype, 'attackCurve', { get: function () { return this._attackCurve; }, set: function (type) { if (type === Tone.Envelope.Type.Linear || type === Tone.Envelope.Type.Exponential) { this._attackCurve = type; } else { throw Error('attackCurve must be either "linear" or "exponential". Invalid type: ', type); } } }); /** * The slope of the Release. Either "linear" or "exponential". * @memberOf Tone.Envelope# * @type {string} * @name releaseCurve * @example * env.releaseCurve = "linear"; */ Object.defineProperty(Tone.Envelope.prototype, 'releaseCurve', { get: function () { return this._releaseCurve; }, set: function (type) { if (type === Tone.Envelope.Type.Linear || type === Tone.Envelope.Type.Exponential) { this._releaseCurve = type; } else { throw Error('releaseCurve must be either "linear" or "exponential". Invalid type: ', type); } } }); /** * Trigger the attack/decay portion of the ADSR envelope. * @param {Time} [time=now] When the attack should start. * @param {NormalRange} [velocity=1] The velocity of the envelope scales the vales. * number between 0-1 * @returns {Tone.Envelope} this * @example * //trigger the attack 0.5 seconds from now with a velocity of 0.2 * env.triggerAttack("+0.5", 0.2); */ Tone.Envelope.prototype.triggerAttack = function (time, velocity) { //to seconds var now = this.now() + this.blockTime; time = this.toSeconds(time, now); var attack = this.toSeconds(this.attack) + time; var decay = this.toSeconds(this.decay); velocity = this.defaultArg(velocity, 1); //attack if (this._attackCurve === Tone.Envelope.Type.Linear) { this._sig.linearRampToValueBetween(velocity, time, attack); } else { this._sig.exponentialRampToValueBetween(velocity, time, attack); } //decay this._sig.setTargetAtTime(this.sustain * velocity, attack, decay * this._timeMult); return this; }; /** * Triggers the release of the envelope. * @param {Time} [time=now] When the release portion of the envelope should start. * @returns {Tone.Envelope} this * @example * //trigger release immediately * env.triggerRelease(); */ Tone.Envelope.prototype.triggerRelease = function (time) { var now = this.now() + this.blockTime; time = this.toSeconds(time, now); var release = this.toSeconds(this.release); if (this._releaseCurve === Tone.Envelope.Type.Linear) { this._sig.linearRampToValueBetween(this._minOutput, time, time + release); } else { this._sig.setTargetAtTime(this._minOutput, time, release * this._timeMult); } return this; }; /** * triggerAttackRelease is shorthand for triggerAttack, then waiting * some duration, then triggerRelease. * @param {Time} duration The duration of the sustain. * @param {Time} [time=now] When the attack should be triggered. * @param {number} [velocity=1] The velocity of the envelope. * @returns {Tone.Envelope} this * @example * //trigger the attack and then the release after 0.6 seconds. * env.triggerAttackRelease(0.6); */ Tone.Envelope.prototype.triggerAttackRelease = function (duration, time, velocity) { time = this.toSeconds(time); this.triggerAttack(time, velocity); this.triggerRelease(time + this.toSeconds(duration)); return this; }; /** * Borrows the connect method from Tone.Signal. * @function * @private */ Tone.Envelope.prototype.connect = Tone.Signal.prototype.connect; /** * Disconnect and dispose. * @returns {Tone.Envelope} this */ Tone.Envelope.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._sig.dispose(); this._sig = null; return this; }; /** * The phase of the envelope. * @enum {string} */ Tone.Envelope.Phase = { Attack: 'attack', Decay: 'decay', Sustain: 'sustain', Release: 'release', Standby: 'standby' }; /** * The phase of the envelope. * @enum {string} */ Tone.Envelope.Type = { Linear: 'linear', Exponential: 'exponential' }; return Tone.Envelope; }); Module(function (Tone) { /** * @class Tone.AmplitudeEnvelope is a Tone.Envelope connected to a gain node. * Unlike Tone.Envelope, which outputs the envelope's value, Tone.AmplitudeEnvelope accepts * an audio signal as the input and will apply the envelope to the amplitude * of the signal. Read more about ADSR Envelopes on [Wikipedia](https://en.wikipedia.org/wiki/Synthesizer#ADSR_envelope). * * @constructor * @extends {Tone.Envelope} * @param {Time|Object} [attack] The amount of time it takes for the envelope to go from * 0 to it's maximum value. * @param {Time} [decay] The period of time after the attack that it takes for the envelope * to fall to the sustain value. * @param {NormalRange} [sustain] The percent of the maximum value that the envelope rests at until * the release is triggered. * @param {Time} [release] The amount of time after the release is triggered it takes to reach 0. * @example * var ampEnv = new Tone.AmplitudeEnvelope({ * "attack": 0.1, * "decay": 0.2, * "sustain": 1.0, * "release": 0.8 * }).toMaster(); * //create an oscillator and connect it * var osc = new Tone.Oscillator().connect(ampEnv).start(); * //trigger the envelopes attack and release "8t" apart * ampEnv.triggerAttackRelease("8t"); */ Tone.AmplitudeEnvelope = function () { Tone.Envelope.apply(this, arguments); /** * the input node * @type {GainNode} * @private */ this.input = this.output = new Tone.Gain(); this._sig.connect(this.output.gain); }; Tone.extend(Tone.AmplitudeEnvelope, Tone.Envelope); /** * Clean up * @return {Tone.AmplitudeEnvelope} this */ Tone.AmplitudeEnvelope.prototype.dispose = function () { this.input.dispose(); this.input = null; Tone.Envelope.prototype.dispose.call(this); return this; }; return Tone.AmplitudeEnvelope; }); Module(function (Tone) { /** * @class Wrapper around the native Web Audio's * [AnalyserNode](http://webaudio.github.io/web-audio-api/#idl-def-AnalyserNode). * Extracts FFT or Waveform data from the incoming signal. * @extends {Tone} * @param {Number=} size The size of the FFT. Value must be a power of * two in the range 32 to 32768. * @param {String=} type The return type of the analysis, either "fft", or "waveform". */ Tone.Analyser = function () { var options = this.optionsObject(arguments, [ 'size', 'type' ], Tone.Analyser.defaults); /** * The analyser node. * @private * @type {AnalyserNode} */ this._analyser = this.input = this.context.createAnalyser(); /** * The analysis type * @type {String} * @private */ this._type = options.type; /** * The return type of the analysis * @type {String} * @private */ this._returnType = options.returnType; /** * The buffer that the FFT data is written to * @type {TypedArray} * @private */ this._buffer = null; //set the values initially this.size = options.size; this.type = options.type; this.returnType = options.returnType; this.minDecibels = options.minDecibels; this.maxDecibels = options.maxDecibels; }; Tone.extend(Tone.Analyser); /** * The default values. * @type {Object} * @const */ Tone.Analyser.defaults = { 'size': 2048, 'returnType': 'byte', 'type': 'fft', 'smoothing': 0.8, 'maxDecibels': -30, 'minDecibels': -100 }; /** * Possible return types of Tone.Analyser.value * @enum {String} */ Tone.Analyser.Type = { Waveform: 'waveform', FFT: 'fft' }; /** * Possible return types of Tone.Analyser.value * @enum {String} */ Tone.Analyser.ReturnType = { Byte: 'byte', Float: 'float' }; /** * Run the analysis given the current settings and return the * result as a TypedArray. * @returns {TypedArray} */ Tone.Analyser.prototype.analyse = function () { if (this._type === Tone.Analyser.Type.FFT) { if (this._returnType === Tone.Analyser.ReturnType.Byte) { this._analyser.getByteFrequencyData(this._buffer); } else { this._analyser.getFloatFrequencyData(this._buffer); } } else if (this._type === Tone.Analyser.Type.Waveform) { if (this._returnType === Tone.Analyser.ReturnType.Byte) { this._analyser.getByteTimeDomainData(this._buffer); } else { this._analyser.getFloatTimeDomainData(this._buffer); } } return this._buffer; }; /** * The size of analysis. This must be a power of two in the range 32 to 32768. * @memberOf Tone.Analyser# * @type {Number} * @name size */ Object.defineProperty(Tone.Analyser.prototype, 'size', { get: function () { return this._analyser.frequencyBinCount; }, set: function (size) { this._analyser.fftSize = size * 2; this.type = this._type; } }); /** * The return type of Tone.Analyser.value, either "byte" or "float". * When the type is set to "byte" the range of values returned in the array * are between 0-255, when set to "float" the values are between 0-1. * @memberOf Tone.Analyser# * @type {String} * @name type */ Object.defineProperty(Tone.Analyser.prototype, 'returnType', { get: function () { return this._returnType; }, set: function (type) { if (type === Tone.Analyser.ReturnType.Byte) { this._buffer = new Uint8Array(this._analyser.frequencyBinCount); } else if (type === Tone.Analyser.ReturnType.Float) { this._buffer = new Float32Array(this._analyser.frequencyBinCount); } else { throw new Error('Invalid Return Type: ' + type); } this._returnType = type; } }); /** * The analysis function returned by Tone.Analyser.value, either "fft" or "waveform". * @memberOf Tone.Analyser# * @type {String} * @name type */ Object.defineProperty(Tone.Analyser.prototype, 'type', { get: function () { return this._type; }, set: function (type) { if (type !== Tone.Analyser.Type.Waveform && type !== Tone.Analyser.Type.FFT) { throw new Error('Invalid Type: ' + type); } this._type = type; } }); /** * 0 represents no time averaging with the last analysis frame. * @memberOf Tone.Analyser# * @type {NormalRange} * @name smoothing */ Object.defineProperty(Tone.Analyser.prototype, 'smoothing', { get: function () { return this._analyser.smoothingTimeConstant; }, set: function (val) { this._analyser.smoothingTimeConstant = val; } }); /** * The smallest decibel value which is analysed by the FFT. * @memberOf Tone.Analyser# * @type {Decibels} * @name minDecibels */ Object.defineProperty(Tone.Analyser.prototype, 'minDecibels', { get: function () { return this._analyser.minDecibels; }, set: function (val) { this._analyser.minDecibels = val; } }); /** * The largest decibel value which is analysed by the FFT. * @memberOf Tone.Analyser# * @type {Decibels} * @name maxDecibels */ Object.defineProperty(Tone.Analyser.prototype, 'maxDecibels', { get: function () { return this._analyser.maxDecibels; }, set: function (val) { this._analyser.maxDecibels = val; } }); /** * Clean up. * @return {Tone.Analyser} this */ Tone.Analyser.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._analyser.disconnect(); this._analyser = null; this._buffer = null; }; return Tone.Analyser; }); Module(function (Tone) { /** * @class Tone.Compressor is a thin wrapper around the Web Audio * [DynamicsCompressorNode](http://webaudio.github.io/web-audio-api/#the-dynamicscompressornode-interface). * Compression reduces the volume of loud sounds or amplifies quiet sounds * by narrowing or "compressing" an audio signal's dynamic range. * Read more on [Wikipedia](https://en.wikipedia.org/wiki/Dynamic_range_compression). * * @extends {Tone} * @constructor * @param {Decibels|Object} [threshold] The value above which the compression starts to be applied. * @param {Positive} [ratio] The gain reduction ratio. * @example * var comp = new Tone.Compressor(-30, 3); */ Tone.Compressor = function () { var options = this.optionsObject(arguments, [ 'threshold', 'ratio' ], Tone.Compressor.defaults); /** * the compressor node * @type {DynamicsCompressorNode} * @private */ this._compressor = this.input = this.output = this.context.createDynamicsCompressor(); /** * the threshold vaue * @type {Decibels} * @signal */ this.threshold = this._compressor.threshold; /** * The attack parameter * @type {Time} * @signal */ this.attack = new Tone.Param(this._compressor.attack, Tone.Type.Time); /** * The release parameter * @type {Time} * @signal */ this.release = new Tone.Param(this._compressor.release, Tone.Type.Time); /** * The knee parameter * @type {Decibels} * @signal */ this.knee = this._compressor.knee; /** * The ratio value * @type {Number} * @signal */ this.ratio = this._compressor.ratio; //set the defaults this._readOnly([ 'knee', 'release', 'attack', 'ratio', 'threshold' ]); this.set(options); }; Tone.extend(Tone.Compressor); /** * @static * @const * @type {Object} */ Tone.Compressor.defaults = { 'ratio': 12, 'threshold': -24, 'release': 0.25, 'attack': 0.003, 'knee': 30 }; /** * clean up * @returns {Tone.Compressor} this */ Tone.Compressor.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable([ 'knee', 'release', 'attack', 'ratio', 'threshold' ]); this._compressor.disconnect(); this._compressor = null; this.attack.dispose(); this.attack = null; this.release.dispose(); this.release = null; this.threshold = null; this.ratio = null; this.knee = null; return this; }; return Tone.Compressor; }); Module(function (Tone) { /** * @class Add a signal and a number or two signals. When no value is * passed into the constructor, Tone.Add will sum input[0] * and input[1]. If a value is passed into the constructor, * the it will be added to the input. * * @constructor * @extends {Tone.Signal} * @param {number=} value If no value is provided, Tone.Add will sum the first * and second inputs. * @example * var signal = new Tone.Signal(2); * var add = new Tone.Add(2); * signal.connect(add); * //the output of add equals 4 * @example * //if constructed with no arguments * //it will add the first and second inputs * var add = new Tone.Add(); * var sig0 = new Tone.Signal(3).connect(add, 0, 0); * var sig1 = new Tone.Signal(4).connect(add, 0, 1); * //the output of add equals 7. */ Tone.Add = function (value) { Tone.call(this, 2, 0); /** * the summing node * @type {GainNode} * @private */ this._sum = this.input[0] = this.input[1] = this.output = this.context.createGain(); /** * @private * @type {Tone.Signal} */ this._param = this.input[1] = new Tone.Signal(value); this._param.connect(this._sum); }; Tone.extend(Tone.Add, Tone.Signal); /** * Clean up. * @returns {Tone.Add} this */ Tone.Add.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._sum.disconnect(); this._sum = null; this._param.dispose(); this._param = null; return this; }; return Tone.Add; }); Module(function (Tone) { /** * @class Multiply two incoming signals. Or, if a number is given in the constructor, * multiplies the incoming signal by that value. * * @constructor * @extends {Tone.Signal} * @param {number=} value Constant value to multiple. If no value is provided, * it will return the product of the first and second inputs * @example * var mult = new Tone.Multiply(); * var sigA = new Tone.Signal(3); * var sigB = new Tone.Signal(4); * sigA.connect(mult, 0, 0); * sigB.connect(mult, 0, 1); * //output of mult is 12. * @example * var mult = new Tone.Multiply(10); * var sig = new Tone.Signal(2).connect(mult); * //the output of mult is 20. */ Tone.Multiply = function (value) { Tone.call(this, 2, 0); /** * the input node is the same as the output node * it is also the GainNode which handles the scaling of incoming signal * * @type {GainNode} * @private */ this._mult = this.input[0] = this.output = this.context.createGain(); /** * the scaling parameter * @type {AudioParam} * @private */ this._param = this.input[1] = this.output.gain; this._param.value = this.defaultArg(value, 0); }; Tone.extend(Tone.Multiply, Tone.Signal); /** * clean up * @returns {Tone.Multiply} this */ Tone.Multiply.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._mult.disconnect(); this._mult = null; this._param = null; return this; }; return Tone.Multiply; }); Module(function (Tone) { /** * @class Negate the incoming signal. i.e. an input signal of 10 will output -10 * * @constructor * @extends {Tone.SignalBase} * @example * var neg = new Tone.Negate(); * var sig = new Tone.Signal(-2).connect(neg); * //output of neg is positive 2. */ Tone.Negate = function () { /** * negation is done by multiplying by -1 * @type {Tone.Multiply} * @private */ this._multiply = this.input = this.output = new Tone.Multiply(-1); }; Tone.extend(Tone.Negate, Tone.SignalBase); /** * clean up * @returns {Tone.Negate} this */ Tone.Negate.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._multiply.dispose(); this._multiply = null; return this; }; return Tone.Negate; }); Module(function (Tone) { /** * @class Subtract the signal connected to input[1] from the signal connected * to input[0]. If an argument is provided in the constructor, the * signals .value will be subtracted from the incoming signal. * * @extends {Tone.Signal} * @constructor * @param {number=} value The value to subtract from the incoming signal. If the value * is omitted, it will subtract the second signal from the first. * @example * var sub = new Tone.Subtract(1); * var sig = new Tone.Signal(4).connect(sub); * //the output of sub is 3. * @example * var sub = new Tone.Subtract(); * var sigA = new Tone.Signal(10); * var sigB = new Tone.Signal(2.5); * sigA.connect(sub, 0, 0); * sigB.connect(sub, 0, 1); * //output of sub is 7.5 */ Tone.Subtract = function (value) { Tone.call(this, 2, 0); /** * the summing node * @type {GainNode} * @private */ this._sum = this.input[0] = this.output = this.context.createGain(); /** * negate the input of the second input before connecting it * to the summing node. * @type {Tone.Negate} * @private */ this._neg = new Tone.Negate(); /** * the node where the value is set * @private * @type {Tone.Signal} */ this._param = this.input[1] = new Tone.Signal(value); this._param.chain(this._neg, this._sum); }; Tone.extend(Tone.Subtract, Tone.Signal); /** * Clean up. * @returns {Tone.SignalBase} this */ Tone.Subtract.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._neg.dispose(); this._neg = null; this._sum.disconnect(); this._sum = null; this._param.dispose(); this._param = null; return this; }; return Tone.Subtract; }); Module(function (Tone) { /** * @class GreaterThanZero outputs 1 when the input is strictly greater than zero * * @constructor * @extends {Tone.SignalBase} * @example * var gt0 = new Tone.GreaterThanZero(); * var sig = new Tone.Signal(0.01).connect(gt0); * //the output of gt0 is 1. * sig.value = 0; * //the output of gt0 is 0. */ Tone.GreaterThanZero = function () { /** * @type {Tone.WaveShaper} * @private */ this._thresh = this.output = new Tone.WaveShaper(function (val) { if (val <= 0) { return 0; } else { return 1; } }); /** * scale the first thresholded signal by a large value. * this will help with values which are very close to 0 * @type {Tone.Multiply} * @private */ this._scale = this.input = new Tone.Multiply(10000); //connections this._scale.connect(this._thresh); }; Tone.extend(Tone.GreaterThanZero, Tone.SignalBase); /** * dispose method * @returns {Tone.GreaterThanZero} this */ Tone.GreaterThanZero.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._scale.dispose(); this._scale = null; this._thresh.dispose(); this._thresh = null; return this; }; return Tone.GreaterThanZero; }); Module(function (Tone) { /** * @class EqualZero outputs 1 when the input is equal to * 0 and outputs 0 otherwise. * * @constructor * @extends {Tone.SignalBase} * @example * var eq0 = new Tone.EqualZero(); * var sig = new Tone.Signal(0).connect(eq0); * //the output of eq0 is 1. */ Tone.EqualZero = function () { /** * scale the incoming signal by a large factor * @private * @type {Tone.Multiply} */ this._scale = this.input = new Tone.Multiply(10000); /** * @type {Tone.WaveShaper} * @private */ this._thresh = new Tone.WaveShaper(function (val) { if (val === 0) { return 1; } else { return 0; } }, 128); /** * threshold the output so that it's 0 or 1 * @type {Tone.GreaterThanZero} * @private */ this._gtz = this.output = new Tone.GreaterThanZero(); //connections this._scale.chain(this._thresh, this._gtz); }; Tone.extend(Tone.EqualZero, Tone.SignalBase); /** * Clean up. * @returns {Tone.EqualZero} this */ Tone.EqualZero.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._gtz.dispose(); this._gtz = null; this._scale.dispose(); this._scale = null; this._thresh.dispose(); this._thresh = null; return this; }; return Tone.EqualZero; }); Module(function (Tone) { /** * @class Output 1 if the signal is equal to the value, otherwise outputs 0. * Can accept two signals if connected to inputs 0 and 1. * * @constructor * @extends {Tone.SignalBase} * @param {number=} value The number to compare the incoming signal to * @example * var eq = new Tone.Equal(3); * var sig = new Tone.Signal(3).connect(eq); * //the output of eq is 1. */ Tone.Equal = function (value) { Tone.call(this, 2, 0); /** * subtract the value from the incoming signal * * @type {Tone.Add} * @private */ this._sub = this.input[0] = new Tone.Subtract(value); /** * @type {Tone.EqualZero} * @private */ this._equals = this.output = new Tone.EqualZero(); this._sub.connect(this._equals); this.input[1] = this._sub.input[1]; }; Tone.extend(Tone.Equal, Tone.SignalBase); /** * The value to compare to the incoming signal. * @memberOf Tone.Equal# * @type {number} * @name value */ Object.defineProperty(Tone.Equal.prototype, 'value', { get: function () { return this._sub.value; }, set: function (value) { this._sub.value = value; } }); /** * Clean up. * @returns {Tone.Equal} this */ Tone.Equal.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._equals.dispose(); this._equals = null; this._sub.dispose(); this._sub = null; return this; }; return Tone.Equal; }); Module(function (Tone) { /** * @class Select between any number of inputs, sending the one * selected by the gate signal to the output * * @constructor * @extends {Tone.SignalBase} * @param {number} [sourceCount=2] the number of inputs the switch accepts * @example * var sel = new Tone.Select(2); * var sigA = new Tone.Signal(10).connect(sel, 0, 0); * var sigB = new Tone.Signal(20).connect(sel, 0, 1); * sel.gate.value = 0; * //sel outputs 10 (the value of sigA); * sel.gate.value = 1; * //sel outputs 20 (the value of sigB); */ Tone.Select = function (sourceCount) { sourceCount = this.defaultArg(sourceCount, 2); Tone.call(this, sourceCount, 1); /** * the control signal * @type {Number} * @signal */ this.gate = new Tone.Signal(0); this._readOnly('gate'); //make all the inputs and connect them for (var i = 0; i < sourceCount; i++) { var switchGate = new SelectGate(i); this.input[i] = switchGate; this.gate.connect(switchGate.selecter); switchGate.connect(this.output); } }; Tone.extend(Tone.Select, Tone.SignalBase); /** * Open a specific input and close the others. * @param {number} which The gate to open. * @param {Time} [time=now] The time when the switch will open * @returns {Tone.Select} this * @example * //open input 1 in a half second from now * sel.select(1, "+0.5"); */ Tone.Select.prototype.select = function (which, time) { //make sure it's an integer which = Math.floor(which); this.gate.setValueAtTime(which, this.toSeconds(time)); return this; }; /** * Clean up. * @returns {Tone.Select} this */ Tone.Select.prototype.dispose = function () { this._writable('gate'); this.gate.dispose(); this.gate = null; for (var i = 0; i < this.input.length; i++) { this.input[i].dispose(); this.input[i] = null; } Tone.prototype.dispose.call(this); return this; }; ////////////START HELPER//////////// /** * helper class for Tone.Select representing a single gate * @constructor * @extends {Tone} * @private */ var SelectGate = function (num) { /** * the selector * @type {Tone.Equal} */ this.selecter = new Tone.Equal(num); /** * the gate * @type {GainNode} */ this.gate = this.input = this.output = this.context.createGain(); //connect the selecter to the gate gain this.selecter.connect(this.gate.gain); }; Tone.extend(SelectGate); /** * clean up * @private */ SelectGate.prototype.dispose = function () { Tone.prototype.dispose.call(this); this.selecter.dispose(); this.gate.disconnect(); this.selecter = null; this.gate = null; }; ////////////END HELPER//////////// //return Tone.Select return Tone.Select; }); Module(function (Tone) { /** * @class IfThenElse has three inputs. When the first input (if) is true (i.e. === 1), * then it will pass the second input (then) through to the output, otherwise, * if it's not true (i.e. === 0) then it will pass the third input (else) * through to the output. * * @extends {Tone.SignalBase} * @constructor * @example * var ifThenElse = new Tone.IfThenElse(); * var ifSignal = new Tone.Signal(1).connect(ifThenElse.if); * var pwmOsc = new Tone.PWMOscillator().connect(ifThenElse.then); * var pulseOsc = new Tone.PulseOscillator().connect(ifThenElse.else); * //ifThenElse outputs pwmOsc * signal.value = 0; * //now ifThenElse outputs pulseOsc */ Tone.IfThenElse = function () { Tone.call(this, 3, 0); /** * the selector node which is responsible for the routing * @type {Tone.Select} * @private */ this._selector = this.output = new Tone.Select(2); //the input mapping this.if = this.input[0] = this._selector.gate; this.then = this.input[1] = this._selector.input[1]; this.else = this.input[2] = this._selector.input[0]; }; Tone.extend(Tone.IfThenElse, Tone.SignalBase); /** * clean up * @returns {Tone.IfThenElse} this */ Tone.IfThenElse.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._selector.dispose(); this._selector = null; this.if = null; this.then = null; this.else = null; return this; }; return Tone.IfThenElse; }); Module(function (Tone) { /** * @class [OR](https://en.wikipedia.org/wiki/OR_gate) * the inputs together. True if at least one of the inputs is true. * * @extends {Tone.SignalBase} * @constructor * @param {number} [inputCount=2] the input count * @example * var or = new Tone.OR(2); * var sigA = new Tone.Signal(0)connect(or, 0, 0); * var sigB = new Tone.Signal(1)connect(or, 0, 1); * //output of or is 1 because at least * //one of the inputs is equal to 1. */ Tone.OR = function (inputCount) { inputCount = this.defaultArg(inputCount, 2); Tone.call(this, inputCount, 0); /** * a private summing node * @type {GainNode} * @private */ this._sum = this.context.createGain(); /** * @type {Tone.Equal} * @private */ this._gtz = this.output = new Tone.GreaterThanZero(); //make each of the inputs an alias for (var i = 0; i < inputCount; i++) { this.input[i] = this._sum; } this._sum.connect(this._gtz); }; Tone.extend(Tone.OR, Tone.SignalBase); /** * clean up * @returns {Tone.OR} this */ Tone.OR.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._gtz.dispose(); this._gtz = null; this._sum.disconnect(); this._sum = null; return this; }; return Tone.OR; }); Module(function (Tone) { /** * @class [AND](https://en.wikipedia.org/wiki/Logical_conjunction) * returns 1 when all the inputs are equal to 1 and returns 0 otherwise. * * @extends {Tone.SignalBase} * @constructor * @param {number} [inputCount=2] the number of inputs. NOTE: all inputs are * connected to the single AND input node * @example * var and = new Tone.AND(2); * var sigA = new Tone.Signal(0).connect(and, 0, 0); * var sigB = new Tone.Signal(1).connect(and, 0, 1); * //the output of and is 0. */ Tone.AND = function (inputCount) { inputCount = this.defaultArg(inputCount, 2); Tone.call(this, inputCount, 0); /** * @type {Tone.Equal} * @private */ this._equals = this.output = new Tone.Equal(inputCount); //make each of the inputs an alias for (var i = 0; i < inputCount; i++) { this.input[i] = this._equals; } }; Tone.extend(Tone.AND, Tone.SignalBase); /** * clean up * @returns {Tone.AND} this */ Tone.AND.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._equals.dispose(); this._equals = null; return this; }; return Tone.AND; }); Module(function (Tone) { /** * @class Just an alias for Tone.EqualZero, but has the same effect as a NOT operator. * Outputs 1 when input equals 0. * * @constructor * @extends {Tone.SignalBase} * @example * var not = new Tone.NOT(); * var sig = new Tone.Signal(1).connect(not); * //output of not equals 0. * sig.value = 0; * //output of not equals 1. */ Tone.NOT = Tone.EqualZero; return Tone.NOT; }); Module(function (Tone) { /** * @class Output 1 if the signal is greater than the value, otherwise outputs 0. * can compare two signals or a signal and a number. * * @constructor * @extends {Tone.Signal} * @param {number} [value=0] the value to compare to the incoming signal * @example * var gt = new Tone.GreaterThan(2); * var sig = new Tone.Signal(4).connect(gt); * //output of gt is equal 1. */ Tone.GreaterThan = function (value) { Tone.call(this, 2, 0); /** * subtract the amount from the incoming signal * @type {Tone.Subtract} * @private */ this._param = this.input[0] = new Tone.Subtract(value); this.input[1] = this._param.input[1]; /** * compare that amount to zero * @type {Tone.GreaterThanZero} * @private */ this._gtz = this.output = new Tone.GreaterThanZero(); //connect this._param.connect(this._gtz); }; Tone.extend(Tone.GreaterThan, Tone.Signal); /** * dispose method * @returns {Tone.GreaterThan} this */ Tone.GreaterThan.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._param.dispose(); this._param = null; this._gtz.dispose(); this._gtz = null; return this; }; return Tone.GreaterThan; }); Module(function (Tone) { /** * @class Output 1 if the signal is less than the value, otherwise outputs 0. * Can compare two signals or a signal and a number. * * @constructor * @extends {Tone.Signal} * @param {number=} value The value to compare to the incoming signal. * If no value is provided, it will compare * input[0] and input[1] * @example * var lt = new Tone.LessThan(2); * var sig = new Tone.Signal(-1).connect(lt); * //if (sig < 2) lt outputs 1 */ Tone.LessThan = function (value) { Tone.call(this, 2, 0); /** * negate the incoming signal * @type {Tone.Negate} * @private */ this._neg = this.input[0] = new Tone.Negate(); /** * input < value === -input > -value * @type {Tone.GreaterThan} * @private */ this._gt = this.output = new Tone.GreaterThan(); /** * negate the signal coming from the second input * @private * @type {Tone.Negate} */ this._rhNeg = new Tone.Negate(); /** * the node where the value is set * @private * @type {Tone.Signal} */ this._param = this.input[1] = new Tone.Signal(value); //connect this._neg.connect(this._gt); this._param.connect(this._rhNeg); this._rhNeg.connect(this._gt, 0, 1); }; Tone.extend(Tone.LessThan, Tone.Signal); /** * Clean up. * @returns {Tone.LessThan} this */ Tone.LessThan.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._neg.dispose(); this._neg = null; this._gt.dispose(); this._gt = null; this._rhNeg.dispose(); this._rhNeg = null; this._param.dispose(); this._param = null; return this; }; return Tone.LessThan; }); Module(function (Tone) { /** * @class Return the absolute value of an incoming signal. * * @constructor * @extends {Tone.SignalBase} * @example * var signal = new Tone.Signal(-1); * var abs = new Tone.Abs(); * signal.connect(abs); * //the output of abs is 1. */ Tone.Abs = function () { Tone.call(this, 1, 0); /** * @type {Tone.LessThan} * @private */ this._ltz = new Tone.LessThan(0); /** * @type {Tone.Select} * @private */ this._switch = this.output = new Tone.Select(2); /** * @type {Tone.Negate} * @private */ this._negate = new Tone.Negate(); //two signal paths, positive and negative this.input.connect(this._switch, 0, 0); this.input.connect(this._negate); this._negate.connect(this._switch, 0, 1); //the control signal this.input.chain(this._ltz, this._switch.gate); }; Tone.extend(Tone.Abs, Tone.SignalBase); /** * dispose method * @returns {Tone.Abs} this */ Tone.Abs.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._switch.dispose(); this._switch = null; this._ltz.dispose(); this._ltz = null; this._negate.dispose(); this._negate = null; return this; }; return Tone.Abs; }); Module(function (Tone) { /** * @class Outputs the greater of two signals. If a number is provided in the constructor * it will use that instead of the signal. * * @constructor * @extends {Tone.Signal} * @param {number=} max Max value if provided. if not provided, it will use the * signal value from input 1. * @example * var max = new Tone.Max(2); * var sig = new Tone.Signal(3).connect(max); * //max outputs 3 * sig.value = 1; * //max outputs 2 * @example * var max = new Tone.Max(); * var sigA = new Tone.Signal(3); * var sigB = new Tone.Signal(4); * sigA.connect(max, 0, 0); * sigB.connect(max, 0, 1); * //output of max is 4. */ Tone.Max = function (max) { Tone.call(this, 2, 0); this.input[0] = this.context.createGain(); /** * the max signal * @type {Tone.Signal} * @private */ this._param = this.input[1] = new Tone.Signal(max); /** * @type {Tone.Select} * @private */ this._ifThenElse = this.output = new Tone.IfThenElse(); /** * @type {Tone.Select} * @private */ this._gt = new Tone.GreaterThan(); //connections this.input[0].chain(this._gt, this._ifThenElse.if); this.input[0].connect(this._ifThenElse.then); this._param.connect(this._ifThenElse.else); this._param.connect(this._gt, 0, 1); }; Tone.extend(Tone.Max, Tone.Signal); /** * Clean up. * @returns {Tone.Max} this */ Tone.Max.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._param.dispose(); this._ifThenElse.dispose(); this._gt.dispose(); this._param = null; this._ifThenElse = null; this._gt = null; return this; }; return Tone.Max; }); Module(function (Tone) { /** * @class Outputs the lesser of two signals. If a number is given * in the constructor, it will use a signal and a number. * * @constructor * @extends {Tone.Signal} * @param {number} min The minimum to compare to the incoming signal * @example * var min = new Tone.Min(2); * var sig = new Tone.Signal(3).connect(min); * //min outputs 2 * sig.value = 1; * //min outputs 1 * @example * var min = new Tone.Min(); * var sigA = new Tone.Signal(3); * var sigB = new Tone.Signal(4); * sigA.connect(min, 0, 0); * sigB.connect(min, 0, 1); * //output of min is 3. */ Tone.Min = function (min) { Tone.call(this, 2, 0); this.input[0] = this.context.createGain(); /** * @type {Tone.Select} * @private */ this._ifThenElse = this.output = new Tone.IfThenElse(); /** * @type {Tone.Select} * @private */ this._lt = new Tone.LessThan(); /** * the min signal * @type {Tone.Signal} * @private */ this._param = this.input[1] = new Tone.Signal(min); //connections this.input[0].chain(this._lt, this._ifThenElse.if); this.input[0].connect(this._ifThenElse.then); this._param.connect(this._ifThenElse.else); this._param.connect(this._lt, 0, 1); }; Tone.extend(Tone.Min, Tone.Signal); /** * clean up * @returns {Tone.Min} this */ Tone.Min.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._param.dispose(); this._ifThenElse.dispose(); this._lt.dispose(); this._param = null; this._ifThenElse = null; this._lt = null; return this; }; return Tone.Min; }); Module(function (Tone) { /** * @class Signal-rate modulo operator. Only works in AudioRange [-1, 1] and for modulus * values in the NormalRange. * * @constructor * @extends {Tone.SignalBase} * @param {NormalRange} modulus The modulus to apply. * @example * var mod = new Tone.Modulo(0.2) * var sig = new Tone.Signal(0.5).connect(mod); * //mod outputs 0.1 */ Tone.Modulo = function (modulus) { Tone.call(this, 1, 1); /** * A waveshaper gets the integer multiple of * the input signal and the modulus. * @private * @type {Tone.WaveShaper} */ this._shaper = new Tone.WaveShaper(Math.pow(2, 16)); /** * the integer multiple is multiplied by the modulus * @type {Tone.Multiply} * @private */ this._multiply = new Tone.Multiply(); /** * and subtracted from the input signal * @type {Tone.Subtract} * @private */ this._subtract = this.output = new Tone.Subtract(); /** * the modulus signal * @type {Tone.Signal} * @private */ this._modSignal = new Tone.Signal(modulus); //connections this.input.fan(this._shaper, this._subtract); this._modSignal.connect(this._multiply, 0, 0); this._shaper.connect(this._multiply, 0, 1); this._multiply.connect(this._subtract, 0, 1); this._setWaveShaper(modulus); }; Tone.extend(Tone.Modulo, Tone.SignalBase); /** * @param {number} mod the modulus to apply * @private */ Tone.Modulo.prototype._setWaveShaper = function (mod) { this._shaper.setMap(function (val) { var multiple = Math.floor((val + 0.0001) / mod); return multiple; }); }; /** * The modulus value. * @memberOf Tone.Modulo# * @type {NormalRange} * @name value */ Object.defineProperty(Tone.Modulo.prototype, 'value', { get: function () { return this._modSignal.value; }, set: function (mod) { this._modSignal.value = mod; this._setWaveShaper(mod); } }); /** * clean up * @returns {Tone.Modulo} this */ Tone.Modulo.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._shaper.dispose(); this._shaper = null; this._multiply.dispose(); this._multiply = null; this._subtract.dispose(); this._subtract = null; this._modSignal.dispose(); this._modSignal = null; return this; }; return Tone.Modulo; }); Module(function (Tone) { /** * @class AudioToGain converts an input in AudioRange [-1,1] to NormalRange [0,1]. * See Tone.GainToAudio. * * @extends {Tone.SignalBase} * @constructor * @example * var a2g = new Tone.AudioToGain(); */ Tone.AudioToGain = function () { /** * @type {WaveShaperNode} * @private */ this._norm = this.input = this.output = new Tone.WaveShaper(function (x) { return (x + 1) / 2; }); }; Tone.extend(Tone.AudioToGain, Tone.SignalBase); /** * clean up * @returns {Tone.AudioToGain} this */ Tone.AudioToGain.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._norm.dispose(); this._norm = null; return this; }; return Tone.AudioToGain; }); Module(function (Tone) { /** * @class Evaluate an expression at audio rate.

* Parsing code modified from https://code.google.com/p/tapdigit/ * Copyright 2011 2012 Ariya Hidayat, New BSD License * * @extends {Tone.SignalBase} * @constructor * @param {string} expr the expression to generate * @example * //adds the signals from input[0] and input[1]. * var expr = new Tone.Expr("$0 + $1"); */ Tone.Expr = function () { var expr = this._replacements(Array.prototype.slice.call(arguments)); var inputCount = this._parseInputs(expr); /** * hold onto all of the nodes for disposal * @type {Array} * @private */ this._nodes = []; /** * The inputs. The length is determined by the expression. * @type {Array} */ this.input = new Array(inputCount); //create a gain for each input for (var i = 0; i < inputCount; i++) { this.input[i] = this.context.createGain(); } //parse the syntax tree var tree = this._parseTree(expr); //evaluate the results var result; try { result = this._eval(tree); } catch (e) { this._disposeNodes(); throw new Error('Could evaluate expression: ' + expr); } /** * The output node is the result of the expression * @type {Tone} */ this.output = result; }; Tone.extend(Tone.Expr, Tone.SignalBase); //some helpers to cut down the amount of code function applyBinary(Constructor, args, self) { var op = new Constructor(); self._eval(args[0]).connect(op, 0, 0); self._eval(args[1]).connect(op, 0, 1); return op; } function applyUnary(Constructor, args, self) { var op = new Constructor(); self._eval(args[0]).connect(op, 0, 0); return op; } function getNumber(arg) { return arg ? parseFloat(arg) : undefined; } function literalNumber(arg) { return arg && arg.args ? parseFloat(arg.args) : undefined; } /* * the Expressions that Tone.Expr can parse. * * each expression belongs to a group and contains a regexp * for selecting the operator as well as that operators method * * @type {Object} * @private */ Tone.Expr._Expressions = { //values 'value': { 'signal': { regexp: /^\d+\.\d+|^\d+/, method: function (arg) { var sig = new Tone.Signal(getNumber(arg)); return sig; } }, 'input': { regexp: /^\$\d/, method: function (arg, self) { return self.input[getNumber(arg.substr(1))]; } } }, //syntactic glue 'glue': { '(': { regexp: /^\(/ }, ')': { regexp: /^\)/ }, ',': { regexp: /^,/ } }, //functions 'func': { 'abs': { regexp: /^abs/, method: applyUnary.bind(this, Tone.Abs) }, 'min': { regexp: /^min/, method: applyBinary.bind(this, Tone.Min) }, 'max': { regexp: /^max/, method: applyBinary.bind(this, Tone.Max) }, 'if': { regexp: /^if/, method: function (args, self) { var op = new Tone.IfThenElse(); self._eval(args[0]).connect(op.if); self._eval(args[1]).connect(op.then); self._eval(args[2]).connect(op.else); return op; } }, 'gt0': { regexp: /^gt0/, method: applyUnary.bind(this, Tone.GreaterThanZero) }, 'eq0': { regexp: /^eq0/, method: applyUnary.bind(this, Tone.EqualZero) }, 'mod': { regexp: /^mod/, method: function (args, self) { var modulus = literalNumber(args[1]); var op = new Tone.Modulo(modulus); self._eval(args[0]).connect(op); return op; } }, 'pow': { regexp: /^pow/, method: function (args, self) { var exp = literalNumber(args[1]); var op = new Tone.Pow(exp); self._eval(args[0]).connect(op); return op; } }, 'a2g': { regexp: /^a2g/, method: function (args, self) { var op = new Tone.AudioToGain(); self._eval(args[0]).connect(op); return op; } } }, //binary expressions 'binary': { '+': { regexp: /^\+/, precedence: 1, method: applyBinary.bind(this, Tone.Add) }, '-': { regexp: /^\-/, precedence: 1, method: function (args, self) { //both unary and binary op if (args.length === 1) { return applyUnary(Tone.Negate, args, self); } else { return applyBinary(Tone.Subtract, args, self); } } }, '*': { regexp: /^\*/, precedence: 0, method: applyBinary.bind(this, Tone.Multiply) }, '>': { regexp: /^\>/, precedence: 2, method: applyBinary.bind(this, Tone.GreaterThan) }, '<': { regexp: /^ 0) { expr = expr.trim(); var token = getNextToken(expr); tokens.push(token); expr = expr.substr(token.value.length); } function getNextToken(expr) { for (var type in Tone.Expr._Expressions) { var group = Tone.Expr._Expressions[type]; for (var opName in group) { var op = group[opName]; var reg = op.regexp; var match = expr.match(reg); if (match !== null) { return { type: type, value: match[0], method: op.method }; } } } throw new SyntaxError('Unexpected token ' + expr); } return { next: function () { return tokens[++position]; }, peek: function () { return tokens[position + 1]; } }; }; /** * recursively parse the string expression into a syntax tree * * @param {string} expr * @return {Object} * @private */ Tone.Expr.prototype._parseTree = function (expr) { var lexer = this._tokenize(expr); var isUndef = this.isUndef.bind(this); function matchSyntax(token, syn) { return !isUndef(token) && token.type === 'glue' && token.value === syn; } function matchGroup(token, groupName, prec) { var ret = false; var group = Tone.Expr._Expressions[groupName]; if (!isUndef(token)) { for (var opName in group) { var op = group[opName]; if (op.regexp.test(token.value)) { if (!isUndef(prec)) { if (op.precedence === prec) { return true; } } else { return true; } } } } return ret; } function parseExpression(precedence) { if (isUndef(precedence)) { precedence = 5; } var expr; if (precedence < 0) { expr = parseUnary(); } else { expr = parseExpression(precedence - 1); } var token = lexer.peek(); while (matchGroup(token, 'binary', precedence)) { token = lexer.next(); expr = { operator: token.value, method: token.method, args: [ expr, parseExpression(precedence) ] }; token = lexer.peek(); } return expr; } function parseUnary() { var token, expr; token = lexer.peek(); if (matchGroup(token, 'unary')) { token = lexer.next(); expr = parseUnary(); return { operator: token.value, method: token.method, args: [expr] }; } return parsePrimary(); } function parsePrimary() { var token, expr; token = lexer.peek(); if (isUndef(token)) { throw new SyntaxError('Unexpected termination of expression'); } if (token.type === 'func') { token = lexer.next(); return parseFunctionCall(token); } if (token.type === 'value') { token = lexer.next(); return { method: token.method, args: token.value }; } if (matchSyntax(token, '(')) { lexer.next(); expr = parseExpression(); token = lexer.next(); if (!matchSyntax(token, ')')) { throw new SyntaxError('Expected )'); } return expr; } throw new SyntaxError('Parse error, cannot process token ' + token.value); } function parseFunctionCall(func) { var token, args = []; token = lexer.next(); if (!matchSyntax(token, '(')) { throw new SyntaxError('Expected ( in a function call "' + func.value + '"'); } token = lexer.peek(); if (!matchSyntax(token, ')')) { args = parseArgumentList(); } token = lexer.next(); if (!matchSyntax(token, ')')) { throw new SyntaxError('Expected ) in a function call "' + func.value + '"'); } return { method: func.method, args: args, name: name }; } function parseArgumentList() { var token, expr, args = []; while (true) { expr = parseExpression(); if (isUndef(expr)) { // TODO maybe throw exception? break; } args.push(expr); token = lexer.peek(); if (!matchSyntax(token, ',')) { break; } lexer.next(); } return args; } return parseExpression(); }; /** * recursively evaluate the expression tree * @param {Object} tree * @return {AudioNode} the resulting audio node from the expression * @private */ Tone.Expr.prototype._eval = function (tree) { if (!this.isUndef(tree)) { var node = tree.method(tree.args, this); this._nodes.push(node); return node; } }; /** * dispose all the nodes * @private */ Tone.Expr.prototype._disposeNodes = function () { for (var i = 0; i < this._nodes.length; i++) { var node = this._nodes[i]; if (this.isFunction(node.dispose)) { node.dispose(); } else if (this.isFunction(node.disconnect)) { node.disconnect(); } node = null; this._nodes[i] = null; } this._nodes = null; }; /** * clean up */ Tone.Expr.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._disposeNodes(); }; return Tone.Expr; }); Module(function (Tone) { /** * @class Convert an incoming signal between 0, 1 to an equal power gain scale. * * @extends {Tone.SignalBase} * @constructor * @example * var eqPowGain = new Tone.EqualPowerGain(); */ Tone.EqualPowerGain = function () { /** * @type {Tone.WaveShaper} * @private */ this._eqPower = this.input = this.output = new Tone.WaveShaper(function (val) { if (Math.abs(val) < 0.001) { //should output 0 when input is 0 return 0; } else { return this.equalPowerScale(val); } }.bind(this), 4096); }; Tone.extend(Tone.EqualPowerGain, Tone.SignalBase); /** * clean up * @returns {Tone.EqualPowerGain} this */ Tone.EqualPowerGain.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._eqPower.dispose(); this._eqPower = null; return this; }; return Tone.EqualPowerGain; }); Module(function (Tone) { /** * @class Tone.Crossfade provides equal power fading between two inputs. * More on crossfading technique [here](https://en.wikipedia.org/wiki/Fade_(audio_engineering)#Crossfading). * * @constructor * @extends {Tone} * @param {NormalRange} [initialFade=0.5] * @example * var crossFade = new Tone.CrossFade(0.5); * //connect effect A to crossfade from * //effect output 0 to crossfade input 0 * effectA.connect(crossFade, 0, 0); * //connect effect B to crossfade from * //effect output 0 to crossfade input 1 * effectB.connect(crossFade, 0, 1); * crossFade.fade.value = 0; * // ^ only effectA is output * crossFade.fade.value = 1; * // ^ only effectB is output * crossFade.fade.value = 0.5; * // ^ the two signals are mixed equally. */ Tone.CrossFade = function (initialFade) { Tone.call(this, 2, 1); /** * Alias for input[0]. * @type {GainNode} */ this.a = this.input[0] = this.context.createGain(); /** * Alias for input[1]. * @type {GainNode} */ this.b = this.input[1] = this.context.createGain(); /** * The mix between the two inputs. A fade value of 0 * will output 100% input[0] and * a value of 1 will output 100% input[1]. * @type {NormalRange} * @signal */ this.fade = new Tone.Signal(this.defaultArg(initialFade, 0.5), Tone.Type.NormalRange); /** * equal power gain cross fade * @private * @type {Tone.EqualPowerGain} */ this._equalPowerA = new Tone.EqualPowerGain(); /** * equal power gain cross fade * @private * @type {Tone.EqualPowerGain} */ this._equalPowerB = new Tone.EqualPowerGain(); /** * invert the incoming signal * @private * @type {Tone} */ this._invert = new Tone.Expr('1 - $0'); //connections this.a.connect(this.output); this.b.connect(this.output); this.fade.chain(this._equalPowerB, this.b.gain); this.fade.chain(this._invert, this._equalPowerA, this.a.gain); this._readOnly('fade'); }; Tone.extend(Tone.CrossFade); /** * clean up * @returns {Tone.CrossFade} this */ Tone.CrossFade.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable('fade'); this._equalPowerA.dispose(); this._equalPowerA = null; this._equalPowerB.dispose(); this._equalPowerB = null; this.fade.dispose(); this.fade = null; this._invert.dispose(); this._invert = null; this.a.disconnect(); this.a = null; this.b.disconnect(); this.b = null; return this; }; return Tone.CrossFade; }); Module(function (Tone) { /** * @class Tone.Filter is a filter which allows for all of the same native methods * as the [BiquadFilterNode](http://webaudio.github.io/web-audio-api/#the-biquadfilternode-interface). * Tone.Filter has the added ability to set the filter rolloff at -12 * (default), -24 and -48. * * @constructor * @extends {Tone} * @param {Frequency|Object} [frequency] The cutoff frequency of the filter. * @param {string=} type The type of filter. * @param {number=} rolloff The drop in decibels per octave after the cutoff frequency. * 3 choices: -12, -24, and -48 * @example * var filter = new Tone.Filter(200, "highpass"); */ Tone.Filter = function () { Tone.call(this); var options = this.optionsObject(arguments, [ 'frequency', 'type', 'rolloff' ], Tone.Filter.defaults); /** * the filter(s) * @type {Array} * @private */ this._filters = []; /** * The cutoff frequency of the filter. * @type {Frequency} * @signal */ this.frequency = new Tone.Signal(options.frequency, Tone.Type.Frequency); /** * The detune parameter * @type {Cents} * @signal */ this.detune = new Tone.Signal(0, Tone.Type.Cents); /** * The gain of the filter, only used in certain filter types * @type {Gain} * @signal */ this.gain = new Tone.Signal({ 'value': options.gain, 'units': Tone.Type.Gain, 'convert': false }); /** * The Q or Quality of the filter * @type {Positive} * @signal */ this.Q = new Tone.Signal(options.Q); /** * the type of the filter * @type {string} * @private */ this._type = options.type; /** * the rolloff value of the filter * @type {number} * @private */ this._rolloff = options.rolloff; //set the rolloff; this.rolloff = options.rolloff; this._readOnly([ 'detune', 'frequency', 'gain', 'Q' ]); }; Tone.extend(Tone.Filter); /** * the default parameters * * @static * @type {Object} */ Tone.Filter.defaults = { 'type': 'lowpass', 'frequency': 350, 'rolloff': -12, 'Q': 1, 'gain': 0 }; /** * The type of the filter. Types: "lowpass", "highpass", * "bandpass", "lowshelf", "highshelf", "notch", "allpass", or "peaking". * @memberOf Tone.Filter# * @type {string} * @name type */ Object.defineProperty(Tone.Filter.prototype, 'type', { get: function () { return this._type; }, set: function (type) { var types = [ 'lowpass', 'highpass', 'bandpass', 'lowshelf', 'highshelf', 'notch', 'allpass', 'peaking' ]; if (types.indexOf(type) === -1) { throw new Error('Tone.Filter does not have filter type ' + type); } this._type = type; for (var i = 0; i < this._filters.length; i++) { this._filters[i].type = type; } } }); /** * The rolloff of the filter which is the drop in db * per octave. Implemented internally by cascading filters. * Only accepts the values -12, -24, -48 and -96. * @memberOf Tone.Filter# * @type {number} * @name rolloff */ Object.defineProperty(Tone.Filter.prototype, 'rolloff', { get: function () { return this._rolloff; }, set: function (rolloff) { rolloff = parseInt(rolloff, 10); var possibilities = [ -12, -24, -48, -96 ]; var cascadingCount = possibilities.indexOf(rolloff); //check the rolloff is valid if (cascadingCount === -1) { throw new Error('Filter rolloff can only be -12, -24, -48 or -96'); } cascadingCount += 1; this._rolloff = rolloff; //first disconnect the filters and throw them away this.input.disconnect(); for (var i = 0; i < this._filters.length; i++) { this._filters[i].disconnect(); this._filters[i] = null; } this._filters = new Array(cascadingCount); for (var count = 0; count < cascadingCount; count++) { var filter = this.context.createBiquadFilter(); filter.type = this._type; this.frequency.connect(filter.frequency); this.detune.connect(filter.detune); this.Q.connect(filter.Q); this.gain.connect(filter.gain); this._filters[count] = filter; } //connect them up var connectionChain = [this.input].concat(this._filters).concat([this.output]); this.connectSeries.apply(this, connectionChain); } }); /** * Clean up. * @return {Tone.Filter} this */ Tone.Filter.prototype.dispose = function () { Tone.prototype.dispose.call(this); for (var i = 0; i < this._filters.length; i++) { this._filters[i].disconnect(); this._filters[i] = null; } this._filters = null; this._writable([ 'detune', 'frequency', 'gain', 'Q' ]); this.frequency.dispose(); this.Q.dispose(); this.frequency = null; this.Q = null; this.detune.dispose(); this.detune = null; this.gain.dispose(); this.gain = null; return this; }; return Tone.Filter; }); Module(function (Tone) { /** * @class Split the incoming signal into three bands (low, mid, high) * with two crossover frequency controls. * * @extends {Tone} * @constructor * @param {Frequency|Object} [lowFrequency] the low/mid crossover frequency * @param {Frequency} [highFrequency] the mid/high crossover frequency */ Tone.MultibandSplit = function () { var options = this.optionsObject(arguments, [ 'lowFrequency', 'highFrequency' ], Tone.MultibandSplit.defaults); /** * the input * @type {GainNode} * @private */ this.input = this.context.createGain(); /** * the outputs * @type {Array} * @private */ this.output = new Array(3); /** * The low band. Alias for output[0] * @type {Tone.Filter} */ this.low = this.output[0] = new Tone.Filter(0, 'lowpass'); /** * the lower filter of the mid band * @type {Tone.Filter} * @private */ this._lowMidFilter = new Tone.Filter(0, 'highpass'); /** * The mid band output. Alias for output[1] * @type {Tone.Filter} */ this.mid = this.output[1] = new Tone.Filter(0, 'lowpass'); /** * The high band output. Alias for output[2] * @type {Tone.Filter} */ this.high = this.output[2] = new Tone.Filter(0, 'highpass'); /** * The low/mid crossover frequency. * @type {Frequency} * @signal */ this.lowFrequency = new Tone.Signal(options.lowFrequency, Tone.Type.Frequency); /** * The mid/high crossover frequency. * @type {Frequency} * @signal */ this.highFrequency = new Tone.Signal(options.highFrequency, Tone.Type.Frequency); /** * The quality of all the filters * @type {Number} * @signal */ this.Q = new Tone.Signal(options.Q); this.input.fan(this.low, this.high); this.input.chain(this._lowMidFilter, this.mid); //the frequency control signal this.lowFrequency.connect(this.low.frequency); this.lowFrequency.connect(this._lowMidFilter.frequency); this.highFrequency.connect(this.mid.frequency); this.highFrequency.connect(this.high.frequency); //the Q value this.Q.connect(this.low.Q); this.Q.connect(this._lowMidFilter.Q); this.Q.connect(this.mid.Q); this.Q.connect(this.high.Q); this._readOnly([ 'high', 'mid', 'low', 'highFrequency', 'lowFrequency' ]); }; Tone.extend(Tone.MultibandSplit); /** * @private * @static * @type {Object} */ Tone.MultibandSplit.defaults = { 'lowFrequency': 400, 'highFrequency': 2500, 'Q': 1 }; /** * Clean up. * @returns {Tone.MultibandSplit} this */ Tone.MultibandSplit.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable([ 'high', 'mid', 'low', 'highFrequency', 'lowFrequency' ]); this.low.dispose(); this.low = null; this._lowMidFilter.dispose(); this._lowMidFilter = null; this.mid.dispose(); this.mid = null; this.high.dispose(); this.high = null; this.lowFrequency.dispose(); this.lowFrequency = null; this.highFrequency.dispose(); this.highFrequency = null; this.Q.dispose(); this.Q = null; return this; }; return Tone.MultibandSplit; }); Module(function (Tone) { /** * @class Tone.EQ3 is a three band EQ with control over low, mid, and high gain as * well as the low and high crossover frequencies. * * @constructor * @extends {Tone} * * @param {Decibels|Object} [lowLevel] The gain applied to the lows. * @param {Decibels} [midLevel] The gain applied to the mid. * @param {Decibels} [highLevel] The gain applied to the high. * @example * var eq = new Tone.EQ3(-10, 3, -20); */ Tone.EQ3 = function () { var options = this.optionsObject(arguments, [ 'low', 'mid', 'high' ], Tone.EQ3.defaults); /** * the output node * @type {GainNode} * @private */ this.output = this.context.createGain(); /** * the multiband split * @type {Tone.MultibandSplit} * @private */ this._multibandSplit = this.input = new Tone.MultibandSplit({ 'lowFrequency': options.lowFrequency, 'highFrequency': options.highFrequency }); /** * The gain in decibels of the low part * @type {Decibels} * @signal */ this.low = new Tone.Gain(options.low, Tone.Type.Decibels); /** * The gain in decibels of the mid part * @type {Decibels} * @signal */ this.mid = new Tone.Gain(options.mid, Tone.Type.Decibels); /** * The gain in decibels of the high part * @type {Decibels} * @signal */ this.high = new Tone.Gain(options.high, Tone.Type.Decibels); /** * The Q value for all of the filters. * @type {Positive} * @signal */ this.Q = this._multibandSplit.Q; /** * The low/mid crossover frequency. * @type {Frequency} * @signal */ this.lowFrequency = this._multibandSplit.lowFrequency; /** * The mid/high crossover frequency. * @type {Frequency} * @signal */ this.highFrequency = this._multibandSplit.highFrequency; //the frequency bands this._multibandSplit.low.chain(this.low, this.output); this._multibandSplit.mid.chain(this.mid, this.output); this._multibandSplit.high.chain(this.high, this.output); this._readOnly([ 'low', 'mid', 'high', 'lowFrequency', 'highFrequency' ]); }; Tone.extend(Tone.EQ3); /** * the default values */ Tone.EQ3.defaults = { 'low': 0, 'mid': 0, 'high': 0, 'lowFrequency': 400, 'highFrequency': 2500 }; /** * clean up * @returns {Tone.EQ3} this */ Tone.EQ3.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable([ 'low', 'mid', 'high', 'lowFrequency', 'highFrequency' ]); this._multibandSplit.dispose(); this._multibandSplit = null; this.lowFrequency = null; this.highFrequency = null; this.low.dispose(); this.low = null; this.mid.dispose(); this.mid = null; this.high.dispose(); this.high = null; this.Q = null; return this; }; return Tone.EQ3; }); Module(function (Tone) { /** * @class Performs a linear scaling on an input signal. * Scales a NormalRange input to between * outputMin and outputMax. * * @constructor * @extends {Tone.SignalBase} * @param {number} [outputMin=0] The output value when the input is 0. * @param {number} [outputMax=1] The output value when the input is 1. * @example * var scale = new Tone.Scale(50, 100); * var signal = new Tone.Signal(0.5).connect(scale); * //the output of scale equals 75 */ Tone.Scale = function (outputMin, outputMax) { /** * @private * @type {number} */ this._outputMin = this.defaultArg(outputMin, 0); /** * @private * @type {number} */ this._outputMax = this.defaultArg(outputMax, 1); /** * @private * @type {Tone.Multiply} * @private */ this._scale = this.input = new Tone.Multiply(1); /** * @private * @type {Tone.Add} * @private */ this._add = this.output = new Tone.Add(0); this._scale.connect(this._add); this._setRange(); }; Tone.extend(Tone.Scale, Tone.SignalBase); /** * The minimum output value. This number is output when * the value input value is 0. * @memberOf Tone.Scale# * @type {number} * @name min */ Object.defineProperty(Tone.Scale.prototype, 'min', { get: function () { return this._outputMin; }, set: function (min) { this._outputMin = min; this._setRange(); } }); /** * The maximum output value. This number is output when * the value input value is 1. * @memberOf Tone.Scale# * @type {number} * @name max */ Object.defineProperty(Tone.Scale.prototype, 'max', { get: function () { return this._outputMax; }, set: function (max) { this._outputMax = max; this._setRange(); } }); /** * set the values * @private */ Tone.Scale.prototype._setRange = function () { this._add.value = this._outputMin; this._scale.value = this._outputMax - this._outputMin; }; /** * Clean up. * @returns {Tone.Scale} this */ Tone.Scale.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._add.dispose(); this._add = null; this._scale.dispose(); this._scale = null; return this; }; return Tone.Scale; }); Module(function (Tone) { /** * @class Performs an exponential scaling on an input signal. * Scales a NormalRange value [0,1] exponentially * to the output range of outputMin to outputMax. * * @constructor * @extends {Tone.SignalBase} * @param {number} [outputMin=0] The output value when the input is 0. * @param {number} [outputMax=1] The output value when the input is 1. * @param {number} [exponent=2] The exponent which scales the incoming signal. * @example * var scaleExp = new Tone.ScaleExp(0, 100, 2); * var signal = new Tone.Signal(0.5).connect(scaleExp); */ Tone.ScaleExp = function (outputMin, outputMax, exponent) { /** * scale the input to the output range * @type {Tone.Scale} * @private */ this._scale = this.output = new Tone.Scale(outputMin, outputMax); /** * @private * @type {Tone.Pow} * @private */ this._exp = this.input = new Tone.Pow(this.defaultArg(exponent, 2)); this._exp.connect(this._scale); }; Tone.extend(Tone.ScaleExp, Tone.SignalBase); /** * Instead of interpolating linearly between the min and * max values, setting the exponent will interpolate between * the two values with an exponential curve. * @memberOf Tone.ScaleExp# * @type {number} * @name exponent */ Object.defineProperty(Tone.ScaleExp.prototype, 'exponent', { get: function () { return this._exp.value; }, set: function (exp) { this._exp.value = exp; } }); /** * The minimum output value. This number is output when * the value input value is 0. * @memberOf Tone.ScaleExp# * @type {number} * @name min */ Object.defineProperty(Tone.ScaleExp.prototype, 'min', { get: function () { return this._scale.min; }, set: function (min) { this._scale.min = min; } }); /** * The maximum output value. This number is output when * the value input value is 1. * @memberOf Tone.ScaleExp# * @type {number} * @name max */ Object.defineProperty(Tone.ScaleExp.prototype, 'max', { get: function () { return this._scale.max; }, set: function (max) { this._scale.max = max; } }); /** * Clean up. * @returns {Tone.ScaleExp} this */ Tone.ScaleExp.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._scale.dispose(); this._scale = null; this._exp.dispose(); this._exp = null; return this; }; return Tone.ScaleExp; }); Module(function (Tone) { /** * @class Comb filters are basic building blocks for physical modeling. Read more * about comb filters on [CCRMA's website](https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html). * * @extends {Tone} * @constructor * @param {Time|Object} [delayTime] The delay time of the filter. * @param {NormalRange=} resonance The amount of feedback the filter has. */ Tone.FeedbackCombFilter = function () { Tone.call(this); var options = this.optionsObject(arguments, [ 'delayTime', 'resonance' ], Tone.FeedbackCombFilter.defaults); /** * the delay node * @type {DelayNode} * @private */ this._delay = this.input = this.output = this.context.createDelay(1); /** * The amount of delay of the comb filter. * @type {Time} * @signal */ this.delayTime = new Tone.Param({ 'param': this._delay.delayTime, 'value': options.delayTime, 'units': Tone.Type.Time }); /** * the feedback node * @type {GainNode} * @private */ this._feedback = this.context.createGain(); /** * The amount of feedback of the delayed signal. * @type {NormalRange} * @signal */ this.resonance = new Tone.Param({ 'param': this._feedback.gain, 'value': options.resonance, 'units': Tone.Type.NormalRange }); this._delay.chain(this._feedback, this._delay); this._readOnly([ 'resonance', 'delayTime' ]); }; Tone.extend(Tone.FeedbackCombFilter); /** * the default parameters * @static * @const * @type {Object} */ Tone.FeedbackCombFilter.defaults = { 'delayTime': 0.1, 'resonance': 0.5 }; /** * clean up * @returns {Tone.FeedbackCombFilter} this */ Tone.FeedbackCombFilter.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable([ 'resonance', 'delayTime' ]); this._delay.disconnect(); this._delay = null; this.delayTime.dispose(); this.delayTime = null; this.resonance.dispose(); this.resonance = null; this._feedback.disconnect(); this._feedback = null; return this; }; return Tone.FeedbackCombFilter; }); Module(function (Tone) { /** * @class Tone.Follower is a crude envelope follower which will follow * the amplitude of an incoming signal. * Take care with small (< 0.02) attack or decay values * as follower has some ripple which is exaggerated * at these values. Read more about envelope followers (also known * as envelope detectors) on [Wikipedia](https://en.wikipedia.org/wiki/Envelope_detector). * * @constructor * @extends {Tone} * @param {Time|Object} [attack] The rate at which the follower rises. * @param {Time=} release The rate at which the folower falls. * @example * var follower = new Tone.Follower(0.2, 0.4); */ Tone.Follower = function () { Tone.call(this); var options = this.optionsObject(arguments, [ 'attack', 'release' ], Tone.Follower.defaults); /** * @type {Tone.Abs} * @private */ this._abs = new Tone.Abs(); /** * the lowpass filter which smooths the input * @type {BiquadFilterNode} * @private */ this._filter = this.context.createBiquadFilter(); this._filter.type = 'lowpass'; this._filter.frequency.value = 0; this._filter.Q.value = -100; /** * @type {WaveShaperNode} * @private */ this._frequencyValues = new Tone.WaveShaper(); /** * @type {Tone.Subtract} * @private */ this._sub = new Tone.Subtract(); /** * @type {DelayNode} * @private */ this._delay = this.context.createDelay(); this._delay.delayTime.value = this.blockTime; /** * this keeps it far from 0, even for very small differences * @type {Tone.Multiply} * @private */ this._mult = new Tone.Multiply(10000); /** * @private * @type {number} */ this._attack = options.attack; /** * @private * @type {number} */ this._release = options.release; //the smoothed signal to get the values this.input.chain(this._abs, this._filter, this.output); //the difference path this._abs.connect(this._sub, 0, 1); this._filter.chain(this._delay, this._sub); //threshold the difference and use the thresh to set the frequency this._sub.chain(this._mult, this._frequencyValues, this._filter.frequency); //set the attack and release values in the table this._setAttackRelease(this._attack, this._release); }; Tone.extend(Tone.Follower); /** * @static * @type {Object} */ Tone.Follower.defaults = { 'attack': 0.05, 'release': 0.5 }; /** * sets the attack and release times in the wave shaper * @param {Time} attack * @param {Time} release * @private */ Tone.Follower.prototype._setAttackRelease = function (attack, release) { var minTime = this.blockTime; attack = this.secondsToFrequency(this.toSeconds(attack)); release = this.secondsToFrequency(this.toSeconds(release)); attack = Math.max(attack, minTime); release = Math.max(release, minTime); this._frequencyValues.setMap(function (val) { if (val <= 0) { return attack; } else { return release; } }); }; /** * The attack time. * @memberOf Tone.Follower# * @type {Time} * @name attack */ Object.defineProperty(Tone.Follower.prototype, 'attack', { get: function () { return this._attack; }, set: function (attack) { this._attack = attack; this._setAttackRelease(this._attack, this._release); } }); /** * The release time. * @memberOf Tone.Follower# * @type {Time} * @name release */ Object.defineProperty(Tone.Follower.prototype, 'release', { get: function () { return this._release; }, set: function (release) { this._release = release; this._setAttackRelease(this._attack, this._release); } }); /** * Borrows the connect method from Signal so that the output can be used * as a Tone.Signal control signal. * @function */ Tone.Follower.prototype.connect = Tone.Signal.prototype.connect; /** * dispose * @returns {Tone.Follower} this */ Tone.Follower.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._filter.disconnect(); this._filter = null; this._frequencyValues.disconnect(); this._frequencyValues = null; this._delay.disconnect(); this._delay = null; this._sub.disconnect(); this._sub = null; this._abs.dispose(); this._abs = null; this._mult.dispose(); this._mult = null; this._curve = null; return this; }; return Tone.Follower; }); Module(function (Tone) { /** * @class Tone.Gate only passes a signal through when the incoming * signal exceeds a specified threshold. To do this, Gate uses * a Tone.Follower to follow the amplitude of the incoming signal. * A common implementation of this class is a [Noise Gate](https://en.wikipedia.org/wiki/Noise_gate). * * @constructor * @extends {Tone} * @param {Decibels|Object} [threshold] The threshold above which the gate will open. * @param {Time=} attack The follower's attack time * @param {Time=} release The follower's release time * @example * var gate = new Tone.Gate(-30, 0.2, 0.3).toMaster(); * var mic = new Tone.Microphone().connect(gate); * //the gate will only pass through the incoming * //signal when it's louder than -30db */ Tone.Gate = function () { Tone.call(this); var options = this.optionsObject(arguments, [ 'threshold', 'attack', 'release' ], Tone.Gate.defaults); /** * @type {Tone.Follower} * @private */ this._follower = new Tone.Follower(options.attack, options.release); /** * @type {Tone.GreaterThan} * @private */ this._gt = new Tone.GreaterThan(this.dbToGain(options.threshold)); //the connections this.input.connect(this.output); //the control signal this.input.chain(this._gt, this._follower, this.output.gain); }; Tone.extend(Tone.Gate); /** * @const * @static * @type {Object} */ Tone.Gate.defaults = { 'attack': 0.1, 'release': 0.1, 'threshold': -40 }; /** * The threshold of the gate in decibels * @memberOf Tone.Gate# * @type {Decibels} * @name threshold */ Object.defineProperty(Tone.Gate.prototype, 'threshold', { get: function () { return this.gainToDb(this._gt.value); }, set: function (thresh) { this._gt.value = this.dbToGain(thresh); } }); /** * The attack speed of the gate * @memberOf Tone.Gate# * @type {Time} * @name attack */ Object.defineProperty(Tone.Gate.prototype, 'attack', { get: function () { return this._follower.attack; }, set: function (attackTime) { this._follower.attack = attackTime; } }); /** * The release speed of the gate * @memberOf Tone.Gate# * @type {Time} * @name release */ Object.defineProperty(Tone.Gate.prototype, 'release', { get: function () { return this._follower.release; }, set: function (releaseTime) { this._follower.release = releaseTime; } }); /** * Clean up. * @returns {Tone.Gate} this */ Tone.Gate.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._follower.dispose(); this._gt.dispose(); this._follower = null; this._gt = null; return this; }; return Tone.Gate; }); Module(function (Tone) { /** * @class A Timeline State. Provides the methods: setStateAtTime("state", time) * and getStateAtTime(time). * * @extends {Tone.Timeline} * @param {String} initial The initial state of the TimelineState. * Defaults to undefined */ Tone.TimelineState = function (initial) { Tone.Timeline.call(this); /** * The initial state * @private * @type {String} */ this._initial = initial; }; Tone.extend(Tone.TimelineState, Tone.Timeline); /** * Returns the scheduled state scheduled before or at * the given time. * @param {Time} time The time to query. * @return {String} The name of the state input in setStateAtTime. */ Tone.TimelineState.prototype.getStateAtTime = function (time) { var event = this.getEvent(time); if (event !== null) { return event.state; } else { return this._initial; } }; /** * Returns the scheduled state scheduled before or at * the given time. * @param {String} state The name of the state to set. * @param {Time} time The time to query. */ Tone.TimelineState.prototype.setStateAtTime = function (state, time) { this.addEvent({ 'state': state, 'time': this.toSeconds(time) }); }; return Tone.TimelineState; }); Module(function (Tone) { /** * @class A sample accurate clock which provides a callback at the given rate. * While the callback is not sample-accurate (it is still susceptible to * loose JS timing), the time passed in as the argument to the callback * is precise. For most applications, it is better to use Tone.Transport * instead of the Clock by itself since you can synchronize multiple callbacks. * * @constructor * @extends {Tone} * @param {function} callback The callback to be invoked with the time of the audio event * @param {Frequency} frequency The rate of the callback * @example * //the callback will be invoked approximately once a second * //and will print the time exactly once a second apart. * var clock = new Tone.Clock(function(time){ * console.log(time); * }, 1); */ Tone.Clock = function () { var options = this.optionsObject(arguments, [ 'callback', 'frequency' ], Tone.Clock.defaults); /** * The callback function to invoke at the scheduled tick. * @type {Function} */ this.callback = options.callback; /** * The time which the clock will schedule events in advance * of the current time. Scheduling notes in advance improves * performance and decreases the chance for clicks caused * by scheduling events in the past. If set to "auto", * this value will be automatically computed based on the * rate of requestAnimationFrame (0.016 seconds). Larger values * will yeild better performance, but at the cost of latency. * Values less than 0.016 are not recommended. * @type {Number|String} */ this._lookAhead = 'auto'; /** * The lookahead value which was automatically * computed using a time-based averaging. * @type {Number} * @private */ this._computedLookAhead = 1 / 60; /** * The value afterwhich events are thrown out * @type {Number} * @private */ this._threshold = 0.5; /** * The next time the callback is scheduled. * @type {Number} * @private */ this._nextTick = -1; /** * The last time the callback was invoked * @type {Number} * @private */ this._lastUpdate = 0; /** * The id of the requestAnimationFrame * @type {Number} * @private */ this._loopID = -1; /** * The rate the callback function should be invoked. * @type {BPM} * @signal */ this.frequency = new Tone.TimelineSignal(options.frequency, Tone.Type.Frequency); /** * The number of times the callback was invoked. Starts counting at 0 * and increments after the callback was invoked. * @type {Ticks} * @readOnly */ this.ticks = 0; /** * The state timeline * @type {Tone.TimelineState} * @private */ this._state = new Tone.TimelineState(Tone.State.Stopped); /** * A pre-binded loop function to save a tiny bit of overhead * of rebinding the function on every frame. * @type {Function} * @private */ this._boundLoop = this._loop.bind(this); this._readOnly('frequency'); //start the loop this._loop(); }; Tone.extend(Tone.Clock); /** * The defaults * @const * @type {Object} */ Tone.Clock.defaults = { 'callback': Tone.noOp, 'frequency': 1, 'lookAhead': 'auto' }; /** * Returns the playback state of the source, either "started", "stopped" or "paused". * @type {Tone.State} * @readOnly * @memberOf Tone.Clock# * @name state */ Object.defineProperty(Tone.Clock.prototype, 'state', { get: function () { return this._state.getStateAtTime(this.now()); } }); /** * The time which the clock will schedule events in advance * of the current time. Scheduling notes in advance improves * performance and decreases the chance for clicks caused * by scheduling events in the past. If set to "auto", * this value will be automatically computed based on the * rate of requestAnimationFrame (0.016 seconds). Larger values * will yeild better performance, but at the cost of latency. * Values less than 0.016 are not recommended. * @type {Number|String} * @memberOf Tone.Clock# * @name lookAhead */ Object.defineProperty(Tone.Clock.prototype, 'lookAhead', { get: function () { return this._lookAhead; }, set: function (val) { if (val === 'auto') { this._lookAhead = 'auto'; } else { this._lookAhead = this.toSeconds(val); } } }); /** * Start the clock at the given time. Optionally pass in an offset * of where to start the tick counter from. * @param {Time} time The time the clock should start * @param {Ticks=} offset Where the tick counter starts counting from. * @return {Tone.Clock} this */ Tone.Clock.prototype.start = function (time, offset) { time = this.toSeconds(time); if (this._state.getStateAtTime(time) !== Tone.State.Started) { this._state.addEvent({ 'state': Tone.State.Started, 'time': time, 'offset': offset }); } return this; }; /** * Stop the clock. Stopping the clock resets the tick counter to 0. * @param {Time} [time=now] The time when the clock should stop. * @returns {Tone.Clock} this * @example * clock.stop(); */ Tone.Clock.prototype.stop = function (time) { time = this.toSeconds(time); if (this._state.getStateAtTime(time) !== Tone.State.Stopped) { this._state.setStateAtTime(Tone.State.Stopped, time); } return this; }; /** * Pause the clock. Pausing does not reset the tick counter. * @param {Time} [time=now] The time when the clock should stop. * @returns {Tone.Clock} this */ Tone.Clock.prototype.pause = function (time) { time = this.toSeconds(time); if (this._state.getStateAtTime(time) === Tone.State.Started) { this._state.setStateAtTime(Tone.State.Paused, time); } return this; }; /** * The scheduling loop. * @param {Number} time The current page time starting from 0 * when the page was loaded. * @private */ Tone.Clock.prototype._loop = function (time) { this._loopID = requestAnimationFrame(this._boundLoop); //compute the look ahead if (this._lookAhead === 'auto') { if (!this.isUndef(time)) { var diff = (time - this._lastUpdate) / 1000; this._lastUpdate = time; //throw away large differences if (diff < this._threshold) { //averaging this._computedLookAhead = (9 * this._computedLookAhead + diff) / 10; } } } else { this._computedLookAhead = this._lookAhead; } //get the frequency value to compute the value of the next loop var now = this.now(); //if it's started var lookAhead = this._computedLookAhead * 2; var event = this._state.getEvent(now + lookAhead); var state = Tone.State.Stopped; if (event) { state = event.state; //if it was stopped and now started if (this._nextTick === -1 && state === Tone.State.Started) { this._nextTick = event.time; if (!this.isUndef(event.offset)) { this.ticks = event.offset; } } } if (state === Tone.State.Started) { while (now + lookAhead > this._nextTick) { //catch up if (now > this._nextTick + this._threshold) { this._nextTick = now; } var tickTime = this._nextTick; this._nextTick += 1 / this.frequency.getValueAtTime(this._nextTick); this.callback(tickTime); this.ticks++; } } else if (state === Tone.State.Stopped) { this._nextTick = -1; this.ticks = 0; } }; /** * Returns the scheduled state at the given time. * @param {Time} time The time to query. * @return {String} The name of the state input in setStateAtTime. * @example * clock.start("+0.1"); * clock.getStateAtTime("+0.1"); //returns "started" */ Tone.Clock.prototype.getStateAtTime = function (time) { return this._state.getStateAtTime(time); }; /** * Clean up * @returns {Tone.Clock} this */ Tone.Clock.prototype.dispose = function () { cancelAnimationFrame(this._loopID); Tone.TimelineState.prototype.dispose.call(this); this._writable('frequency'); this.frequency.dispose(); this.frequency = null; this._boundLoop = Tone.noOp; this._nextTick = Infinity; this.callback = null; this._state.dispose(); this._state = null; }; return Tone.Clock; }); Module(function (Tone) { /** * @class Tone.EventEmitter gives classes which extend it * the ability to listen for and trigger events. * Inspiration and reference from Jerome Etienne's [MicroEvent](https://github.com/jeromeetienne/microevent.js). * MIT (c) 2011 Jerome Etienne. * * @extends {Tone} */ Tone.EventEmitter = function () { /** * Contains all of the events. * @private * @type {Object} */ this._events = {}; }; Tone.extend(Tone.EventEmitter); /** * Bind a callback to a specific event. * @param {String} event The name of the event to listen for. * @param {Function} callback The callback to invoke when the * event is triggered * @return {Tone.EventEmitter} this */ Tone.EventEmitter.prototype.on = function (event, callback) { //split the event var events = event.split(/\W+/); for (var i = 0; i < events.length; i++) { var eventName = events[i]; if (!this._events.hasOwnProperty(eventName)) { this._events[eventName] = []; } this._events[eventName].push(callback); } return this; }; /** * Remove the event listener. * @param {String} event The event to stop listening to. * @param {Function=} callback The callback which was bound to * the event with Tone.EventEmitter.on. * If no callback is given, all callbacks * events are removed. * @return {Tone.EventEmitter} this */ Tone.EventEmitter.prototype.off = function (event, callback) { var events = event.split(/\W+/); for (var ev = 0; ev < events.length; ev++) { event = events[ev]; if (this._events.hasOwnProperty(event)) { if (this.isUndef(callback)) { this._events[event] = []; } else { var eventList = this._events[event]; for (var i = 0; i < eventList.length; i++) { if (eventList[i] === callback) { eventList.splice(i, 1); } } } } } return this; }; /** * Invoke all of the callbacks bound to the event * with any arguments passed in. * @param {String} event The name of the event. * @param {*...} args The arguments to pass to the functions listening. * @return {Tone.EventEmitter} this */ Tone.EventEmitter.prototype.trigger = function (event) { if (this._events) { var args = Array.prototype.slice.call(arguments, 1); if (this._events.hasOwnProperty(event)) { var eventList = this._events[event]; for (var i = 0, len = eventList.length; i < len; i++) { eventList[i].apply(this, args); } } } return this; }; /** * Add EventEmitter functions (on/off/trigger) to the object * @param {Object|Function} object The object or class to extend. */ Tone.EventEmitter.mixin = function (object) { var functions = [ 'on', 'off', 'trigger' ]; object._events = {}; for (var i = 0; i < functions.length; i++) { var func = functions[i]; var emitterFunc = Tone.EventEmitter.prototype[func]; object[func] = emitterFunc; } }; /** * Clean up * @return {Tone.EventEmitter} this */ Tone.EventEmitter.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._events = null; return this; }; return Tone.EventEmitter; }); Module(function (Tone) { /** * @class Similar to Tone.Timeline, but all events represent * intervals with both "time" and "duration" times. The * events are placed in a tree structure optimized * for querying an intersection point with the timeline * events. Internally uses an [Interval Tree](https://en.wikipedia.org/wiki/Interval_tree) * to represent the data. * @extends {Tone} */ Tone.IntervalTimeline = function () { /** * The root node of the inteval tree * @type {IntervalNode} * @private */ this._root = null; /** * Keep track of the length of the timeline. * @type {Number} * @private */ this._length = 0; }; Tone.extend(Tone.IntervalTimeline); /** * The event to add to the timeline. All events must * have a time and duration value * @param {Object} event The event to add to the timeline * @return {Tone.IntervalTimeline} this */ Tone.IntervalTimeline.prototype.addEvent = function (event) { if (this.isUndef(event.time) || this.isUndef(event.duration)) { throw new Error('events must have time and duration parameters'); } var node = new IntervalNode(event.time, event.time + event.duration, event); if (this._root === null) { this._root = node; } else { this._root.insert(node); } this._length++; // Restructure tree to be balanced while (node !== null) { node.updateHeight(); node.updateMax(); this._rebalance(node); node = node.parent; } return this; }; /** * Remove an event from the timeline. * @param {Object} event The event to remove from the timeline * @return {Tone.IntervalTimeline} this */ Tone.IntervalTimeline.prototype.removeEvent = function (event) { if (this._root !== null) { var results = []; this._root.search(event.time, results); for (var i = 0; i < results.length; i++) { var node = results[i]; if (node.event === event) { this._removeNode(node); this._length--; break; } } } return this; }; /** * The number of items in the timeline. * @type {Number} * @memberOf Tone.IntervalTimeline# * @name length * @readOnly */ Object.defineProperty(Tone.IntervalTimeline.prototype, 'length', { get: function () { return this._length; } }); /** * Remove events whose time time is after the given time * @param {Time} time The time to query. * @returns {Tone.IntervalTimeline} this */ Tone.IntervalTimeline.prototype.cancel = function (after) { after = this.toSeconds(after); this.forEachAfter(after, function (event) { this.removeEvent(event); }.bind(this)); return this; }; /** * Set the root node as the given node * @param {IntervalNode} node * @private */ Tone.IntervalTimeline.prototype._setRoot = function (node) { this._root = node; if (this._root !== null) { this._root.parent = null; } }; /** * Replace the references to the node in the node's parent * with the replacement node. * @param {IntervalNode} node * @param {IntervalNode} replacement * @private */ Tone.IntervalTimeline.prototype._replaceNodeInParent = function (node, replacement) { if (node.parent !== null) { if (node.isLeftChild()) { node.parent.left = replacement; } else { node.parent.right = replacement; } this._rebalance(node.parent); } else { this._setRoot(replacement); } }; /** * Remove the node from the tree and replace it with * a successor which follows the schema. * @param {IntervalNode} node * @private */ Tone.IntervalTimeline.prototype._removeNode = function (node) { if (node.left === null && node.right === null) { this._replaceNodeInParent(node, null); } else if (node.right === null) { this._replaceNodeInParent(node, node.left); } else if (node.left === null) { this._replaceNodeInParent(node, node.right); } else { var balance = node.getBalance(); var replacement, temp; if (balance > 0) { if (node.left.right === null) { replacement = node.left; replacement.right = node.right; temp = replacement; } else { replacement = node.left.right; while (replacement.right !== null) { replacement = replacement.right; } replacement.parent.right = replacement.left; temp = replacement.parent; replacement.left = node.left; replacement.right = node.right; } } else { if (node.right.left === null) { replacement = node.right; replacement.left = node.left; temp = replacement; } else { replacement = node.right.left; while (replacement.left !== null) { replacement = replacement.left; } replacement.parent = replacement.parent; replacement.parent.left = replacement.right; temp = replacement.parent; replacement.left = node.left; replacement.right = node.right; } } if (node.parent !== null) { if (node.isLeftChild()) { node.parent.left = replacement; } else { node.parent.right = replacement; } } else { this._setRoot(replacement); } // this._replaceNodeInParent(node, replacement); this._rebalance(temp); } node.dispose(); }; /** * Rotate the tree to the left * @param {IntervalNode} node * @private */ Tone.IntervalTimeline.prototype._rotateLeft = function (node) { var parent = node.parent; var isLeftChild = node.isLeftChild(); // Make node.right the new root of this sub tree (instead of node) var pivotNode = node.right; node.right = pivotNode.left; pivotNode.left = node; if (parent !== null) { if (isLeftChild) { parent.left = pivotNode; } else { parent.right = pivotNode; } } else { this._setRoot(pivotNode); } }; /** * Rotate the tree to the right * @param {IntervalNode} node * @private */ Tone.IntervalTimeline.prototype._rotateRight = function (node) { var parent = node.parent; var isLeftChild = node.isLeftChild(); // Make node.left the new root of this sub tree (instead of node) var pivotNode = node.left; node.left = pivotNode.right; pivotNode.right = node; if (parent !== null) { if (isLeftChild) { parent.left = pivotNode; } else { parent.right = pivotNode; } } else { this._setRoot(pivotNode); } }; /** * Balance the BST * @param {IntervalNode} node * @private */ Tone.IntervalTimeline.prototype._rebalance = function (node) { var balance = node.getBalance(); if (balance > 1) { if (node.left.getBalance() < 0) { this._rotateLeft(node.left); } else { this._rotateRight(node); } } else if (balance < -1) { if (node.right.getBalance() > 0) { this._rotateRight(node.right); } else { this._rotateLeft(node); } } }; /** * Get an event whose time and duration span the give time. Will * return the match whose "time" value is closest to the given time. * @param {Object} event The event to add to the timeline * @return {Object} The event which spans the desired time */ Tone.IntervalTimeline.prototype.getEvent = function (time) { if (this._root !== null) { var results = []; this._root.search(time, results); if (results.length > 0) { var max = results[0]; for (var i = 1; i < results.length; i++) { if (results[i].low > max.low) { max = results[i]; } } return max.event; } } return null; }; /** * Iterate over everything in the timeline. * @param {Function} callback The callback to invoke with every item * @returns {Tone.IntervalTimeline} this */ Tone.IntervalTimeline.prototype.forEach = function (callback) { if (this._root !== null) { var allNodes = []; if (this._root !== null) { this._root.traverse(function (node) { allNodes.push(node); }); } for (var i = 0; i < allNodes.length; i++) { callback(allNodes[i].event); } } return this; }; /** * Iterate over everything in the array in which the given time * overlaps with the time and duration time of the event. * @param {Time} time The time to check if items are overlapping * @param {Function} callback The callback to invoke with every item * @returns {Tone.IntervalTimeline} this */ Tone.IntervalTimeline.prototype.forEachOverlap = function (time, callback) { //iterate over the items in reverse so that removing an item doesn't break things time = this.toSeconds(time); if (this._root !== null) { var results = []; this._root.search(time, results); for (var i = results.length - 1; i >= 0; i--) { callback(results[i].event); } } return this; }; /** * Iterate over everything in the array in which the time is greater * than the given time. * @param {Time} time The time to check if items are before * @param {Function} callback The callback to invoke with every item * @returns {Tone.IntervalTimeline} this */ Tone.IntervalTimeline.prototype.forEachAfter = function (time, callback) { //iterate over the items in reverse so that removing an item doesn't break things time = this.toSeconds(time); if (this._root !== null) { var results = []; this._root.searchAfter(time, results); for (var i = results.length - 1; i >= 0; i--) { callback(results[i].event); } } return this; }; /** * Clean up * @return {Tone.IntervalTimeline} this */ Tone.IntervalTimeline.prototype.dispose = function () { var allNodes = []; if (this._root !== null) { this._root.traverse(function (node) { allNodes.push(node); }); } for (var i = 0; i < allNodes.length; i++) { allNodes[i].dispose(); } allNodes = null; this._root = null; return this; }; /////////////////////////////////////////////////////////////////////////// // INTERVAL NODE HELPER /////////////////////////////////////////////////////////////////////////// /** * Represents a node in the binary search tree, with the addition * of a "high" value which keeps track of the highest value of * its children. * References: * https://brooknovak.wordpress.com/2013/12/07/augmented-interval-tree-in-c/ * http://www.mif.vu.lt/~valdas/ALGORITMAI/LITERATURA/Cormen/Cormen.pdf * @param {Number} low * @param {Number} high * @private */ var IntervalNode = function (low, high, event) { //the event container this.event = event; //the low value this.low = low; //the high value this.high = high; //the high value for this and all child nodes this.max = this.high; //the nodes to the left this._left = null; //the nodes to the right this._right = null; //the parent node this.parent = null; //the number of child nodes this.height = 0; }; /** * Insert a node into the correct spot in the tree * @param {IntervalNode} node */ IntervalNode.prototype.insert = function (node) { if (node.low <= this.low) { if (this.left === null) { this.left = node; } else { this.left.insert(node); } } else { if (this.right === null) { this.right = node; } else { this.right.insert(node); } } }; /** * Search the tree for nodes which overlap * with the given point * @param {Number} point The point to query * @param {Array} results The array to put the results */ IntervalNode.prototype.search = function (point, results) { // If p is to the right of the rightmost point of any interval // in this node and all children, there won't be any matches. if (point > this.max) { return; } // Search left children if (this.left !== null) { this.left.search(point, results); } // Check this node if (this.low <= point && this.high >= point) { results.push(this); } // If p is to the left of the time of this interval, // then it can't be in any child to the right. if (this.low > point) { return; } // Search right children if (this.right !== null) { this.right.search(point, results); } }; /** * Search the tree for nodes which are less * than the given point * @param {Number} point The point to query * @param {Array} results The array to put the results */ IntervalNode.prototype.searchAfter = function (point, results) { // Check this node if (this.low >= point) { results.push(this); if (this.left !== null) { this.left.searchAfter(point, results); } } // search the right side if (this.right !== null) { this.right.searchAfter(point, results); } }; /** * Invoke the callback on this element and both it's branches * @param {Function} callback */ IntervalNode.prototype.traverse = function (callback) { callback(this); if (this.left !== null) { this.left.traverse(callback); } if (this.right !== null) { this.right.traverse(callback); } }; /** * Update the height of the node */ IntervalNode.prototype.updateHeight = function () { if (this.left !== null && this.right !== null) { this.height = Math.max(this.left.height, this.right.height) + 1; } else if (this.right !== null) { this.height = this.right.height + 1; } else if (this.left !== null) { this.height = this.left.height + 1; } else { this.height = 0; } }; /** * Update the height of the node */ IntervalNode.prototype.updateMax = function () { this.max = this.high; if (this.left !== null) { this.max = Math.max(this.max, this.left.max); } if (this.right !== null) { this.max = Math.max(this.max, this.right.max); } }; /** * The balance is how the leafs are distributed on the node * @return {Number} Negative numbers are balanced to the right */ IntervalNode.prototype.getBalance = function () { var balance = 0; if (this.left !== null && this.right !== null) { balance = this.left.height - this.right.height; } else if (this.left !== null) { balance = this.left.height + 1; } else if (this.right !== null) { balance = -(this.right.height + 1); } return balance; }; /** * @returns {Boolean} true if this node is the left child * of its parent */ IntervalNode.prototype.isLeftChild = function () { return this.parent !== null && this.parent.left === this; }; /** * get/set the left node * @type {IntervalNode} */ Object.defineProperty(IntervalNode.prototype, 'left', { get: function () { return this._left; }, set: function (node) { this._left = node; if (node !== null) { node.parent = this; } this.updateHeight(); this.updateMax(); } }); /** * get/set the right node * @type {IntervalNode} */ Object.defineProperty(IntervalNode.prototype, 'right', { get: function () { return this._right; }, set: function (node) { this._right = node; if (node !== null) { node.parent = this; } this.updateHeight(); this.updateMax(); } }); /** * null out references. */ IntervalNode.prototype.dispose = function () { this.parent = null; this._left = null; this._right = null; this.event = null; }; /////////////////////////////////////////////////////////////////////////// // END INTERVAL NODE HELPER /////////////////////////////////////////////////////////////////////////// return Tone.IntervalTimeline; }); Module(function (Tone) { /** * @class Transport for timing musical events. * Supports tempo curves and time changes. Unlike browser-based timing (setInterval, requestAnimationFrame) * Tone.Transport timing events pass in the exact time of the scheduled event * in the argument of the callback function. Pass that time value to the object * you're scheduling.

* A single transport is created for you when the library is initialized. *

* The transport emits the events: "start", "stop", "pause", and "loop" which are * called with the time of that event as the argument. * * @extends {Tone.EventEmitter} * @singleton * @example * //repeated event every 8th note * Tone.Transport.setInterval(function(time){ * //do something with the time * }, "8n"); * @example * //one time event 1 second in the future * Tone.Transport.setTimeout(function(time){ * //do something with the time * }, 1); * @example * //event fixed to the Transports timeline. * Tone.Transport.setTimeline(function(time){ * //do something with the time * }, "16:0:0"); */ Tone.Transport = function () { Tone.EventEmitter.call(this); /////////////////////////////////////////////////////////////////////// // LOOPING ////////////////////////////////////////////////////////////////////// /** * If the transport loops or not. * @type {boolean} */ this.loop = false; /** * The loop start position in ticks * @type {Ticks} * @private */ this._loopStart = 0; /** * The loop end position in ticks * @type {Ticks} * @private */ this._loopEnd = 0; /////////////////////////////////////////////////////////////////////// // CLOCK/TEMPO ////////////////////////////////////////////////////////////////////// /** * Pulses per quarter is the number of ticks per quarter note. * @private * @type {Number} */ this._ppq = TransportConstructor.defaults.PPQ; /** * watches the main oscillator for timing ticks * initially starts at 120bpm * @private * @type {Tone.Clock} */ this._clock = new Tone.Clock({ 'callback': this._processTick.bind(this), 'frequency': 0 }); /** * The Beats Per Minute of the Transport. * @type {BPM} * @signal * @example * Tone.Transport.bpm.value = 80; * //ramp the bpm to 120 over 10 seconds * Tone.Transport.bpm.rampTo(120, 10); */ this.bpm = this._clock.frequency; this.bpm._toUnits = this._toUnits.bind(this); this.bpm._fromUnits = this._fromUnits.bind(this); this.bpm.units = Tone.Type.BPM; this.bpm.value = TransportConstructor.defaults.bpm; this._readOnly('bpm'); /** * The time signature, or more accurately the numerator * of the time signature over a denominator of 4. * @type {Number} * @private */ this._timeSignature = TransportConstructor.defaults.timeSignature; /////////////////////////////////////////////////////////////////////// // TIMELINE EVENTS ////////////////////////////////////////////////////////////////////// /** * All the events in an object to keep track by ID * @type {Object} * @private */ this._scheduledEvents = {}; /** * The event ID counter * @type {Number} * @private */ this._eventID = 0; /** * The scheduled events. * @type {Tone.Timeline} * @private */ this._timeline = new Tone.Timeline(); /** * Repeated events * @type {Array} * @private */ this._repeatedEvents = new Tone.IntervalTimeline(); /** * Events that occur once * @type {Array} * @private */ this._onceEvents = new Tone.Timeline(); /** * All of the synced Signals * @private * @type {Array} */ this._syncedSignals = []; /////////////////////////////////////////////////////////////////////// // SWING ////////////////////////////////////////////////////////////////////// /** * The subdivision of the swing * @type {Ticks} * @private */ this._swingTicks = this.toTicks(TransportConstructor.defaults.swingSubdivision, TransportConstructor.defaults.bpm, TransportConstructor.defaults.timeSignature); /** * The swing amount * @type {NormalRange} * @private */ this._swingAmount = 0; }; Tone.extend(Tone.Transport, Tone.EventEmitter); /** * the defaults * @type {Object} * @const * @static */ Tone.Transport.defaults = { 'bpm': 120, 'swing': 0, 'swingSubdivision': '16n', 'timeSignature': 4, 'loopStart': 0, 'loopEnd': '4m', 'PPQ': 48 }; /////////////////////////////////////////////////////////////////////////////// // TICKS /////////////////////////////////////////////////////////////////////////////// /** * called on every tick * @param {number} tickTime clock relative tick time * @private */ Tone.Transport.prototype._processTick = function (tickTime) { //handle swing if (this._swingAmount > 0 && this._clock.ticks % this._ppq !== 0 && //not on a downbeat this._clock.ticks % this._swingTicks === 0) { //add some swing tickTime += this.ticksToSeconds(this._swingTicks) * this._swingAmount; } //do the loop test if (this.loop) { if (this._clock.ticks === this._loopEnd) { this.ticks = this._loopStart; this.trigger('loop', tickTime); } } var ticks = this._clock.ticks; //fire the next tick events if their time has come this._timeline.forEachAtTime(ticks, function (event) { event.callback(tickTime); }); //process the repeated events this._repeatedEvents.forEachOverlap(ticks, function (event) { if ((ticks - event.time) % event.interval === 0) { event.callback(tickTime); } }); //process the single occurrence events this._onceEvents.forEachBefore(ticks, function (event) { event.callback(tickTime); }); //and clear the single occurrence timeline this._onceEvents.cancelBefore(ticks); }; /////////////////////////////////////////////////////////////////////////////// // SCHEDULABLE EVENTS /////////////////////////////////////////////////////////////////////////////// /** * Schedule an event along the timeline. * @param {TimelineEvent} event * @param {Time} time * @return {Number} The id of the event which can be used for canceling the event. * @example * //trigger the callback when the Transport reaches the desired time * Tone.Transport.schedule(function(time){ * envelope.triggerAttack(time); * }, "128i"); */ Tone.Transport.prototype.schedule = function (callback, time) { var event = { 'time': this.toTicks(time), 'callback': callback }; var id = this._eventID++; this._scheduledEvents[id.toString()] = { 'event': event, 'timeline': this._timeline }; this._timeline.addEvent(event); return id; }; /** * Schedule a repeated event along the timeline. * @param {Function} callback The callback to invoke. * @param {Time} interval The duration between successive * callbacks. * @param {Time=} startTime When along the timeline the events should * start being invoked. * @param {Time} [duration=Infinity] How long the event should repeat. * @return {Number} The ID of the scheduled event. Use this to cancel * the event. */ Tone.Transport.prototype.scheduleRepeat = function (callback, interval, startTime, duration) { if (interval <= 0) { throw new Error('repeat events must have an interval larger than 0'); } var event = { 'time': this.toTicks(startTime), 'duration': this.toTicks(this.defaultArg(duration, Infinity)), 'interval': this.toTicks(interval), 'callback': callback }; var id = this._eventID++; this._scheduledEvents[id.toString()] = { 'event': event, 'timeline': this._repeatedEvents }; this._repeatedEvents.addEvent(event); return id; }; /** * Schedule an event that will be removed after it is invoked. * Note that if the given time is less than the current transport time, * the event will be invoked immediately. * @param {Function} callback The callback to invoke once. * @param {Time} time The time the callback should be invoked. * @returns {Number} The ID of the scheduled event. */ Tone.Transport.prototype.scheduleOnce = function (callback, time) { var event = { 'time': this.toTicks(time), 'callback': callback }; var id = this._eventID++; this._scheduledEvents[id.toString()] = { 'event': event, 'timeline': this._onceEvents }; this._onceEvents.addEvent(event); return id; }; /** * Clear the passed in event id from the timeline * @param {Number} eventId The id of the event. * @returns {Tone.Transport} this */ Tone.Transport.prototype.clear = function (eventId) { if (this._scheduledEvents.hasOwnProperty(eventId)) { var item = this._scheduledEvents[eventId.toString()]; item.timeline.removeEvent(item.event); delete this._scheduledEvents[eventId.toString()]; } return this; }; /** * Remove scheduled events from the timeline after * the given time. Repeated events will be removed * if their startTime is after the given time * @param {Time} [after=0] Clear all events after * this time. * @returns {Tone.Transport} this */ Tone.Transport.prototype.cancel = function (after) { after = this.defaultArg(after, 0); after = this.toTicks(after); this._timeline.cancel(after); this._onceEvents.cancel(after); this._repeatedEvents.cancel(after); return this; }; /////////////////////////////////////////////////////////////////////////////// // QUANTIZATION /////////////////////////////////////////////////////////////////////////////// /** * Returns the time of the next beat. * @param {string} [subdivision="4n"] * @return {number} the time in seconds of the next subdivision */ Tone.Transport.prototype.nextBeat = function (subdivision) { subdivision = this.defaultArg(subdivision, '4n'); var tickNum = this.toTicks(subdivision); var remainingTicks = transportTicks % tickNum; }; /////////////////////////////////////////////////////////////////////////////// // START/STOP/PAUSE /////////////////////////////////////////////////////////////////////////////// /** * Returns the playback state of the source, either "started", "stopped", or "paused" * @type {String} * @readOnly * @memberOf Tone.State# * @name state */ Object.defineProperty(Tone.Transport.prototype, 'state', { get: function () { return this._clock.getStateAtTime(this.now()); } }); /** * Start the transport and all sources synced to the transport. * @param {Time} [time=now] The time when the transport should start. * @param {Time=} offset The timeline offset to start the transport. * @returns {Tone.Transport} this * @example * //start the transport in one second starting at beginning of the 5th measure. * Tone.Transport.start("+1", "4:0:0"); */ Tone.Transport.prototype.start = function (time, offset) { time = this.toSeconds(time); if (!this.isUndef(offset)) { offset = this.toTicks(offset); } else { offset = this.defaultArg(offset, this._clock.ticks); } //start the clock this._clock.start(time, offset); this.trigger('start', time, this.ticksToSeconds(offset)); return this; }; /** * Stop the transport and all sources synced to the transport. * @param {Time} [time=now] The time when the transport should stop. * @returns {Tone.Transport} this * @example * Tone.Transport.stop(); */ Tone.Transport.prototype.stop = function (time) { time = this.toSeconds(time); this._clock.stop(time); this.trigger('stop', time); return this; }; /** * Pause the transport and all sources synced to the transport. * @param {Time} [time=now] * @returns {Tone.Transport} this */ Tone.Transport.prototype.pause = function (time) { time = this.toSeconds(time); this._clock.pause(time); this.trigger('pause', time); return this; }; /////////////////////////////////////////////////////////////////////////////// // SETTERS/GETTERS /////////////////////////////////////////////////////////////////////////////// /** * The time signature as just the numerator over 4. * For example 4/4 would be just 4 and 6/8 would be 3. * @memberOf Tone.Transport# * @type {number} * @name timeSignature * @example * //common time * Tone.Transport.timeSignature = 4; * // 7/8 * Tone.Transport.timeSignature = 3.5; */ Object.defineProperty(Tone.Transport.prototype, 'timeSignature', { get: function () { return this._timeSignature; }, set: function (timeSig) { if (Array.isArray(timeSig)) { timeSig = timeSig[0] / timeSig[1] * 4; } this._timeSignature = timeSig; } }); /** * When the Tone.Transport.loop = true, this is the starting position of the loop. * @memberOf Tone.Transport# * @type {Time} * @name loopStart */ Object.defineProperty(Tone.Transport.prototype, 'loopStart', { get: function () { return this.ticksToSeconds(this._loopStart); }, set: function (startPosition) { this._loopStart = this.toTicks(startPosition); } }); /** * When the Tone.Transport.loop = true, this is the ending position of the loop. * @memberOf Tone.Transport# * @type {Time} * @name loopEnd */ Object.defineProperty(Tone.Transport.prototype, 'loopEnd', { get: function () { return this.ticksToSeconds(this._loopEnd); }, set: function (endPosition) { this._loopEnd = this.toTicks(endPosition); } }); /** * Set the loop start and stop at the same time. * @param {Time} startPosition * @param {Time} endPosition * @returns {Tone.Transport} this * @example * //loop over the first measure * Tone.Transport.setLoopPoints(0, "1m"); * Tone.Transport.loop = true; */ Tone.Transport.prototype.setLoopPoints = function (startPosition, endPosition) { this.loopStart = startPosition; this.loopEnd = endPosition; return this; }; /** * The swing value. Between 0-1 where 1 equal to * the note + half the subdivision. * @memberOf Tone.Transport# * @type {NormalRange} * @name swing */ Object.defineProperty(Tone.Transport.prototype, 'swing', { get: function () { return this._swingAmount * 2; }, set: function (amount) { //scale the values to a normal range this._swingAmount = amount * 0.5; } }); /** * Set the subdivision which the swing will be applied to. * The default values is a 16th note. Value must be less * than a quarter note. * * @memberOf Tone.Transport# * @type {Time} * @name swingSubdivision */ Object.defineProperty(Tone.Transport.prototype, 'swingSubdivision', { get: function () { return this.toNotation(this._swingTicks + 'i'); }, set: function (subdivision) { this._swingTicks = this.toTicks(subdivision); } }); /** * The Transport's position in MEASURES:BEATS:SIXTEENTHS. * Setting the value will jump to that position right away. * * @memberOf Tone.Transport# * @type {TransportTime} * @name position */ Object.defineProperty(Tone.Transport.prototype, 'position', { get: function () { var quarters = this.ticks / this._ppq; var measures = Math.floor(quarters / this._timeSignature); var sixteenths = quarters % 1 * 4; //if the sixteenths aren't a whole number, fix their length if (sixteenths % 1 > 0) { sixteenths = sixteenths.toFixed(3); } quarters = Math.floor(quarters) % this._timeSignature; var progress = [ measures, quarters, sixteenths ]; return progress.join(':'); }, set: function (progress) { var ticks = this.toTicks(progress); this.ticks = ticks; } }); /** * The Transport's loop position as a normalized value. Always * returns 0 if the transport if loop is not true. * @memberOf Tone.Transport# * @name progress * @type {NormalRange} */ Object.defineProperty(Tone.Transport.prototype, 'progress', { get: function () { if (this.loop) { return (this.ticks - this._loopStart) / (this._loopEnd - this._loopStart); } else { return 0; } } }); /** * The transports current tick position. * * @memberOf Tone.Transport# * @type {Ticks} * @name ticks */ Object.defineProperty(Tone.Transport.prototype, 'ticks', { get: function () { return this._clock.ticks; }, set: function (t) { this._clock.ticks = t; } }); /** * Pulses Per Quarter note. This is the smallest resolution * the Transport timing supports. This should be set once * on initialization and not set again. Changing this value * after other objects have been created can cause problems. * * @memberOf Tone.Transport# * @type {Number} * @name PPQ */ Object.defineProperty(Tone.Transport.prototype, 'PPQ', { get: function () { return this._ppq; }, set: function (ppq) { this._ppq = ppq; this.bpm.value = this.bpm.value; } }); /** * Convert from BPM to frequency (factoring in PPQ) * @param {BPM} bpm The BPM value to convert to frequency * @return {Frequency} The BPM as a frequency with PPQ factored in. * @private */ Tone.Transport.prototype._fromUnits = function (bpm) { return 1 / (60 / bpm / this.PPQ); }; /** * Convert from frequency (with PPQ) into BPM * @param {Frequency} freq The clocks frequency to convert to BPM * @return {BPM} The frequency value as BPM. * @private */ Tone.Transport.prototype._toUnits = function (freq) { return freq / this.PPQ * 60; }; /////////////////////////////////////////////////////////////////////////////// // SYNCING /////////////////////////////////////////////////////////////////////////////// /** * Attaches the signal to the tempo control signal so that * any changes in the tempo will change the signal in the same * ratio. * * @param {Tone.Signal} signal * @param {number=} ratio Optionally pass in the ratio between * the two signals. Otherwise it will be computed * based on their current values. * @returns {Tone.Transport} this */ Tone.Transport.prototype.syncSignal = function (signal, ratio) { if (!ratio) { //get the sync ratio if (signal._param.value !== 0) { ratio = signal._param.value / this.bpm._param.value; } else { ratio = 0; } } var ratioSignal = new Tone.Gain(ratio); this.bpm.chain(ratioSignal, signal._param); this._syncedSignals.push({ 'ratio': ratioSignal, 'signal': signal, 'initial': signal._param.value }); signal._param.value = 0; return this; }; /** * Unsyncs a previously synced signal from the transport's control. * See Tone.Transport.syncSignal. * @param {Tone.Signal} signal * @returns {Tone.Transport} this */ Tone.Transport.prototype.unsyncSignal = function (signal) { for (var i = this._syncedSignals.length - 1; i >= 0; i--) { var syncedSignal = this._syncedSignals[i]; if (syncedSignal.signal === signal) { syncedSignal.ratio.dispose(); syncedSignal.signal._param.value = syncedSignal.initial; this._syncedSignals.splice(i, 1); } } return this; }; /** * Clean up. * @returns {Tone.Transport} this * @private */ Tone.Transport.prototype.dispose = function () { Tone.EventEmitter.prototype.dispose.call(this); this._clock.dispose(); this._clock = null; this._writable('bpm'); this.bpm = null; this._timeline.dispose(); this._timeline = null; this._onceEvents.dispose(); this._onceEvents = null; this._repeatedEvents.dispose(); this._repeatedEvents = null; return this; }; /////////////////////////////////////////////////////////////////////////////// // DEPRECATED FUNCTIONS // (will be removed in r7) /////////////////////////////////////////////////////////////////////////////// /** * @deprecated Use Tone.scheduleRepeat instead. * Set a callback for a recurring event. * @param {function} callback * @param {Time} interval * @return {number} the id of the interval * @example * //triggers a callback every 8th note with the exact time of the event * Tone.Transport.setInterval(function(time){ * envelope.triggerAttack(time); * }, "8n"); */ Tone.Transport.prototype.setInterval = function (callback, interval) { console.warn('This method is deprecated. Use Tone.Transport.scheduleRepeat instead.'); return Tone.Transport.scheduleRepeat(callback, interval); }; /** * @deprecated Use Tone.cancel instead. * Stop and ongoing interval. * @param {number} intervalID The ID of interval to remove. The interval * ID is given as the return value in Tone.Transport.setInterval. * @return {boolean} true if the event was removed */ Tone.Transport.prototype.clearInterval = function (id) { console.warn('This method is deprecated. Use Tone.Transport.clear instead.'); return Tone.Transport.clear(id); }; /** * @deprecated Use Tone.Note instead. * Set a timeout to occur after time from now. NB: the transport must be * running for this to be triggered. All timeout events are cleared when the * transport is stopped. * * @param {function} callback * @param {Time} time The time (from now) that the callback will be invoked. * @return {number} The id of the timeout. * @example * //trigger an event to happen 1 second from now * Tone.Transport.setTimeout(function(time){ * player.start(time); * }, 1) */ Tone.Transport.prototype.setTimeout = function (callback, timeout) { console.warn('This method is deprecated. Use Tone.Transport.scheduleOnce instead.'); return Tone.Transport.scheduleOnce(callback, timeout); }; /** * @deprecated Use Tone.Note instead. * Clear a timeout using it's ID. * @param {number} intervalID The ID of timeout to remove. The timeout * ID is given as the return value in Tone.Transport.setTimeout. * @return {boolean} true if the timeout was removed */ Tone.Transport.prototype.clearTimeout = function (id) { console.warn('This method is deprecated. Use Tone.Transport.clear instead.'); return Tone.Transport.clear(id); }; /** * @deprecated Use Tone.Note instead. * Timeline events are synced to the timeline of the Tone.Transport. * Unlike Timeout, Timeline events will restart after the * Tone.Transport has been stopped and restarted. * * @param {function} callback * @param {Time} time * @return {number} the id for clearing the transportTimeline event * @example * //trigger the start of a part on the 16th measure * Tone.Transport.setTimeline(function(time){ * part.start(time); * }, "16m"); */ Tone.Transport.prototype.setTimeline = function (callback, time) { console.warn('This method is deprecated. Use Tone.Transport.schedule instead.'); return Tone.Transport.schedule(callback, time); }; /** * @deprecated Use Tone.Note instead. * Clear the timeline event. * @param {number} id * @return {boolean} true if it was removed */ Tone.Transport.prototype.clearTimeline = function (id) { console.warn('This method is deprecated. Use Tone.Transport.clear instead.'); return Tone.Transport.clear(id); }; /////////////////////////////////////////////////////////////////////////////// // INITIALIZATION /////////////////////////////////////////////////////////////////////////////// var TransportConstructor = Tone.Transport; Tone._initAudioContext(function () { if (typeof Tone.Transport === 'function') { //a single transport object Tone.Transport = new Tone.Transport(); } else { //stop the clock Tone.Transport.stop(); //get the previous values var prevSettings = Tone.Transport.get(); //destory the old transport Tone.Transport.dispose(); //make new Transport insides TransportConstructor.call(Tone.Transport); //set the previous config Tone.Transport.set(prevSettings); } }); return Tone.Transport; }); Module(function (Tone) { /** * @class Tone.Volume is a simple volume node, useful for creating a volume fader. * * @extends {Tone} * @constructor * @param {Decibels} [volume=0] the initial volume * @example * var vol = new Tone.Volume(-12); * instrument.chain(vol, Tone.Master); */ Tone.Volume = function () { var options = this.optionsObject(arguments, ['value'], Tone.Volume.defaults); Tone.Gain.call(this, options.value, Tone.Type.Decibels); }; Tone.extend(Tone.Volume, Tone.Gain); /** * Defaults * @type {Object} * @const * @static */ Tone.Volume.defaults = { 'value': 0 }; return Tone.Volume; }); Module(function (Tone) { /** * @class Base class for sources. Sources have start/stop methods * and the ability to be synced to the * start/stop of Tone.Transport. * * @constructor * @extends {Tone} * @example * //Multiple state change events can be chained together, * //but must be set in the correct order and with ascending times * * // OK * state.start().stop("+0.2"); * // AND * state.start().stop("+0.2").start("+0.4").stop("+0.7") * * // BAD * state.stop("+0.2").start(); * // OR * state.start("+0.3").stop("+0.2"); * */ Tone.Source = function (options) { //Sources only have an output and no input Tone.call(this); options = this.defaultArg(options, Tone.Source.defaults); /** * The volume of the output in decibels. * @type {Decibels} * @signal * @example * source.volume.value = -6; */ this.volume = this.output = new Tone.Volume(options.volume); this._readOnly('volume'); /** * Keep track of the scheduled state. * @type {Tone.TimelineState} * @private */ this._state = new Tone.TimelineState(Tone.State.Stopped); /** * The synced `start` callback function from the transport * @type {Function} * @private */ this._syncStart = function (time, offset) { time = this.toSeconds(time); time += this.toSeconds(this._startDelay); this.start(time, offset); }.bind(this); /** * The synced `stop` callback function from the transport * @type {Function} * @private */ this._syncStop = this.stop.bind(this); /** * The offset from the start of the Transport `start` * @type {Time} * @private */ this._startDelay = 0; //make the output explicitly stereo this.output.channelCount = 2; this.output.channelCountMode = 'explicit'; }; Tone.extend(Tone.Source); /** * The default parameters * @static * @const * @type {Object} */ Tone.Source.defaults = { 'volume': 0 }; /** * Returns the playback state of the source, either "started" or "stopped". * @type {Tone.State} * @readOnly * @memberOf Tone.Source# * @name state */ Object.defineProperty(Tone.Source.prototype, 'state', { get: function () { return this._state.getStateAtTime(this.now()); } }); /** * Start the source at the specified time. If no time is given, * start the source now. * @param {Time} [time=now] When the source should be started. * @returns {Tone.Source} this * @example * source.start("+0.5"); //starts the source 0.5 seconds from now */ Tone.Source.prototype.start = function (time) { time = this.toSeconds(time); if (this._state.getStateAtTime(time) !== Tone.State.Started || this.retrigger) { this._state.setStateAtTime(Tone.State.Started, time); if (this._start) { this._start.apply(this, arguments); } } return this; }; /** * Stop the source at the specified time. If no time is given, * stop the source now. * @param {Time} [time=now] When the source should be stopped. * @returns {Tone.Source} this * @example * source.stop(); // stops the source immediately */ Tone.Source.prototype.stop = function (time) { time = this.toSeconds(time); if (this._state.getStateAtTime(time) === Tone.State.Started) { this._state.setStateAtTime(Tone.State.Stopped, time); if (this._stop) { this._stop.apply(this, arguments); } } return this; }; /** * Sync the source to the Transport so that when the transport * is started, this source is started and when the transport is stopped * or paused, so is the source. * * @param {Time} [delay=0] Delay time before starting the source after the * Transport has started. * @returns {Tone.Source} this * @example * //sync the source to start 1 measure after the transport starts * source.sync("1m"); * //start the transport. the source will start 1 measure later. * Tone.Transport.start(); */ Tone.Source.prototype.sync = function (delay) { this._startDelay = this.defaultArg(delay, 0); Tone.Transport.on('start', this._syncStart); Tone.Transport.on('stop pause', this._syncStop); return this; }; /** * Unsync the source to the Transport. See Tone.Source.sync * @returns {Tone.Source} this */ Tone.Source.prototype.unsync = function () { this._startDelay = 0; Tone.Transport.off('start', this._syncStart); Tone.Transport.off('stop pause', this._syncStop); return this; }; /** * Clean up. * @return {Tone.Source} this */ Tone.Source.prototype.dispose = function () { this.stop(); Tone.prototype.dispose.call(this); this.unsync(); this._writable('volume'); this.volume.dispose(); this.volume = null; this._state.dispose(); this._state = null; this._syncStart = null; this._syncStart = null; }; return Tone.Source; }); Module(function (Tone) { /** * @class Tone.Oscillator supports a number of features including * phase rotation, multiple oscillator types (see Tone.Oscillator.type), * and Transport syncing (see Tone.Oscillator.syncFrequency). * * @constructor * @extends {Tone.Source} * @param {Frequency} [frequency] Starting frequency * @param {string} [type] The oscillator type. Read more about type below. * @example * //make and start a 440hz sine tone * var osc = new Tone.Oscillator(440, "sine").toMaster().start(); */ Tone.Oscillator = function () { var options = this.optionsObject(arguments, [ 'frequency', 'type' ], Tone.Oscillator.defaults); Tone.Source.call(this, options); /** * the main oscillator * @type {OscillatorNode} * @private */ this._oscillator = null; /** * The frequency control. * @type {Frequency} * @signal */ this.frequency = new Tone.Signal(options.frequency, Tone.Type.Frequency); /** * The detune control signal. * @type {Cents} * @signal */ this.detune = new Tone.Signal(options.detune, Tone.Type.Cents); /** * the periodic wave * @type {PeriodicWave} * @private */ this._wave = null; /** * The partials of the oscillator * @type {Array} * @private */ this._partials = this.defaultArg(options.partials, [1]); /** * the phase of the oscillator * between 0 - 360 * @type {number} * @private */ this._phase = options.phase; /** * the type of the oscillator * @type {string} * @private */ this._type = null; //setup this.type = options.type; this.phase = this._phase; this._readOnly([ 'frequency', 'detune' ]); }; Tone.extend(Tone.Oscillator, Tone.Source); /** * the default parameters * @type {Object} */ Tone.Oscillator.defaults = { 'type': 'sine', 'frequency': 440, 'detune': 0, 'phase': 0 }; /** * The Oscillator types * @enum {String} */ Tone.Oscillator.Type = { Sine: 'sine', Triangle: 'triangle', Sawtooth: 'sawtooth', Square: 'square', Custom: 'custom' }; /** * start the oscillator * @param {Time} [time=now] * @private */ Tone.Oscillator.prototype._start = function (time) { //new oscillator with previous values this._oscillator = this.context.createOscillator(); this._oscillator.setPeriodicWave(this._wave); //connect the control signal to the oscillator frequency & detune this._oscillator.connect(this.output); this.frequency.connect(this._oscillator.frequency); this.detune.connect(this._oscillator.detune); //start the oscillator this._oscillator.start(this.toSeconds(time)); }; /** * stop the oscillator * @private * @param {Time} [time=now] (optional) timing parameter * @returns {Tone.Oscillator} this */ Tone.Oscillator.prototype._stop = function (time) { if (this._oscillator) { this._oscillator.stop(this.toSeconds(time)); this._oscillator = null; } return this; }; /** * Sync the signal to the Transport's bpm. Any changes to the transports bpm, * will also affect the oscillators frequency. * @returns {Tone.Oscillator} this * @example * Tone.Transport.bpm.value = 120; * osc.frequency.value = 440; * //the ration between the bpm and the frequency will be maintained * osc.syncFrequency(); * Tone.Transport.bpm.value = 240; * // the frequency of the oscillator is doubled to 880 */ Tone.Oscillator.prototype.syncFrequency = function () { Tone.Transport.syncSignal(this.frequency); return this; }; /** * Unsync the oscillator's frequency from the Transport. * See Tone.Oscillator.syncFrequency * @returns {Tone.Oscillator} this */ Tone.Oscillator.prototype.unsyncFrequency = function () { Tone.Transport.unsyncSignal(this.frequency); return this; }; /** * The type of the oscillator: either sine, square, triangle, or sawtooth. Also capable of * setting the first x number of partials of the oscillator. For example: "sine4" would * set be the first 4 partials of the sine wave and "triangle8" would set the first * 8 partials of the triangle wave. *

* Uses PeriodicWave internally even for native types so that it can set the phase. * PeriodicWave equations are from the * [Webkit Web Audio implementation](https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/modules/webaudio/PeriodicWave.cpp&sq=package:chromium). * * @memberOf Tone.Oscillator# * @type {string} * @name type * @example * //set it to a square wave * osc.type = "square"; * @example * //set the first 6 partials of a sawtooth wave * osc.type = "sawtooth6"; */ Object.defineProperty(Tone.Oscillator.prototype, 'type', { get: function () { return this._type; }, set: function (type) { var coefs = this._getRealImaginary(type, this._phase); var periodicWave = this.context.createPeriodicWave(coefs[0], coefs[1]); this._wave = periodicWave; if (this._oscillator !== null) { this._oscillator.setPeriodicWave(this._wave); } this._type = type; } }); /** * Returns the real and imaginary components based * on the oscillator type. * @returns {Array} [real, imaginary] * @private */ Tone.Oscillator.prototype._getRealImaginary = function (type, phase) { var fftSize = 4096; var periodicWaveSize = fftSize / 2; var real = new Float32Array(periodicWaveSize); var imag = new Float32Array(periodicWaveSize); var partialCount = 1; if (type === Tone.Oscillator.Type.Custom) { partialCount = this._partials.length + 1; periodicWaveSize = partialCount; } else { var partial = /^(sine|triangle|square|sawtooth)(\d+)$/.exec(type); if (partial) { partialCount = parseInt(partial[2]) + 1; type = partial[1]; partialCount = Math.max(partialCount, 2); periodicWaveSize = partialCount; } } for (var n = 1; n < periodicWaveSize; ++n) { var piFactor = 2 / (n * Math.PI); var b; switch (type) { case Tone.Oscillator.Type.Sine: b = n <= partialCount ? 1 : 0; break; case Tone.Oscillator.Type.Square: b = n & 1 ? 2 * piFactor : 0; break; case Tone.Oscillator.Type.Sawtooth: b = piFactor * (n & 1 ? 1 : -1); break; case Tone.Oscillator.Type.Triangle: if (n & 1) { b = 2 * (piFactor * piFactor) * (n - 1 >> 1 & 1 ? -1 : 1); } else { b = 0; } break; case Tone.Oscillator.Type.Custom: b = this._partials[n - 1]; break; default: throw new Error('invalid oscillator type: ' + type); } if (b !== 0) { real[n] = -b * Math.sin(phase * n); imag[n] = b * Math.cos(phase * n); } else { real[n] = 0; imag[n] = 0; } } return [ real, imag ]; }; /** * Compute the inverse FFT for a given phase. * @param {Float32Array} real * @param {Float32Array} imag * @param {NormalRange} phase * @return {AudioRange} * @private */ Tone.Oscillator.prototype._inverseFFT = function (real, imag, phase) { var sum = 0; var len = real.length; for (var i = 0; i < len; i++) { sum += real[i] * Math.cos(i * phase) + imag[i] * Math.sin(i * phase); } return sum; }; /** * Returns the initial value of the oscillator. * @return {AudioRange} * @private */ Tone.Oscillator.prototype._getInitialValue = function () { var coefs = this._getRealImaginary(this._type, 0); var real = coefs[0]; var imag = coefs[1]; var maxValue = 0; var twoPi = Math.PI * 2; //check for peaks in 8 places for (var i = 0; i < 8; i++) { maxValue = Math.max(this._inverseFFT(real, imag, i / 8 * twoPi), maxValue); } return -this._inverseFFT(real, imag, this._phase) / maxValue; }; /** * The partials of the waveform. A partial represents * the amplitude at a harmonic. The first harmonic is the * fundamental frequency, the second is the octave and so on * following the harmonic series. * Setting this value will automatically set the type to "custom". * The value is an empty array when the type is not "custom". * @memberOf Tone.Oscillator# * @type {Array} * @name partials * @example * osc.partials = [1, 0.2, 0.01]; */ Object.defineProperty(Tone.Oscillator.prototype, 'partials', { get: function () { if (this._type !== Tone.Oscillator.Type.Custom) { return []; } else { return this._partials; } }, set: function (partials) { this._partials = partials; this.type = Tone.Oscillator.Type.Custom; } }); /** * The phase of the oscillator in degrees. * @memberOf Tone.Oscillator# * @type {Degrees} * @name phase * @example * osc.phase = 180; //flips the phase of the oscillator */ Object.defineProperty(Tone.Oscillator.prototype, 'phase', { get: function () { return this._phase * (180 / Math.PI); }, set: function (phase) { this._phase = phase * Math.PI / 180; //reset the type this.type = this._type; } }); /** * Dispose and disconnect. * @return {Tone.Oscillator} this */ Tone.Oscillator.prototype.dispose = function () { Tone.Source.prototype.dispose.call(this); if (this._oscillator !== null) { this._oscillator.disconnect(); this._oscillator = null; } this._wave = null; this._writable([ 'frequency', 'detune' ]); this.frequency.dispose(); this.frequency = null; this.detune.dispose(); this.detune = null; this._partials = null; return this; }; return Tone.Oscillator; }); Module(function (Tone) { /** * @class LFO stands for low frequency oscillator. Tone.LFO produces an output signal * which can be attached to an AudioParam or Tone.Signal * in order to modulate that parameter with an oscillator. The LFO can * also be synced to the transport to start/stop and change when the tempo changes. * * @constructor * @extends {Tone.Oscillator} * @param {Frequency|Object} [frequency] The frequency of the oscillation. Typically, LFOs will be * in the frequency range of 0.1 to 10 hertz. * @param {number=} min The minimum output value of the LFO. * @param {number=} max The maximum value of the LFO. * @example * var lfo = new Tone.LFO("4n", 400, 4000); * lfo.connect(filter.frequency); */ Tone.LFO = function () { var options = this.optionsObject(arguments, [ 'frequency', 'min', 'max' ], Tone.LFO.defaults); /** * The oscillator. * @type {Tone.Oscillator} * @private */ this._oscillator = new Tone.Oscillator({ 'frequency': options.frequency, 'type': options.type }); /** * the lfo's frequency * @type {Frequency} * @signal */ this.frequency = this._oscillator.frequency; /** * The amplitude of the LFO, which controls the output range between * the min and max output. For example if the min is -10 and the max * is 10, setting the amplitude to 0.5 would make the LFO modulate * between -5 and 5. * @type {Number} * @signal */ this.amplitude = this._oscillator.volume; this.amplitude.units = Tone.Type.NormalRange; this.amplitude.value = options.amplitude; /** * The signal which is output when the LFO is stopped * @type {Tone.Signal} * @private */ this._stoppedSignal = new Tone.Signal(0, Tone.Type.AudioRange); /** * The value that the LFO outputs when it's stopped * @type {AudioRange} * @private */ this._stoppedValue = 0; /** * @type {Tone.AudioToGain} * @private */ this._a2g = new Tone.AudioToGain(); /** * @type {Tone.Scale} * @private */ this._scaler = this.output = new Tone.Scale(options.min, options.max); /** * the units of the LFO (used for converting) * @type {Tone.Type} * @private */ this._units = Tone.Type.Default; this.units = options.units; //connect it up this._oscillator.chain(this._a2g, this._scaler); this._stoppedSignal.connect(this._a2g); this._readOnly([ 'amplitude', 'frequency' ]); this.phase = options.phase; }; Tone.extend(Tone.LFO, Tone.Oscillator); /** * the default parameters * * @static * @const * @type {Object} */ Tone.LFO.defaults = { 'type': 'sine', 'min': 0, 'max': 1, 'phase': 0, 'frequency': '4n', 'amplitude': 1, 'units': Tone.Type.Default }; /** * Start the LFO. * @param {Time} [time=now] the time the LFO will start * @returns {Tone.LFO} this */ Tone.LFO.prototype.start = function (time) { time = this.toSeconds(time); this._stoppedSignal.setValueAtTime(0, time); this._oscillator.start(time); return this; }; /** * Stop the LFO. * @param {Time} [time=now] the time the LFO will stop * @returns {Tone.LFO} this */ Tone.LFO.prototype.stop = function (time) { time = this.toSeconds(time); this._stoppedSignal.setValueAtTime(this._stoppedValue, time); this._oscillator.stop(time); return this; }; /** * Sync the start/stop/pause to the transport * and the frequency to the bpm of the transport * * @param {Time} [delay=0] the time to delay the start of the * LFO from the start of the transport * @returns {Tone.LFO} this * @example * lfo.frequency.value = "8n"; * lfo.sync(); * //the rate of the LFO will always be an eighth note, * //even as the tempo changes */ Tone.LFO.prototype.sync = function (delay) { this._oscillator.sync(delay); this._oscillator.syncFrequency(); return this; }; /** * unsync the LFO from transport control * @returns {Tone.LFO} this */ Tone.LFO.prototype.unsync = function () { this._oscillator.unsync(); this._oscillator.unsyncFrequency(); return this; }; /** * The miniumum output of the LFO. * @memberOf Tone.LFO# * @type {number} * @name min */ Object.defineProperty(Tone.LFO.prototype, 'min', { get: function () { return this._toUnits(this._scaler.min); }, set: function (min) { min = this._fromUnits(min); this._scaler.min = min; } }); /** * The maximum output of the LFO. * @memberOf Tone.LFO# * @type {number} * @name max */ Object.defineProperty(Tone.LFO.prototype, 'max', { get: function () { return this._toUnits(this._scaler.max); }, set: function (max) { max = this._fromUnits(max); this._scaler.max = max; } }); /** * The type of the oscillator: sine, square, sawtooth, triangle. * @memberOf Tone.LFO# * @type {string} * @name type */ Object.defineProperty(Tone.LFO.prototype, 'type', { get: function () { return this._oscillator.type; }, set: function (type) { this._oscillator.type = type; this._stoppedValue = this._oscillator._getInitialValue(); this._stoppedSignal.value = this._stoppedValue; } }); /** * The phase of the LFO. * @memberOf Tone.LFO# * @type {number} * @name phase */ Object.defineProperty(Tone.LFO.prototype, 'phase', { get: function () { return this._oscillator.phase; }, set: function (phase) { this._oscillator.phase = phase; this._stoppedValue = this._oscillator._getInitialValue(); this._stoppedSignal.value = this._stoppedValue; } }); /** * The output units of the LFO. * @memberOf Tone.LFO# * @type {Tone.Type} * @name units */ Object.defineProperty(Tone.LFO.prototype, 'units', { get: function () { return this._units; }, set: function (val) { var currentMin = this.min; var currentMax = this.max; //convert the min and the max this._units = val; this.min = currentMin; this.max = currentMax; } }); /** * Returns the playback state of the source, either "started" or "stopped". * @type {Tone.State} * @readOnly * @memberOf Tone.LFO# * @name state */ Object.defineProperty(Tone.LFO.prototype, 'state', { get: function () { return this._oscillator.state; } }); /** * Connect the output of the LFO to an AudioParam, AudioNode, or Tone Node. * Tone.LFO will automatically convert to the destination units of the * will get the units from the connected node. * @param {Tone | AudioParam | AudioNode} node * @param {number} [outputNum=0] optionally which output to connect from * @param {number} [inputNum=0] optionally which input to connect to * @returns {Tone.LFO} this * @private */ Tone.LFO.prototype.connect = function (node) { if (node.constructor === Tone.Signal || node.constructor === Tone.Param || node.constructor === Tone.TimelineSignal) { this.convert = node.convert; this.units = node.units; } Tone.Signal.prototype.connect.apply(this, arguments); return this; }; /** * private method borrowed from Param converts * units from their destination value * @function * @private */ Tone.LFO.prototype._fromUnits = Tone.Param.prototype._fromUnits; /** * private method borrowed from Param converts * units to their destination value * @function * @private */ Tone.LFO.prototype._toUnits = Tone.Param.prototype._toUnits; /** * disconnect and dispose * @returns {Tone.LFO} this */ Tone.LFO.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable([ 'amplitude', 'frequency' ]); this._oscillator.dispose(); this._oscillator = null; this._stoppedSignal.dispose(); this._stoppedSignal = null; this._scaler.dispose(); this._scaler = null; this._a2g.dispose(); this._a2g = null; this.frequency = null; this.amplitude = null; return this; }; return Tone.LFO; }); Module(function (Tone) { /** * @class Tone.Limiter will limit the loudness of an incoming signal. * It is composed of a Tone.Compressor with a fast attack * and release. Limiters are commonly used to safeguard against * signal clipping. Unlike a compressor, limiters do not provide * smooth gain reduction and almost completely prevent * additional gain above the threshold. * * @extends {Tone} * @constructor * @param {number} threshold The theshold above which the limiting is applied. * @example * var limiter = new Tone.Limiter(-6); */ Tone.Limiter = function () { var options = this.optionsObject(arguments, ['threshold'], Tone.Limiter.defaults); /** * the compressor * @private * @type {Tone.Compressor} */ this._compressor = this.input = this.output = new Tone.Compressor({ 'attack': 0.001, 'decay': 0.001, 'threshold': options.threshold }); /** * The threshold of of the limiter * @type {Decibel} * @signal */ this.threshold = this._compressor.threshold; this._readOnly('threshold'); }; Tone.extend(Tone.Limiter); /** * The default value * @type {Object} * @const * @static */ Tone.Limiter.defaults = { 'threshold': -12 }; /** * Clean up. * @returns {Tone.Limiter} this */ Tone.Limiter.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._compressor.dispose(); this._compressor = null; this._writable('threshold'); this.threshold = null; return this; }; return Tone.Limiter; }); Module(function (Tone) { /** * @class Tone.Lowpass is a lowpass feedback comb filter. It is similar to * Tone.FeedbackCombFilter, but includes a lowpass filter. * * @extends {Tone} * @constructor * @param {Time|Object} [delayTime] The delay time of the comb filter * @param {NormalRange=} resonance The resonance (feedback) of the comb filter * @param {Frequency=} dampening The cutoff of the lowpass filter dampens the * signal as it is fedback. */ Tone.LowpassCombFilter = function () { Tone.call(this); var options = this.optionsObject(arguments, [ 'delayTime', 'resonance', 'dampening' ], Tone.LowpassCombFilter.defaults); /** * the delay node * @type {DelayNode} * @private */ this._delay = this.input = this.context.createDelay(1); /** * The delayTime of the comb filter. * @type {Time} * @signal */ this.delayTime = new Tone.Signal(options.delayTime, Tone.Type.Time); /** * the lowpass filter * @type {BiquadFilterNode} * @private */ this._lowpass = this.output = this.context.createBiquadFilter(); this._lowpass.Q.value = 0; this._lowpass.type = 'lowpass'; /** * The dampening control of the feedback * @type {Frequency} * @signal */ this.dampening = new Tone.Param({ 'param': this._lowpass.frequency, 'units': Tone.Type.Frequency, 'value': options.dampening }); /** * the feedback gain * @type {GainNode} * @private */ this._feedback = this.context.createGain(); /** * The amount of feedback of the delayed signal. * @type {NormalRange} * @signal */ this.resonance = new Tone.Param({ 'param': this._feedback.gain, 'units': Tone.Type.NormalRange, 'value': options.resonance }); //connections this._delay.chain(this._lowpass, this._feedback, this._delay); this.delayTime.connect(this._delay.delayTime); this._readOnly([ 'dampening', 'resonance', 'delayTime' ]); }; Tone.extend(Tone.LowpassCombFilter); /** * the default parameters * @static * @const * @type {Object} */ Tone.LowpassCombFilter.defaults = { 'delayTime': 0.1, 'resonance': 0.5, 'dampening': 3000 }; /** * Clean up. * @returns {Tone.LowpassCombFilter} this */ Tone.LowpassCombFilter.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable([ 'dampening', 'resonance', 'delayTime' ]); this.dampening.dispose(); this.dampening = null; this.resonance.dispose(); this.resonance = null; this._delay.disconnect(); this._delay = null; this._lowpass.disconnect(); this._lowpass = null; this._feedback.disconnect(); this._feedback = null; this.delayTime.dispose(); this.delayTime = null; return this; }; return Tone.LowpassCombFilter; }); Module(function (Tone) { /** * @class Tone.Merge brings two signals into the left and right * channels of a single stereo channel. * * @constructor * @extends {Tone} * @example * var merge = new Tone.Merge().toMaster(); * //routing a sine tone in the left channel * //and noise in the right channel * var osc = new Tone.Oscillator().connect(merge.left); * var noise = new Tone.Noise().connect(merge.right); * //starting our oscillators * noise.start(); * osc.start(); */ Tone.Merge = function () { Tone.call(this, 2, 0); /** * The left input channel. * Alias for input[0] * @type {GainNode} */ this.left = this.input[0] = this.context.createGain(); /** * The right input channel. * Alias for input[1]. * @type {GainNode} */ this.right = this.input[1] = this.context.createGain(); /** * the merger node for the two channels * @type {ChannelMergerNode} * @private */ this._merger = this.output = this.context.createChannelMerger(2); //connections this.left.connect(this._merger, 0, 0); this.right.connect(this._merger, 0, 1); }; Tone.extend(Tone.Merge); /** * Clean up. * @returns {Tone.Merge} this */ Tone.Merge.prototype.dispose = function () { Tone.prototype.dispose.call(this); this.left.disconnect(); this.left = null; this.right.disconnect(); this.right = null; this._merger.disconnect(); this._merger = null; return this; }; return Tone.Merge; }); Module(function (Tone) { /** * @class A single master output which is connected to the * AudioDestinationNode (aka your speakers). * It provides useful conveniences such as the ability * to set the volume and mute the entire application. * It also gives you the ability to apply master effects to your application. *

* Like Tone.Transport, A single Tone.Master is created * on initialization and you do not need to explicitly construct one. * * @constructor * @extends {Tone} * @singleton * @example * //the audio will go from the oscillator to the speakers * oscillator.connect(Tone.Master); * //a convenience for connecting to the master output is also provided: * oscillator.toMaster(); * //the above two examples are equivalent. */ Tone.Master = function () { Tone.call(this); /** * the unmuted volume * @type {number} * @private */ this._unmutedVolume = 1; /** * if the master is muted * @type {boolean} * @private */ this._muted = false; /** * The volume of the master output. * @type {Decibels} * @signal */ this.volume = this.output = new Tone.Volume(); this._readOnly('volume'); //connections this.input.chain(this.output, this.context.destination); }; Tone.extend(Tone.Master); /** * @type {Object} * @const */ Tone.Master.defaults = { 'volume': 0, 'mute': false }; /** * Mute the output. * @memberOf Tone.Master# * @type {boolean} * @name mute * @example * //mute the output * Tone.Master.mute = true; */ Object.defineProperty(Tone.Master.prototype, 'mute', { get: function () { return this._muted; }, set: function (mute) { if (!this._muted && mute) { this._unmutedVolume = this.volume.value; //maybe it should ramp here? this.volume.value = -Infinity; } else if (this._muted && !mute) { this.volume.value = this._unmutedVolume; } this._muted = mute; } }); /** * Add a master effects chain. NOTE: this will disconnect any nodes which were previously * chained in the master effects chain. * @param {AudioNode|Tone...} args All arguments will be connected in a row * and the Master will be routed through it. * @return {Tone.Master} this * @example * //some overall compression to keep the levels in check * var masterCompressor = new Tone.Compressor({ * "threshold" : -6, * "ratio" : 3, * "attack" : 0.5, * "release" : 0.1 * }); * //give a little boost to the lows * var lowBump = new Tone.Filter(200, "lowshelf"); * //route everything through the filter * //and compressor before going to the speakers * Tone.Master.chain(lowBump, masterCompressor); */ Tone.Master.prototype.chain = function () { this.input.disconnect(); this.input.chain.apply(this.input, arguments); arguments[arguments.length - 1].connect(this.output); }; /** * Clean up * @return {Tone.Master} this */ Tone.Master.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable('volume'); this.volume.dispose(); this.volume = null; }; /////////////////////////////////////////////////////////////////////////// // AUGMENT TONE's PROTOTYPE /////////////////////////////////////////////////////////////////////////// /** * Connect 'this' to the master output. Shorthand for this.connect(Tone.Master) * @returns {Tone} this * @example * //connect an oscillator to the master output * var osc = new Tone.Oscillator().toMaster(); */ Tone.prototype.toMaster = function () { this.connect(Tone.Master); return this; }; /** * Also augment AudioNode's prototype to include toMaster * as a convenience * @returns {AudioNode} this */ AudioNode.prototype.toMaster = function () { this.connect(Tone.Master); return this; }; var MasterConstructor = Tone.Master; /** * initialize the module and listen for new audio contexts */ Tone._initAudioContext(function () { //a single master output if (!Tone.prototype.isUndef(Tone.Master)) { Tone.Master = new MasterConstructor(); } else { MasterConstructor.prototype.dispose.call(Tone.Master); MasterConstructor.call(Tone.Master); } }); return Tone.Master; }); Module(function (Tone) { /** * @class Tone.Meter gets the [RMS](https://en.wikipedia.org/wiki/Root_mean_square) * of an input signal with some averaging applied. * It can also get the raw value of the signal or the value in dB. For signal * processing, it's better to use Tone.Follower which will produce an audio-rate * envelope follower instead of needing to poll the Meter to get the output. *

* Meter was inspired by [Chris Wilsons Volume Meter](https://github.com/cwilso/volume-meter/blob/master/volume-meter.js). * * @constructor * @extends {Tone} * @param {number} [channels=1] number of channels being metered * @param {number} [smoothing=0.8] amount of smoothing applied to the volume * @param {number} [clipMemory=0.5] number in seconds that a "clip" should be remembered * @example * var meter = new Tone.Meter(); * var mic = new Tone.Microphone().start(); * //connect mic to the meter * mic.connect(meter); * //use getLevel or getDb * //to access meter level * meter.getLevel(); */ Tone.Meter = function () { var options = this.optionsObject(arguments, [ 'channels', 'smoothing' ], Tone.Meter.defaults); //extends Unit Tone.call(this); /** * The channel count * @type {number} * @private */ this._channels = options.channels; /** * The amount which the decays of the meter are smoothed. Small values * will follow the contours of the incoming envelope more closely than large values. * @type {NormalRange} */ this.smoothing = options.smoothing; /** * The amount of time a clip is remember for. * @type {Time} */ this.clipMemory = options.clipMemory; /** * The value above which the signal is considered clipped. * @type {Number} */ this.clipLevel = options.clipLevel; /** * the rms for each of the channels * @private * @type {Array} */ this._volume = new Array(this._channels); /** * the raw values for each of the channels * @private * @type {Array} */ this._values = new Array(this._channels); //zero out the volume array for (var i = 0; i < this._channels; i++) { this._volume[i] = 0; this._values[i] = 0; } /** * last time the values clipped * @private * @type {Array} */ this._lastClip = new Array(this._channels); //zero out the clip array for (var j = 0; j < this._lastClip.length; j++) { this._lastClip[j] = 0; } /** * @private * @type {ScriptProcessorNode} */ this._jsNode = this.context.createScriptProcessor(options.bufferSize, this._channels, 1); this._jsNode.onaudioprocess = this._onprocess.bind(this); //so it doesn't get garbage collected this._jsNode.noGC(); //signal just passes this.input.connect(this.output); this.input.connect(this._jsNode); }; Tone.extend(Tone.Meter); /** * The defaults * @type {Object} * @static * @const */ Tone.Meter.defaults = { 'smoothing': 0.8, 'bufferSize': 1024, 'clipMemory': 0.5, 'clipLevel': 0.9, 'channels': 1 }; /** * called on each processing frame * @private * @param {AudioProcessingEvent} event */ Tone.Meter.prototype._onprocess = function (event) { var bufferSize = this._jsNode.bufferSize; var smoothing = this.smoothing; for (var channel = 0; channel < this._channels; channel++) { var input = event.inputBuffer.getChannelData(channel); var sum = 0; var total = 0; var x; for (var i = 0; i < bufferSize; i++) { x = input[i]; total += x; sum += x * x; } var average = total / bufferSize; var rms = Math.sqrt(sum / bufferSize); if (rms > 0.9) { this._lastClip[channel] = Date.now(); } this._volume[channel] = Math.max(rms, this._volume[channel] * smoothing); this._values[channel] = average; } }; /** * Get the rms of the signal. * @param {number} [channel=0] which channel * @return {number} the value */ Tone.Meter.prototype.getLevel = function (channel) { channel = this.defaultArg(channel, 0); var vol = this._volume[channel]; if (vol < 0.00001) { return 0; } else { return vol; } }; /** * Get the raw value of the signal. * @param {number=} channel * @return {number} */ Tone.Meter.prototype.getValue = function (channel) { channel = this.defaultArg(channel, 0); return this._values[channel]; }; /** * Get the volume of the signal in dB * @param {number=} channel * @return {Decibels} */ Tone.Meter.prototype.getDb = function (channel) { return this.gainToDb(this.getLevel(channel)); }; /** * @returns {boolean} if the audio has clipped. The value resets * based on the clipMemory defined. */ Tone.Meter.prototype.isClipped = function (channel) { channel = this.defaultArg(channel, 0); return Date.now() - this._lastClip[channel] < this._clipMemory * 1000; }; /** * Clean up. * @returns {Tone.Meter} this */ Tone.Meter.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._jsNode.disconnect(); this._jsNode.onaudioprocess = null; this._jsNode = null; this._volume = null; this._values = null; this._lastClip = null; return this; }; return Tone.Meter; }); Module(function (Tone) { /** * @class Tone.Split splits an incoming signal into left and right channels. * * @constructor * @extends {Tone} * @example * var split = new Tone.Split(); * stereoSignal.connect(split); */ Tone.Split = function () { Tone.call(this, 0, 2); /** * @type {ChannelSplitterNode} * @private */ this._splitter = this.input = this.context.createChannelSplitter(2); /** * Left channel output. * Alias for output[0] * @type {GainNode} */ this.left = this.output[0] = this.context.createGain(); /** * Right channel output. * Alias for output[1] * @type {GainNode} */ this.right = this.output[1] = this.context.createGain(); //connections this._splitter.connect(this.left, 0, 0); this._splitter.connect(this.right, 1, 0); }; Tone.extend(Tone.Split); /** * Clean up. * @returns {Tone.Split} this */ Tone.Split.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._splitter.disconnect(); this.left.disconnect(); this.right.disconnect(); this.left = null; this.right = null; this._splitter = null; return this; }; return Tone.Split; }); Module(function (Tone) { /** * @class Mid/Side processing separates the the 'mid' signal * (which comes out of both the left and the right channel) * and the 'side' (which only comes out of the the side channels).

* * Mid = (Left+Right)/sqrt(2); // obtain mid-signal from left and right
* Side = (Left-Right)/sqrt(2); // obtain side-signal from left and righ
*
* * @extends {Tone} * @constructor */ Tone.MidSideSplit = function () { Tone.call(this, 0, 2); /** * split the incoming signal into left and right channels * @type {Tone.Split} * @private */ this._split = this.input = new Tone.Split(); /** * The mid send. Connect to mid processing. Alias for * output[0] * @type {Tone.Expr} */ this.mid = this.output[0] = new Tone.Expr('($0 + $1) * $2'); /** * The side output. Connect to side processing. Alias for * output[1] * @type {Tone.Expr} */ this.side = this.output[1] = new Tone.Expr('($0 - $1) * $2'); this._split.connect(this.mid, 0, 0); this._split.connect(this.mid, 1, 1); this._split.connect(this.side, 0, 0); this._split.connect(this.side, 1, 1); sqrtTwo.connect(this.mid, 0, 2); sqrtTwo.connect(this.side, 0, 2); }; Tone.extend(Tone.MidSideSplit); /** * a constant signal equal to 1 / sqrt(2) * @type {Number} * @signal * @private * @static */ var sqrtTwo = null; Tone._initAudioContext(function () { sqrtTwo = new Tone.Signal(1 / Math.sqrt(2)); }); /** * clean up * @returns {Tone.MidSideSplit} this */ Tone.MidSideSplit.prototype.dispose = function () { Tone.prototype.dispose.call(this); this.mid.dispose(); this.mid = null; this.side.dispose(); this.side = null; this._split.dispose(); this._split = null; return this; }; return Tone.MidSideSplit; }); Module(function (Tone) { /** * @class Mid/Side processing separates the the 'mid' signal * (which comes out of both the left and the right channel) * and the 'side' (which only comes out of the the side channels). * MidSideMerge merges the mid and side signal after they've been seperated * by Tone.MidSideSplit.

* * Left = (Mid+Side)/sqrt(2); // obtain left signal from mid and side
* Right = (Mid-Side)/sqrt(2); // obtain right signal from mid and side
*
* * @extends {Tone.StereoEffect} * @constructor */ Tone.MidSideMerge = function () { Tone.call(this, 2, 0); /** * The mid signal input. Alias for * input[0] * @type {GainNode} */ this.mid = this.input[0] = this.context.createGain(); /** * recombine the mid/side into Left * @type {Tone.Expr} * @private */ this._left = new Tone.Expr('($0 + $1) * $2'); /** * The side signal input. Alias for * input[1] * @type {GainNode} */ this.side = this.input[1] = this.context.createGain(); /** * recombine the mid/side into Right * @type {Tone.Expr} * @private */ this._right = new Tone.Expr('($0 - $1) * $2'); /** * Merge the left/right signal back into a stereo signal. * @type {Tone.Merge} * @private */ this._merge = this.output = new Tone.Merge(); this.mid.connect(this._left, 0, 0); this.side.connect(this._left, 0, 1); this.mid.connect(this._right, 0, 0); this.side.connect(this._right, 0, 1); this._left.connect(this._merge, 0, 0); this._right.connect(this._merge, 0, 1); sqrtTwo.connect(this._left, 0, 2); sqrtTwo.connect(this._right, 0, 2); }; Tone.extend(Tone.MidSideMerge); /** * A constant signal equal to 1 / sqrt(2). * @type {Number} * @signal * @private * @static */ var sqrtTwo = null; Tone._initAudioContext(function () { sqrtTwo = new Tone.Signal(1 / Math.sqrt(2)); }); /** * clean up * @returns {Tone.MidSideMerge} this */ Tone.MidSideMerge.prototype.dispose = function () { Tone.prototype.dispose.call(this); this.mid.disconnect(); this.mid = null; this.side.disconnect(); this.side = null; this._left.dispose(); this._left = null; this._right.dispose(); this._right = null; this._merge.dispose(); this._merge = null; return this; }; return Tone.MidSideMerge; }); Module(function (Tone) { /** * @class Tone.MidSideCompressor applies two different compressors to the mid * and side signal components. See Tone.MidSideSplit. * * @extends {Tone} * @param {Object} options The options that are passed to the mid and side * compressors. * @constructor */ Tone.MidSideCompressor = function (options) { options = this.defaultArg(options, Tone.MidSideCompressor.defaults); /** * the mid/side split * @type {Tone.MidSideSplit} * @private */ this._midSideSplit = this.input = new Tone.MidSideSplit(); /** * the mid/side recombination * @type {Tone.MidSideMerge} * @private */ this._midSideMerge = this.output = new Tone.MidSideMerge(); /** * The compressor applied to the mid signal * @type {Tone.Compressor} */ this.mid = new Tone.Compressor(options.mid); /** * The compressor applied to the side signal * @type {Tone.Compressor} */ this.side = new Tone.Compressor(options.side); this._midSideSplit.mid.chain(this.mid, this._midSideMerge.mid); this._midSideSplit.side.chain(this.side, this._midSideMerge.side); this._readOnly([ 'mid', 'side' ]); }; Tone.extend(Tone.MidSideCompressor); /** * @const * @static * @type {Object} */ Tone.MidSideCompressor.defaults = { 'mid': { 'ratio': 3, 'threshold': -24, 'release': 0.03, 'attack': 0.02, 'knee': 16 }, 'side': { 'ratio': 6, 'threshold': -30, 'release': 0.25, 'attack': 0.03, 'knee': 10 } }; /** * Clean up. * @returns {Tone.MidSideCompressor} this */ Tone.MidSideCompressor.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable([ 'mid', 'side' ]); this.mid.dispose(); this.mid = null; this.side.dispose(); this.side = null; this._midSideSplit.dispose(); this._midSideSplit = null; this._midSideMerge.dispose(); this._midSideMerge = null; return this; }; return Tone.MidSideCompressor; }); Module(function (Tone) { /** * @class Tone.Mono coerces the incoming mono or stereo signal into a mono signal * where both left and right channels have the same value. This can be useful * for [stereo imaging](https://en.wikipedia.org/wiki/Stereo_imaging). * * @extends {Tone} * @constructor */ Tone.Mono = function () { Tone.call(this, 1, 0); /** * merge the signal * @type {Tone.Merge} * @private */ this._merge = this.output = new Tone.Merge(); this.input.connect(this._merge, 0, 0); this.input.connect(this._merge, 0, 1); this.input.gain.value = this.dbToGain(-10); }; Tone.extend(Tone.Mono); /** * clean up * @returns {Tone.Mono} this */ Tone.Mono.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._merge.dispose(); this._merge = null; return this; }; return Tone.Mono; }); Module(function (Tone) { /** * @class A compressor with seperate controls over low/mid/high dynamics * * @extends {Tone} * @constructor * @param {Object} options The low/mid/high compressor settings. * @example * var multiband = new Tone.MultibandCompressor({ * "lowFrequency" : 200, * "highFrequency" : 1300 * "low" : { * "threshold" : -12 * } * }) */ Tone.MultibandCompressor = function (options) { options = this.defaultArg(arguments, Tone.MultibandCompressor.defaults); /** * split the incoming signal into high/mid/low * @type {Tone.MultibandSplit} * @private */ this._splitter = this.input = new Tone.MultibandSplit({ 'lowFrequency': options.lowFrequency, 'highFrequency': options.highFrequency }); /** * low/mid crossover frequency. * @type {Frequency} * @signal */ this.lowFrequency = this._splitter.lowFrequency; /** * mid/high crossover frequency. * @type {Frequency} * @signal */ this.highFrequency = this._splitter.highFrequency; /** * the output * @type {GainNode} * @private */ this.output = this.context.createGain(); /** * The compressor applied to the low frequencies. * @type {Tone.Compressor} */ this.low = new Tone.Compressor(options.low); /** * The compressor applied to the mid frequencies. * @type {Tone.Compressor} */ this.mid = new Tone.Compressor(options.mid); /** * The compressor applied to the high frequencies. * @type {Tone.Compressor} */ this.high = new Tone.Compressor(options.high); //connect the compressor this._splitter.low.chain(this.low, this.output); this._splitter.mid.chain(this.mid, this.output); this._splitter.high.chain(this.high, this.output); this._readOnly([ 'high', 'mid', 'low', 'highFrequency', 'lowFrequency' ]); }; Tone.extend(Tone.MultibandCompressor); /** * @const * @static * @type {Object} */ Tone.MultibandCompressor.defaults = { 'low': Tone.Compressor.defaults, 'mid': Tone.Compressor.defaults, 'high': Tone.Compressor.defaults, 'lowFrequency': 250, 'highFrequency': 2000 }; /** * clean up * @returns {Tone.MultibandCompressor} this */ Tone.MultibandCompressor.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._splitter.dispose(); this._writable([ 'high', 'mid', 'low', 'highFrequency', 'lowFrequency' ]); this.low.dispose(); this.mid.dispose(); this.high.dispose(); this._splitter = null; this.low = null; this.mid = null; this.high = null; this.lowFrequency = null; this.highFrequency = null; return this; }; return Tone.MultibandCompressor; }); Module(function (Tone) { /** * @class Maps a NormalRange [0, 1] to an AudioRange [-1, 1]. * See also Tone.AudioToGain. * * @extends {Tone.SignalBase} * @constructor * @example * var g2a = new Tone.GainToAudio(); */ Tone.GainToAudio = function () { /** * @type {WaveShaperNode} * @private */ this._norm = this.input = this.output = new Tone.WaveShaper(function (x) { return Math.abs(x) * 2 - 1; }); }; Tone.extend(Tone.GainToAudio, Tone.SignalBase); /** * clean up * @returns {Tone.GainToAudio} this */ Tone.GainToAudio.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._norm.dispose(); this._norm = null; return this; }; return Tone.GainToAudio; }); Module(function (Tone) { /** * @class Tone.Panner is an equal power Left/Right Panner and does not * support 3D. Panner uses the StereoPannerNode when available. * * @constructor * @extends {Tone} * @param {NormalRange} [initialPan=0.5] The initail panner value (defaults to 0.5 = center) * @example * //pan the input signal hard right. * var panner = new Tone.Panner(1); */ Tone.Panner = function (initialPan) { Tone.call(this); /** * indicates if the panner is using the new StereoPannerNode internally * @type {boolean} * @private */ this._hasStereoPanner = this.isFunction(this.context.createStereoPanner); if (this._hasStereoPanner) { /** * the panner node * @type {StereoPannerNode} * @private */ this._panner = this.input = this.output = this.context.createStereoPanner(); /** * The pan control. 0 = hard left, 1 = hard right. * @type {NormalRange} * @signal */ this.pan = new Tone.Signal(0, Tone.Type.NormalRange); /** * scale the pan signal to between -1 and 1 * @type {Tone.WaveShaper} * @private */ this._scalePan = new Tone.GainToAudio(); //connections this.pan.chain(this._scalePan, this._panner.pan); } else { /** * the dry/wet knob * @type {Tone.CrossFade} * @private */ this._crossFade = new Tone.CrossFade(); /** * @type {Tone.Merge} * @private */ this._merger = this.output = new Tone.Merge(); /** * @type {Tone.Split} * @private */ this._splitter = this.input = new Tone.Split(); /** * The pan control. 0 = hard left, 1 = hard right. * @type {NormalRange} * @signal */ this.pan = this._crossFade.fade; //CONNECTIONS: //left channel is a, right channel is b this._splitter.connect(this._crossFade, 0, 0); this._splitter.connect(this._crossFade, 1, 1); //merge it back together this._crossFade.a.connect(this._merger, 0, 0); this._crossFade.b.connect(this._merger, 0, 1); } //initial value this.pan.value = this.defaultArg(initialPan, 0.5); this._readOnly('pan'); }; Tone.extend(Tone.Panner); /** * Clean up. * @returns {Tone.Panner} this */ Tone.Panner.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable('pan'); if (this._hasStereoPanner) { this._panner.disconnect(); this._panner = null; this.pan.dispose(); this.pan = null; this._scalePan.dispose(); this._scalePan = null; } else { this._crossFade.dispose(); this._crossFade = null; this._splitter.dispose(); this._splitter = null; this._merger.dispose(); this._merger = null; this.pan = null; } return this; }; return Tone.Panner; }); Module(function (Tone) { /** * @class Tone.PanVol is a Tone.Panner and Tone.Volume in one. * * @extends {Tone} * @constructor * @param {NormalRange} pan the initial pan * @param {number} volume The output volume. * @example * //pan the incoming signal left and drop the volume * var panVol = new Tone.PanVol(0.25, -12); */ Tone.PanVol = function () { var options = this.optionsObject(arguments, [ 'pan', 'volume' ], Tone.PanVol.defaults); /** * The panning node * @type {Tone.Panner} * @private */ this._panner = this.input = new Tone.Panner(options.pan); /** * The L/R panning control. * @type {NormalRange} * @signal */ this.pan = this._panner.pan; /** * The volume control in decibels. * @type {Decibels} * @signal */ this.volume = this.output = new Tone.Volume(options.volume); //connections this._panner.connect(this.volume); this._readOnly([ 'pan', 'volume' ]); }; Tone.extend(Tone.PanVol); /** * The defaults * @type {Object} * @const * @static */ Tone.PanVol.defaults = { 'pan': 0.5, 'volume': 0 }; /** * clean up * @returns {Tone.PanVol} this */ Tone.PanVol.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable([ 'pan', 'volume' ]); this._panner.dispose(); this._panner = null; this.pan = null; this.volume.dispose(); this.volume = null; return this; }; return Tone.PanVol; }); Module(function (Tone) { /** * @class Tone.ScaledEnvelop is an envelope which can be scaled * to any range. It's useful for applying an envelope * to a frequency or any other non-NormalRange signal * parameter. * * @extends {Tone.Envelope} * @constructor * @param {Time|Object} [attack] the attack time in seconds * @param {Time} [decay] the decay time in seconds * @param {number} [sustain] a percentage (0-1) of the full amplitude * @param {Time} [release] the release time in seconds * @example * var scaledEnv = new Tone.ScaledEnvelope({ * "attack" : 0.2, * "min" : 200, * "max" : 2000 * }); * scaledEnv.connect(oscillator.frequency); */ Tone.ScaledEnvelope = function () { //get all of the defaults var options = this.optionsObject(arguments, [ 'attack', 'decay', 'sustain', 'release' ], Tone.Envelope.defaults); Tone.Envelope.call(this, options); options = this.defaultArg(options, Tone.ScaledEnvelope.defaults); /** * scale the incoming signal by an exponent * @type {Tone.Pow} * @private */ this._exp = this.output = new Tone.Pow(options.exponent); /** * scale the signal to the desired range * @type {Tone.Multiply} * @private */ this._scale = this.output = new Tone.Scale(options.min, options.max); this._sig.chain(this._exp, this._scale); }; Tone.extend(Tone.ScaledEnvelope, Tone.Envelope); /** * the default parameters * @static */ Tone.ScaledEnvelope.defaults = { 'min': 0, 'max': 1, 'exponent': 1 }; /** * The envelope's min output value. This is the value which it * starts at. * @memberOf Tone.ScaledEnvelope# * @type {number} * @name min */ Object.defineProperty(Tone.ScaledEnvelope.prototype, 'min', { get: function () { return this._scale.min; }, set: function (min) { this._scale.min = min; } }); /** * The envelope's max output value. In other words, the value * at the peak of the attack portion of the envelope. * @memberOf Tone.ScaledEnvelope# * @type {number} * @name max */ Object.defineProperty(Tone.ScaledEnvelope.prototype, 'max', { get: function () { return this._scale.max; }, set: function (max) { this._scale.max = max; } }); /** * The envelope's exponent value. * @memberOf Tone.ScaledEnvelope# * @type {number} * @name exponent */ Object.defineProperty(Tone.ScaledEnvelope.prototype, 'exponent', { get: function () { return this._exp.value; }, set: function (exp) { this._exp.value = exp; } }); /** * clean up * @returns {Tone.ScaledEnvelope} this */ Tone.ScaledEnvelope.prototype.dispose = function () { Tone.Envelope.prototype.dispose.call(this); this._scale.dispose(); this._scale = null; this._exp.dispose(); this._exp = null; return this; }; return Tone.ScaledEnvelope; }); Module(function (Tone) { /** * @class Tone.PulseOscillator is a pulse oscillator with control over pulse width, * also known as the duty cycle. At 50% duty cycle (width = 0.5) the wave is * a square and only odd-numbered harmonics are present. At all other widths * even-numbered harmonics are present. Read more * [here](https://wigglewave.wordpress.com/2014/08/16/pulse-waveforms-and-harmonics/). * * @constructor * @extends {Tone.Oscillator} * @param {Frequency} [frequency] The frequency of the oscillator * @param {NormalRange} [width] The width of the pulse * @example * var pulse = new Tone.PulseOscillator("E5", 0.4).toMaster().start(); */ Tone.PulseOscillator = function () { var options = this.optionsObject(arguments, [ 'frequency', 'width' ], Tone.Oscillator.defaults); Tone.Source.call(this, options); /** * The width of the pulse. * @type {NormalRange} * @signal */ this.width = new Tone.Signal(options.width, Tone.Type.NormalRange); /** * gate the width amount * @type {GainNode} * @private */ this._widthGate = this.context.createGain(); /** * the sawtooth oscillator * @type {Tone.Oscillator} * @private */ this._sawtooth = new Tone.Oscillator({ frequency: options.frequency, detune: options.detune, type: 'sawtooth', phase: options.phase }); /** * The frequency control. * @type {Frequency} * @signal */ this.frequency = this._sawtooth.frequency; /** * The detune in cents. * @type {Cents} * @signal */ this.detune = this._sawtooth.detune; /** * Threshold the signal to turn it into a square * @type {Tone.WaveShaper} * @private */ this._thresh = new Tone.WaveShaper(function (val) { if (val < 0) { return -1; } else { return 1; } }); //connections this._sawtooth.chain(this._thresh, this.output); this.width.chain(this._widthGate, this._thresh); this._readOnly([ 'width', 'frequency', 'detune' ]); }; Tone.extend(Tone.PulseOscillator, Tone.Oscillator); /** * The default parameters. * @static * @const * @type {Object} */ Tone.PulseOscillator.defaults = { 'frequency': 440, 'detune': 0, 'phase': 0, 'width': 0.2 }; /** * start the oscillator * @param {Time} time * @private */ Tone.PulseOscillator.prototype._start = function (time) { time = this.toSeconds(time); this._sawtooth.start(time); this._widthGate.gain.setValueAtTime(1, time); }; /** * stop the oscillator * @param {Time} time * @private */ Tone.PulseOscillator.prototype._stop = function (time) { time = this.toSeconds(time); this._sawtooth.stop(time); //the width is still connected to the output. //that needs to be stopped also this._widthGate.gain.setValueAtTime(0, time); }; /** * The phase of the oscillator in degrees. * @memberOf Tone.PulseOscillator# * @type {Degrees} * @name phase */ Object.defineProperty(Tone.PulseOscillator.prototype, 'phase', { get: function () { return this._sawtooth.phase; }, set: function (phase) { this._sawtooth.phase = phase; } }); /** * The type of the oscillator. Always returns "pulse". * @readOnly * @memberOf Tone.PulseOscillator# * @type {string} * @name type */ Object.defineProperty(Tone.PulseOscillator.prototype, 'type', { get: function () { return 'pulse'; } }); /** * Clean up method. * @return {Tone.PulseOscillator} this */ Tone.PulseOscillator.prototype.dispose = function () { Tone.Source.prototype.dispose.call(this); this._sawtooth.dispose(); this._sawtooth = null; this._writable([ 'width', 'frequency', 'detune' ]); this.width.dispose(); this.width = null; this._widthGate.disconnect(); this._widthGate = null; this._widthGate = null; this._thresh.disconnect(); this._thresh = null; this.frequency = null; this.detune = null; return this; }; return Tone.PulseOscillator; }); Module(function (Tone) { /** * @class Tone.PWMOscillator modulates the width of a Tone.PulseOscillator * at the modulationFrequency. This has the effect of continuously * changing the timbre of the oscillator by altering the harmonics * generated. * * @extends {Tone.Oscillator} * @constructor * @param {Frequency} frequency The starting frequency of the oscillator. * @param {Frequency} modulationFrequency The modulation frequency of the width of the pulse. * @example * var pwm = new Tone.PWMOscillator("Ab3", 0.3).toMaster().start(); */ Tone.PWMOscillator = function () { var options = this.optionsObject(arguments, [ 'frequency', 'modulationFrequency' ], Tone.PWMOscillator.defaults); Tone.Source.call(this, options); /** * the pulse oscillator * @type {Tone.PulseOscillator} * @private */ this._pulse = new Tone.PulseOscillator(options.modulationFrequency); //change the pulse oscillator type this._pulse._sawtooth.type = 'sine'; /** * the modulator * @type {Tone.Oscillator} * @private */ this._modulator = new Tone.Oscillator({ 'frequency': options.frequency, 'detune': options.detune, 'phase': options.phase }); /** * Scale the oscillator so it doesn't go silent * at the extreme values. * @type {Tone.Multiply} * @private */ this._scale = new Tone.Multiply(1.01); /** * The frequency control. * @type {Frequency} * @signal */ this.frequency = this._modulator.frequency; /** * The detune of the oscillator. * @type {Cents} * @signal */ this.detune = this._modulator.detune; /** * The modulation rate of the oscillator. * @type {Frequency} * @signal */ this.modulationFrequency = this._pulse.frequency; //connections this._modulator.chain(this._scale, this._pulse.width); this._pulse.connect(this.output); this._readOnly([ 'modulationFrequency', 'frequency', 'detune' ]); }; Tone.extend(Tone.PWMOscillator, Tone.Oscillator); /** * default values * @static * @type {Object} * @const */ Tone.PWMOscillator.defaults = { 'frequency': 440, 'detune': 0, 'phase': 0, 'modulationFrequency': 0.4 }; /** * start the oscillator * @param {Time} [time=now] * @private */ Tone.PWMOscillator.prototype._start = function (time) { time = this.toSeconds(time); this._modulator.start(time); this._pulse.start(time); }; /** * stop the oscillator * @param {Time} time (optional) timing parameter * @private */ Tone.PWMOscillator.prototype._stop = function (time) { time = this.toSeconds(time); this._modulator.stop(time); this._pulse.stop(time); }; /** * The type of the oscillator. Always returns "pwm". * @readOnly * @memberOf Tone.PWMOscillator# * @type {string} * @name type */ Object.defineProperty(Tone.PWMOscillator.prototype, 'type', { get: function () { return 'pwm'; } }); /** * The phase of the oscillator in degrees. * @memberOf Tone.PWMOscillator# * @type {number} * @name phase */ Object.defineProperty(Tone.PWMOscillator.prototype, 'phase', { get: function () { return this._modulator.phase; }, set: function (phase) { this._modulator.phase = phase; } }); /** * Clean up. * @return {Tone.PWMOscillator} this */ Tone.PWMOscillator.prototype.dispose = function () { Tone.Source.prototype.dispose.call(this); this._pulse.dispose(); this._pulse = null; this._scale.dispose(); this._scale = null; this._modulator.dispose(); this._modulator = null; this._writable([ 'modulationFrequency', 'frequency', 'detune' ]); this.frequency = null; this.detune = null; this.modulationFrequency = null; return this; }; return Tone.PWMOscillator; }); Module(function (Tone) { /** * @class Tone.OmniOscillator aggregates Tone.Oscillator, Tone.PulseOscillator, * and Tone.PWMOscillator into one class, allowing it to have the * types: sine, square, triangle, sawtooth, pulse or pwm. Additionally, * OmniOscillator is capable of setting the first x number of partials * of the oscillator. For example: "sine4" would set be the first 4 * partials of the sine wave and "triangle8" would set the first * 8 partials of the triangle wave. * * @extends {Tone.Oscillator} * @constructor * @param {Frequency} frequency The initial frequency of the oscillator. * @param {string} type The type of the oscillator. * @example * var omniOsc = new Tone.OmniOscillator("C#4", "pwm"); */ Tone.OmniOscillator = function () { var options = this.optionsObject(arguments, [ 'frequency', 'type' ], Tone.OmniOscillator.defaults); Tone.Source.call(this, options); /** * The frequency control. * @type {Frequency} * @signal */ this.frequency = new Tone.Signal(options.frequency, Tone.Type.Frequency); /** * The detune control * @type {Cents} * @signal */ this.detune = new Tone.Signal(options.detune, Tone.Type.Cents); /** * the type of the oscillator source * @type {string} * @private */ this._sourceType = undefined; /** * the oscillator * @type {Tone.Oscillator|Tone.PWMOscillator|Tone.PulseOscillator} * @private */ this._oscillator = null; //set the oscillator this.type = options.type; this.phase = options.phase; this._readOnly([ 'frequency', 'detune' ]); }; Tone.extend(Tone.OmniOscillator, Tone.Oscillator); /** * default values * @static * @type {Object} * @const */ Tone.OmniOscillator.defaults = { 'frequency': 440, 'detune': 0, 'type': 'sine', 'phase': 0, 'width': 0.4, //only applies if the oscillator is set to "pulse", 'modulationFrequency': 0.4 }; /** * @enum {string} * @private */ var OmniOscType = { PulseOscillator: 'PulseOscillator', PWMOscillator: 'PWMOscillator', Oscillator: 'Oscillator' }; /** * start the oscillator * @param {Time} [time=now] the time to start the oscillator * @private */ Tone.OmniOscillator.prototype._start = function (time) { this._oscillator.start(time); }; /** * start the oscillator * @param {Time} [time=now] the time to start the oscillator * @private */ Tone.OmniOscillator.prototype._stop = function (time) { this._oscillator.stop(time); }; /** * The type of the oscillator. sine, square, triangle, sawtooth, pwm, or pulse. * @memberOf Tone.OmniOscillator# * @type {string} * @name type */ Object.defineProperty(Tone.OmniOscillator.prototype, 'type', { get: function () { return this._oscillator.type; }, set: function (type) { if (type.indexOf('sine') === 0 || type.indexOf('square') === 0 || type.indexOf('triangle') === 0 || type.indexOf('sawtooth') === 0) { if (this._sourceType !== OmniOscType.Oscillator) { this._sourceType = OmniOscType.Oscillator; this._createNewOscillator(Tone.Oscillator); } this._oscillator.type = type; } else if (type === 'pwm') { if (this._sourceType !== OmniOscType.PWMOscillator) { this._sourceType = OmniOscType.PWMOscillator; this._createNewOscillator(Tone.PWMOscillator); } } else if (type === 'pulse') { if (this._sourceType !== OmniOscType.PulseOscillator) { this._sourceType = OmniOscType.PulseOscillator; this._createNewOscillator(Tone.PulseOscillator); } } else { throw new Error('Tone.OmniOscillator does not support type ' + type); } } }); /** * connect the oscillator to the frequency and detune signals * @private */ Tone.OmniOscillator.prototype._createNewOscillator = function (OscillatorConstructor) { //short delay to avoid clicks on the change var now = this.now() + this.blockTime; if (this._oscillator !== null) { var oldOsc = this._oscillator; oldOsc.stop(now); //dispose the old one setTimeout(function () { oldOsc.dispose(); oldOsc = null; }, this.blockTime * 1000); } this._oscillator = new OscillatorConstructor(); this.frequency.connect(this._oscillator.frequency); this.detune.connect(this._oscillator.detune); this._oscillator.connect(this.output); if (this.state === Tone.State.Started) { this._oscillator.start(now); } }; /** * The phase of the oscillator in degrees. * @memberOf Tone.OmniOscillator# * @type {Degrees} * @name phase */ Object.defineProperty(Tone.OmniOscillator.prototype, 'phase', { get: function () { return this._oscillator.phase; }, set: function (phase) { this._oscillator.phase = phase; } }); /** * The width of the oscillator (only if the oscillator is set to pulse) * @memberOf Tone.OmniOscillator# * @type {NormalRange} * @signal * @name width * @example * var omniOsc = new Tone.OmniOscillator(440, "pulse"); * //can access the width attribute only if type === "pulse" * omniOsc.width.value = 0.2; */ Object.defineProperty(Tone.OmniOscillator.prototype, 'width', { get: function () { if (this._sourceType === OmniOscType.PulseOscillator) { return this._oscillator.width; } } }); /** * The modulationFrequency Signal of the oscillator * (only if the oscillator type is set to pwm). * @memberOf Tone.OmniOscillator# * @type {Frequency} * @signal * @name modulationFrequency * @example * var omniOsc = new Tone.OmniOscillator(440, "pwm"); * //can access the modulationFrequency attribute only if type === "pwm" * omniOsc.modulationFrequency.value = 0.2; */ Object.defineProperty(Tone.OmniOscillator.prototype, 'modulationFrequency', { get: function () { if (this._sourceType === OmniOscType.PWMOscillator) { return this._oscillator.modulationFrequency; } } }); /** * Clean up. * @return {Tone.OmniOscillator} this */ Tone.OmniOscillator.prototype.dispose = function () { Tone.Source.prototype.dispose.call(this); this._writable([ 'frequency', 'detune' ]); this.detune.dispose(); this.detune = null; this.frequency.dispose(); this.frequency = null; this._oscillator.dispose(); this._oscillator = null; this._sourceType = null; return this; }; return Tone.OmniOscillator; }); Module(function (Tone) { /** * @class Base-class for all instruments * * @constructor * @extends {Tone} */ Tone.Instrument = function (options) { //get the defaults options = this.defaultArg(options, Tone.Instrument.defaults); /** * The volume of the output in decibels. * @type {Decibels} * @signal * @example * source.volume.value = -6; */ this.volume = this.output = new Tone.Volume(options.volume); this._readOnly('volume'); }; Tone.extend(Tone.Instrument); /** * the default attributes * @type {object} */ Tone.Instrument.defaults = { /** the volume of the output in decibels */ 'volume': 0 }; /** * @abstract * @param {string|number} note the note to trigger * @param {Time} [time=now] the time to trigger the ntoe * @param {number} [velocity=1] the velocity to trigger the note */ Tone.Instrument.prototype.triggerAttack = Tone.noOp; /** * @abstract * @param {Time} [time=now] when to trigger the release */ Tone.Instrument.prototype.triggerRelease = Tone.noOp; /** * Trigger the attack and then the release after the duration. * @param {Frequency} note The note to trigger. * @param {Time} duration How long the note should be held for before * triggering the release. * @param {Time} [time=now] When the note should be triggered. * @param {NormalRange} [velocity=1] The velocity the note should be triggered at. * @returns {Tone.Instrument} this * @example * //trigger "C4" for the duration of an 8th note * synth.triggerAttackRelease("C4", "8n"); */ Tone.Instrument.prototype.triggerAttackRelease = function (note, duration, time, velocity) { time = this.toSeconds(time); duration = this.toSeconds(duration); this.triggerAttack(note, time, velocity); this.triggerRelease(time + duration); return this; }; /** * clean up * @returns {Tone.Instrument} this */ Tone.Instrument.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable(['volume']); this.volume.dispose(); this.volume = null; return this; }; return Tone.Instrument; }); Module(function (Tone) { /** * @class This is an abstract base class for other monophonic instruments to * extend. IMPORTANT: It does not make any sound on its own and * shouldn't be directly instantiated. * * @constructor * @abstract * @extends {Tone.Instrument} */ Tone.Monophonic = function (options) { //get the defaults options = this.defaultArg(options, Tone.Monophonic.defaults); Tone.Instrument.call(this, options); /** * The glide time between notes. * @type {Time} */ this.portamento = options.portamento; }; Tone.extend(Tone.Monophonic, Tone.Instrument); /** * @static * @const * @type {Object} */ Tone.Monophonic.defaults = { 'portamento': 0 }; /** * Trigger the attack of the note optionally with a given velocity. * * * @param {Frequency} note The note to trigger. * @param {Time} [time=now] When the note should start. * @param {number} [velocity=1] velocity The velocity scaler * determines how "loud" the note * will be triggered. * @returns {Tone.Monophonic} this * @example * synth.triggerAttack("C4"); * @example * //trigger the note a half second from now at half velocity * synth.triggerAttack("C4", "+0.5", 0.5); */ Tone.Monophonic.prototype.triggerAttack = function (note, time, velocity) { time = this.toSeconds(time); this._triggerEnvelopeAttack(time, velocity); this.setNote(note, time); return this; }; /** * Trigger the release portion of the envelope * @param {Time} [time=now] If no time is given, the release happens immediatly * @returns {Tone.Monophonic} this * @example * synth.triggerRelease(); */ Tone.Monophonic.prototype.triggerRelease = function (time) { this._triggerEnvelopeRelease(time); return this; }; /** * override this method with the actual method * @abstract * @private */ Tone.Monophonic.prototype._triggerEnvelopeAttack = function () { }; /** * override this method with the actual method * @abstract * @private */ Tone.Monophonic.prototype._triggerEnvelopeRelease = function () { }; /** * Set the note at the given time. If no time is given, the note * will set immediately. * @param {Frequency} note The note to change to. * @param {Time} [time=now] The time when the note should be set. * @returns {Tone.Monophonic} this * @example * //change to F#6 in one quarter note from now. * synth.setNote("F#6", "+4n"); * @example * //change to Bb4 right now * synth.setNote("Bb4"); */ Tone.Monophonic.prototype.setNote = function (note, time) { time = this.toSeconds(time); if (this.portamento > 0) { var currentNote = this.frequency.value; this.frequency.setValueAtTime(currentNote, time); var portTime = this.toSeconds(this.portamento); this.frequency.exponentialRampToValueAtTime(note, time + portTime); } else { this.frequency.setValueAtTime(note, time); } return this; }; return Tone.Monophonic; }); Module(function (Tone) { /** * @class Tone.MonoSynth is composed of one oscillator, one filter, and two envelopes. * The amplitude of the Tone.Oscillator and the cutoff frequency of the * Tone.Filter are controlled by Tone.Envelopes. * * * @constructor * @extends {Tone.Monophonic} * @param {Object} [options] the options available for the synth * see defaults below * @example * var synth = new Tone.MonoSynth({ * "oscillator" : { * "type" : "square" * }, * "envelope" : { * "attack" : 0.1 * } * }).toMaster(); * synth.triggerAttackRelease("C4", "8n"); */ Tone.MonoSynth = function (options) { //get the defaults options = this.defaultArg(options, Tone.MonoSynth.defaults); Tone.Monophonic.call(this, options); /** * The oscillator. * @type {Tone.OmniOscillator} */ this.oscillator = new Tone.OmniOscillator(options.oscillator); /** * The frequency control. * @type {Frequency} * @signal */ this.frequency = this.oscillator.frequency; /** * The detune control. * @type {Cents} * @signal */ this.detune = this.oscillator.detune; /** * The filter. * @type {Tone.Filter} */ this.filter = new Tone.Filter(options.filter); /** * The filter envelope. * @type {Tone.ScaledEnvelope} */ this.filterEnvelope = new Tone.ScaledEnvelope(options.filterEnvelope); /** * The amplitude envelope. * @type {Tone.AmplitudeEnvelope} */ this.envelope = new Tone.AmplitudeEnvelope(options.envelope); //connect the oscillators to the output this.oscillator.chain(this.filter, this.envelope, this.output); //start the oscillators this.oscillator.start(); //connect the filter envelope this.filterEnvelope.connect(this.filter.frequency); this._readOnly([ 'oscillator', 'frequency', 'detune', 'filter', 'filterEnvelope', 'envelope' ]); }; Tone.extend(Tone.MonoSynth, Tone.Monophonic); /** * @const * @static * @type {Object} */ Tone.MonoSynth.defaults = { 'frequency': 'C4', 'detune': 0, 'oscillator': { 'type': 'square' }, 'filter': { 'Q': 6, 'type': 'lowpass', 'rolloff': -24 }, 'envelope': { 'attack': 0.005, 'decay': 0.1, 'sustain': 0.9, 'release': 1 }, 'filterEnvelope': { 'attack': 0.06, 'decay': 0.2, 'sustain': 0.5, 'release': 2, 'min': 20, 'max': 4000, 'exponent': 2 } }; /** * start the attack portion of the envelope * @param {Time} [time=now] the time the attack should start * @param {NormalRange} [velocity=1] the velocity of the note (0-1) * @returns {Tone.MonoSynth} this * @private */ Tone.MonoSynth.prototype._triggerEnvelopeAttack = function (time, velocity) { //the envelopes this.envelope.triggerAttack(time, velocity); this.filterEnvelope.triggerAttack(time); return this; }; /** * start the release portion of the envelope * @param {Time} [time=now] the time the release should start * @returns {Tone.MonoSynth} this * @private */ Tone.MonoSynth.prototype._triggerEnvelopeRelease = function (time) { this.envelope.triggerRelease(time); this.filterEnvelope.triggerRelease(time); return this; }; /** * clean up * @returns {Tone.MonoSynth} this */ Tone.MonoSynth.prototype.dispose = function () { Tone.Monophonic.prototype.dispose.call(this); this._writable([ 'oscillator', 'frequency', 'detune', 'filter', 'filterEnvelope', 'envelope' ]); this.oscillator.dispose(); this.oscillator = null; this.envelope.dispose(); this.envelope = null; this.filterEnvelope.dispose(); this.filterEnvelope = null; this.filter.dispose(); this.filter = null; this.frequency = null; this.detune = null; return this; }; return Tone.MonoSynth; }); Module(function (Tone) { /** * @class AMSynth uses the output of one Tone.MonoSynth to modulate the * amplitude of another Tone.MonoSynth. The harmonicity (the ratio between * the two signals) affects the timbre of the output signal the most. * Read more about Amplitude Modulation Synthesis on * [SoundOnSound](http://www.soundonsound.com/sos/mar00/articles/synthsecrets.htm). * * * @constructor * @extends {Tone.Monophonic} * @param {Object} [options] the options available for the synth * see defaults below * @example * var synth = new Tone.AMSynth().toMaster(); * synth.triggerAttackRelease("C4", "4n"); */ Tone.AMSynth = function (options) { options = this.defaultArg(options, Tone.AMSynth.defaults); Tone.Monophonic.call(this, options); /** * The carrier voice. * @type {Tone.MonoSynth} */ this.carrier = new Tone.MonoSynth(options.carrier); this.carrier.volume.value = -10; /** * The modulator voice. * @type {Tone.MonoSynth} */ this.modulator = new Tone.MonoSynth(options.modulator); this.modulator.volume.value = -10; /** * The frequency. * @type {Frequency} * @signal */ this.frequency = new Tone.Signal(440, Tone.Type.Frequency); /** * Harmonicity is the ratio between the two voices. A harmonicity of * 1 is no change. Harmonicity = 2 means a change of an octave. * @type {Positive} * @signal * @example * //pitch voice1 an octave below voice0 * synth.harmonicity.value = 0.5; */ this.harmonicity = new Tone.Multiply(options.harmonicity); this.harmonicity.units = Tone.Type.Positive; /** * convert the -1,1 output to 0,1 * @type {Tone.AudioToGain} * @private */ this._modulationScale = new Tone.AudioToGain(); /** * the node where the modulation happens * @type {GainNode} * @private */ this._modulationNode = this.context.createGain(); //control the two voices frequency this.frequency.connect(this.carrier.frequency); this.frequency.chain(this.harmonicity, this.modulator.frequency); this.modulator.chain(this._modulationScale, this._modulationNode.gain); this.carrier.chain(this._modulationNode, this.output); this._readOnly([ 'carrier', 'modulator', 'frequency', 'harmonicity' ]); }; Tone.extend(Tone.AMSynth, Tone.Monophonic); /** * @static * @type {Object} */ Tone.AMSynth.defaults = { 'harmonicity': 3, 'carrier': { 'volume': -10, 'oscillator': { 'type': 'sine' }, 'envelope': { 'attack': 0.01, 'decay': 0.01, 'sustain': 1, 'release': 0.5 }, 'filterEnvelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5, 'min': 20000, 'max': 20000 }, 'filter': { 'Q': 6, 'type': 'lowpass', 'rolloff': -24 } }, 'modulator': { 'volume': -10, 'oscillator': { 'type': 'square' }, 'envelope': { 'attack': 2, 'decay': 0, 'sustain': 1, 'release': 0.5 }, 'filterEnvelope': { 'attack': 4, 'decay': 0.2, 'sustain': 0.5, 'release': 0.5, 'min': 20, 'max': 1500 }, 'filter': { 'Q': 6, 'type': 'lowpass', 'rolloff': -24 } } }; /** * trigger the attack portion of the note * * @param {Time} [time=now] the time the note will occur * @param {NormalRange} [velocity=1] the velocity of the note * @private * @returns {Tone.AMSynth} this */ Tone.AMSynth.prototype._triggerEnvelopeAttack = function (time, velocity) { //the port glide time = this.toSeconds(time); //the envelopes this.carrier.envelope.triggerAttack(time, velocity); this.modulator.envelope.triggerAttack(time); this.carrier.filterEnvelope.triggerAttack(time); this.modulator.filterEnvelope.triggerAttack(time); return this; }; /** * trigger the release portion of the note * * @param {Time} [time=now] the time the note will release * @private * @returns {Tone.AMSynth} this */ Tone.AMSynth.prototype._triggerEnvelopeRelease = function (time) { this.carrier.triggerRelease(time); this.modulator.triggerRelease(time); return this; }; /** * clean up * @returns {Tone.AMSynth} this */ Tone.AMSynth.prototype.dispose = function () { Tone.Monophonic.prototype.dispose.call(this); this._writable([ 'carrier', 'modulator', 'frequency', 'harmonicity' ]); this.carrier.dispose(); this.carrier = null; this.modulator.dispose(); this.modulator = null; this.frequency.dispose(); this.frequency = null; this.harmonicity.dispose(); this.harmonicity = null; this._modulationScale.dispose(); this._modulationScale = null; this._modulationNode.disconnect(); this._modulationNode = null; return this; }; return Tone.AMSynth; }); Module(function (Tone) { /** * @class Tone.DrumSynth makes kick and tom sounds using a single oscillator * with an amplitude envelope and frequency ramp. A Tone.Oscillator * is routed through a Tone.AmplitudeEnvelope to the output. The drum * quality of the sound comes from the frequency envelope applied * during during Tone.DrumSynth.triggerAttack(note). The frequency * envelope starts at note * .octaves and ramps to * note over the duration of .pitchDecay. * * @constructor * @extends {Tone.Instrument} * @param {Object} [options] the options available for the synth * see defaults below * @example * var synth = new Tone.DrumSynth().toMaster(); * synth.triggerAttackRelease("C2", "8n"); */ Tone.DrumSynth = function (options) { options = this.defaultArg(options, Tone.DrumSynth.defaults); Tone.Instrument.call(this, options); /** * The oscillator. * @type {Tone.Oscillator} */ this.oscillator = new Tone.Oscillator(options.oscillator).start(); /** * The amplitude envelope. * @type {Tone.AmplitudeEnvelope} */ this.envelope = new Tone.AmplitudeEnvelope(options.envelope); /** * The number of octaves the pitch envelope ramps. * @type {Positive} */ this.octaves = options.octaves; /** * The amount of time the frequency envelope takes. * @type {Time} */ this.pitchDecay = options.pitchDecay; this.oscillator.chain(this.envelope, this.output); this._readOnly([ 'oscillator', 'envelope' ]); }; Tone.extend(Tone.DrumSynth, Tone.Instrument); /** * @static * @type {Object} */ Tone.DrumSynth.defaults = { 'pitchDecay': 0.05, 'octaves': 10, 'oscillator': { 'type': 'sine' }, 'envelope': { 'attack': 0.001, 'decay': 0.4, 'sustain': 0.01, 'release': 1.4, 'attackCurve': 'exponential' } }; /** * Trigger the note at the given time with the given velocity. * * @param {Frequency} note the note * @param {Time} [time=now] the time, if not given is now * @param {number} [velocity=1] velocity defaults to 1 * @returns {Tone.DrumSynth} this * @example * kick.triggerAttack(60); */ Tone.DrumSynth.prototype.triggerAttack = function (note, time, velocity) { time = this.toSeconds(time); note = this.toFrequency(note); var maxNote = note * this.octaves; this.oscillator.frequency.setValueAtTime(maxNote, time); this.oscillator.frequency.exponentialRampToValueAtTime(note, time + this.toSeconds(this.pitchDecay)); this.envelope.triggerAttack(time, velocity); return this; }; /** * Trigger the release portion of the note. * * @param {Time} [time=now] the time the note will release * @returns {Tone.DrumSynth} this */ Tone.DrumSynth.prototype.triggerRelease = function (time) { this.envelope.triggerRelease(time); return this; }; /** * Clean up. * @returns {Tone.DrumSynth} this */ Tone.DrumSynth.prototype.dispose = function () { Tone.Instrument.prototype.dispose.call(this); this._writable([ 'oscillator', 'envelope' ]); this.oscillator.dispose(); this.oscillator = null; this.envelope.dispose(); this.envelope = null; return this; }; return Tone.DrumSynth; }); Module(function (Tone) { /** * @class Tone.DuoSynth is a monophonic synth composed of two * MonoSynths run in parallel with control over the * frequency ratio between the two voices and vibrato effect. * * * @constructor * @extends {Tone.Monophonic} * @param {Object} [options] the options available for the synth * see defaults below * @example * var duoSynth = new Tone.DuoSynth().toMaster(); * duoSynth.triggerAttackRelease("C4", "2n"); */ Tone.DuoSynth = function (options) { options = this.defaultArg(options, Tone.DuoSynth.defaults); Tone.Monophonic.call(this, options); /** * the first voice * @type {Tone.MonoSynth} */ this.voice0 = new Tone.MonoSynth(options.voice0); this.voice0.volume.value = -10; /** * the second voice * @type {Tone.MonoSynth} */ this.voice1 = new Tone.MonoSynth(options.voice1); this.voice1.volume.value = -10; /** * The vibrato LFO. * @type {Tone.LFO} * @private */ this._vibrato = new Tone.LFO(options.vibratoRate, -50, 50); this._vibrato.start(); /** * the vibrato frequency * @type {Frequency} * @signal */ this.vibratoRate = this._vibrato.frequency; /** * the vibrato gain * @type {GainNode} * @private */ this._vibratoGain = this.context.createGain(); /** * The amount of vibrato * @type {Gain} * @signal */ this.vibratoAmount = new Tone.Param({ 'param': this._vibratoGain.gain, 'units': Tone.Type.Gain, 'value': options.vibratoAmount }); /** * the delay before the vibrato starts * @type {number} * @private */ this._vibratoDelay = this.toSeconds(options.vibratoDelay); /** * the frequency control * @type {Frequency} * @signal */ this.frequency = new Tone.Signal(440, Tone.Type.Frequency); /** * Harmonicity is the ratio between the two voices. A harmonicity of * 1 is no change. Harmonicity = 2 means a change of an octave. * @type {Positive} * @signal * @example * //pitch voice1 an octave below voice0 * duoSynth.harmonicity.value = 0.5; */ this.harmonicity = new Tone.Multiply(options.harmonicity); this.harmonicity.units = Tone.Type.Positive; //control the two voices frequency this.frequency.connect(this.voice0.frequency); this.frequency.chain(this.harmonicity, this.voice1.frequency); this._vibrato.connect(this._vibratoGain); this._vibratoGain.fan(this.voice0.detune, this.voice1.detune); this.voice0.connect(this.output); this.voice1.connect(this.output); this._readOnly([ 'voice0', 'voice1', 'frequency', 'vibratoAmount', 'vibratoRate' ]); }; Tone.extend(Tone.DuoSynth, Tone.Monophonic); /** * @static * @type {Object} */ Tone.DuoSynth.defaults = { 'vibratoAmount': 0.5, 'vibratoRate': 5, 'vibratoDelay': 1, 'harmonicity': 1.5, 'voice0': { 'volume': -10, 'portamento': 0, 'oscillator': { 'type': 'sine' }, 'filterEnvelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5 }, 'envelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5 } }, 'voice1': { 'volume': -10, 'portamento': 0, 'oscillator': { 'type': 'sine' }, 'filterEnvelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5 }, 'envelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5 } } }; /** * start the attack portion of the envelopes * * @param {Time} [time=now] the time the attack should start * @param {NormalRange} [velocity=1] the velocity of the note (0-1) * @returns {Tone.DuoSynth} this * @private */ Tone.DuoSynth.prototype._triggerEnvelopeAttack = function (time, velocity) { time = this.toSeconds(time); this.voice0.envelope.triggerAttack(time, velocity); this.voice1.envelope.triggerAttack(time, velocity); this.voice0.filterEnvelope.triggerAttack(time); this.voice1.filterEnvelope.triggerAttack(time); return this; }; /** * start the release portion of the envelopes * * @param {Time} [time=now] the time the release should start * @returns {Tone.DuoSynth} this * @private */ Tone.DuoSynth.prototype._triggerEnvelopeRelease = function (time) { this.voice0.triggerRelease(time); this.voice1.triggerRelease(time); return this; }; /** * clean up * @returns {Tone.DuoSynth} this */ Tone.DuoSynth.prototype.dispose = function () { Tone.Monophonic.prototype.dispose.call(this); this._writable([ 'voice0', 'voice1', 'frequency', 'vibratoAmount', 'vibratoRate' ]); this.voice0.dispose(); this.voice0 = null; this.voice1.dispose(); this.voice1 = null; this.frequency.dispose(); this.frequency = null; this._vibrato.dispose(); this._vibrato = null; this._vibratoGain.disconnect(); this._vibratoGain = null; this.harmonicity.dispose(); this.harmonicity = null; this.vibratoAmount.dispose(); this.vibratoAmount = null; this.vibratoRate = null; return this; }; return Tone.DuoSynth; }); Module(function (Tone) { /** * @class FMSynth is composed of two Tone.MonoSynths where one Tone.MonoSynth modulates * the frequency of a second Tone.MonoSynth. A lot of spectral content * can be explored using the modulationIndex parameter. Read more about * frequency modulation synthesis on [SoundOnSound](http://www.soundonsound.com/sos/apr00/articles/synthsecrets.htm). * * * @constructor * @extends {Tone.Monophonic} * @param {Object} [options] the options available for the synth * see defaults below * @example * var fmSynth = new Tone.FMSynth().toMaster(); * fmSynth.triggerAttackRelease("C5", "4n"); */ Tone.FMSynth = function (options) { options = this.defaultArg(options, Tone.FMSynth.defaults); Tone.Monophonic.call(this, options); /** * The carrier voice. * @type {Tone.MonoSynth} */ this.carrier = new Tone.MonoSynth(options.carrier); this.carrier.volume.value = -10; /** * The modulator voice. * @type {Tone.MonoSynth} */ this.modulator = new Tone.MonoSynth(options.modulator); this.modulator.volume.value = -10; /** * The frequency control. * @type {Frequency} * @signal */ this.frequency = new Tone.Signal(440, Tone.Type.Frequency); /** * Harmonicity is the ratio between the two voices. A harmonicity of * 1 is no change. Harmonicity = 2 means a change of an octave. * @type {Positive} * @signal * @example * //pitch voice1 an octave below voice0 * synth.harmonicity.value = 0.5; */ this.harmonicity = new Tone.Multiply(options.harmonicity); this.harmonicity.units = Tone.Type.Positive; /** * The modulation index which essentially the depth or amount of the modulation. It is the * ratio of the frequency of the modulating signal (mf) to the amplitude of the * modulating signal (ma) -- as in ma/mf. * @type {Positive} * @signal */ this.modulationIndex = new Tone.Multiply(options.modulationIndex); this.modulationIndex.units = Tone.Type.Positive; /** * the node where the modulation happens * @type {GainNode} * @private */ this._modulationNode = this.context.createGain(); //control the two voices frequency this.frequency.connect(this.carrier.frequency); this.frequency.chain(this.harmonicity, this.modulator.frequency); this.frequency.chain(this.modulationIndex, this._modulationNode); this.modulator.connect(this._modulationNode.gain); this._modulationNode.gain.value = 0; this._modulationNode.connect(this.carrier.frequency); this.carrier.connect(this.output); this._readOnly([ 'carrier', 'modulator', 'frequency', 'harmonicity', 'modulationIndex' ]); }; Tone.extend(Tone.FMSynth, Tone.Monophonic); /** * @static * @type {Object} */ Tone.FMSynth.defaults = { 'harmonicity': 3, 'modulationIndex': 10, 'carrier': { 'volume': -10, 'portamento': 0, 'oscillator': { 'type': 'sine' }, 'envelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5 }, 'filterEnvelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5, 'min': 20000, 'max': 20000 } }, 'modulator': { 'volume': -10, 'portamento': 0, 'oscillator': { 'type': 'triangle' }, 'envelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5 }, 'filterEnvelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5, 'min': 20000, 'max': 20000 } } }; /** * trigger the attack portion of the note * * @param {Time} [time=now] the time the note will occur * @param {number} [velocity=1] the velocity of the note * @returns {Tone.FMSynth} this * @private */ Tone.FMSynth.prototype._triggerEnvelopeAttack = function (time, velocity) { //the port glide time = this.toSeconds(time); //the envelopes this.carrier.envelope.triggerAttack(time, velocity); this.modulator.envelope.triggerAttack(time); this.carrier.filterEnvelope.triggerAttack(time); this.modulator.filterEnvelope.triggerAttack(time); return this; }; /** * trigger the release portion of the note * * @param {Time} [time=now] the time the note will release * @returns {Tone.FMSynth} this * @private */ Tone.FMSynth.prototype._triggerEnvelopeRelease = function (time) { this.carrier.triggerRelease(time); this.modulator.triggerRelease(time); return this; }; /** * clean up * @returns {Tone.FMSynth} this */ Tone.FMSynth.prototype.dispose = function () { Tone.Monophonic.prototype.dispose.call(this); this._writable([ 'carrier', 'modulator', 'frequency', 'harmonicity', 'modulationIndex' ]); this.carrier.dispose(); this.carrier = null; this.modulator.dispose(); this.modulator = null; this.frequency.dispose(); this.frequency = null; this.modulationIndex.dispose(); this.modulationIndex = null; this.harmonicity.dispose(); this.harmonicity = null; this._modulationNode.disconnect(); this._modulationNode = null; return this; }; return Tone.FMSynth; }); Module(function (Tone) { /** * @class Tone.Noise is a noise generator. It uses looped noise buffers to save on performance. * Tone.Noise supports the noise types: "pink", "white", and "brown". Read more about * colors of noise on [Wikipedia](https://en.wikipedia.org/wiki/Colors_of_noise). * * @constructor * @extends {Tone.Source} * @param {string} type the noise type (white|pink|brown) * @example * //initialize the noise and start * var noise = new Tone.Noise("pink").start(); * * //make an autofilter to shape the noise * var autoFilter = new Tone.AutoFilter({ * "frequency" : "8m", * "min" : 800, * "max" : 15000 * }).connect(Tone.Master); * * //connect the noise * noise.connect(autoFilter); * //start the autofilter LFO * autoFilter.start() */ Tone.Noise = function () { var options = this.optionsObject(arguments, ['type'], Tone.Noise.defaults); Tone.Source.call(this, options); /** * @private * @type {AudioBufferSourceNode} */ this._source = null; /** * the buffer * @private * @type {AudioBuffer} */ this._buffer = null; this.type = options.type; }; Tone.extend(Tone.Noise, Tone.Source); /** * the default parameters * * @static * @const * @type {Object} */ Tone.Noise.defaults = { 'type': 'white' }; /** * The type of the noise. Can be "white", "brown", or "pink". * @memberOf Tone.Noise# * @type {string} * @name type * @example * noise.type = "white"; */ Object.defineProperty(Tone.Noise.prototype, 'type', { get: function () { if (this._buffer === _whiteNoise) { return 'white'; } else if (this._buffer === _brownNoise) { return 'brown'; } else if (this._buffer === _pinkNoise) { return 'pink'; } }, set: function (type) { if (this.type !== type) { switch (type) { case 'white': this._buffer = _whiteNoise; break; case 'pink': this._buffer = _pinkNoise; break; case 'brown': this._buffer = _brownNoise; break; default: throw new Error('invalid noise type: ' + type); } //if it's playing, stop and restart it if (this.state === Tone.State.Started) { var now = this.now() + this.blockTime; //remove the listener this._source.onended = undefined; this._stop(now); this._start(now); } } } }); /** * internal start method * * @param {Time} time * @private */ Tone.Noise.prototype._start = function (time) { this._source = this.context.createBufferSource(); this._source.buffer = this._buffer; this._source.loop = true; this._source.connect(this.output); this._source.start(this.toSeconds(time)); this._source.onended = this.onended; }; /** * internal stop method * * @param {Time} time * @private */ Tone.Noise.prototype._stop = function (time) { if (this._source) { this._source.stop(this.toSeconds(time)); } }; /** * Clean up. * @returns {Tone.Noise} this */ Tone.Noise.prototype.dispose = function () { Tone.Source.prototype.dispose.call(this); if (this._source !== null) { this._source.disconnect(); this._source = null; } this._buffer = null; return this; }; /////////////////////////////////////////////////////////////////////////// // THE BUFFERS // borrowed heavily from http://noisehack.com/generate-noise-web-audio-api/ /////////////////////////////////////////////////////////////////////////// /** * static noise buffers * * @static * @private * @type {AudioBuffer} */ var _pinkNoise = null, _brownNoise = null, _whiteNoise = null; Tone._initAudioContext(function (audioContext) { var sampleRate = audioContext.sampleRate; //four seconds per buffer var bufferLength = sampleRate * 4; //fill the buffers _pinkNoise = function () { var buffer = audioContext.createBuffer(2, bufferLength, sampleRate); for (var channelNum = 0; channelNum < buffer.numberOfChannels; channelNum++) { var channel = buffer.getChannelData(channelNum); var b0, b1, b2, b3, b4, b5, b6; b0 = b1 = b2 = b3 = b4 = b5 = b6 = 0; for (var i = 0; i < bufferLength; i++) { var white = Math.random() * 2 - 1; b0 = 0.99886 * b0 + white * 0.0555179; b1 = 0.99332 * b1 + white * 0.0750759; b2 = 0.969 * b2 + white * 0.153852; b3 = 0.8665 * b3 + white * 0.3104856; b4 = 0.55 * b4 + white * 0.5329522; b5 = -0.7616 * b5 - white * 0.016898; channel[i] = b0 + b1 + b2 + b3 + b4 + b5 + b6 + white * 0.5362; channel[i] *= 0.11; // (roughly) compensate for gain b6 = white * 0.115926; } } return buffer; }(); _brownNoise = function () { var buffer = audioContext.createBuffer(2, bufferLength, sampleRate); for (var channelNum = 0; channelNum < buffer.numberOfChannels; channelNum++) { var channel = buffer.getChannelData(channelNum); var lastOut = 0; for (var i = 0; i < bufferLength; i++) { var white = Math.random() * 2 - 1; channel[i] = (lastOut + 0.02 * white) / 1.02; lastOut = channel[i]; channel[i] *= 3.5; // (roughly) compensate for gain } } return buffer; }(); _whiteNoise = function () { var buffer = audioContext.createBuffer(2, bufferLength, sampleRate); for (var channelNum = 0; channelNum < buffer.numberOfChannels; channelNum++) { var channel = buffer.getChannelData(channelNum); for (var i = 0; i < bufferLength; i++) { channel[i] = Math.random() * 2 - 1; } } return buffer; }(); }); return Tone.Noise; }); Module(function (Tone) { /** * @class Tone.NoiseSynth is composed of a noise generator (Tone.Noise), one filter (Tone.Filter), * and two envelopes (Tone.Envelop). One envelope controls the amplitude * of the noise and the other is controls the cutoff frequency of the filter. * * * @constructor * @extends {Tone.Instrument} * @param {Object} [options] the options available for the synth * see defaults below * @example * var noiseSynth = new Tone.NoiseSynth().toMaster(); * noiseSynth.triggerAttackRelease("8n"); */ Tone.NoiseSynth = function (options) { //get the defaults options = this.defaultArg(options, Tone.NoiseSynth.defaults); Tone.Instrument.call(this, options); /** * The noise source. * @type {Tone.Noise} * @example * noiseSynth.set("noise.type", "brown"); */ this.noise = new Tone.Noise(); /** * The filter. * @type {Tone.Filter} */ this.filter = new Tone.Filter(options.filter); /** * The filter envelope. * @type {Tone.ScaledEnvelope} */ this.filterEnvelope = new Tone.ScaledEnvelope(options.filterEnvelope); /** * The amplitude envelope. * @type {Tone.AmplitudeEnvelope} */ this.envelope = new Tone.AmplitudeEnvelope(options.envelope); //connect the noise to the output this.noise.chain(this.filter, this.envelope, this.output); //start the noise this.noise.start(); //connect the filter envelope this.filterEnvelope.connect(this.filter.frequency); this._readOnly([ 'noise', 'filter', 'filterEnvelope', 'envelope' ]); }; Tone.extend(Tone.NoiseSynth, Tone.Instrument); /** * @const * @static * @type {Object} */ Tone.NoiseSynth.defaults = { 'noise': { 'type': 'white' }, 'filter': { 'Q': 6, 'type': 'highpass', 'rolloff': -24 }, 'envelope': { 'attack': 0.005, 'decay': 0.1, 'sustain': 0 }, 'filterEnvelope': { 'attack': 0.06, 'decay': 0.2, 'sustain': 0, 'release': 2, 'min': 20, 'max': 4000, 'exponent': 2 } }; /** * Start the attack portion of the envelopes. Unlike other * instruments, Tone.NoiseSynth doesn't have a note. * @param {Time} [time=now] the time the attack should start * @param {number} [velocity=1] the velocity of the note (0-1) * @returns {Tone.NoiseSynth} this * @example * noiseSynth.triggerAttack(); */ Tone.NoiseSynth.prototype.triggerAttack = function (time, velocity) { //the envelopes this.envelope.triggerAttack(time, velocity); this.filterEnvelope.triggerAttack(time); return this; }; /** * Start the release portion of the envelopes. * @param {Time} [time=now] the time the release should start * @returns {Tone.NoiseSynth} this */ Tone.NoiseSynth.prototype.triggerRelease = function (time) { this.envelope.triggerRelease(time); this.filterEnvelope.triggerRelease(time); return this; }; /** * Trigger the attack and then the release. * @param {Time} duration the duration of the note * @param {Time} [time=now] the time of the attack * @param {number} [velocity=1] the velocity * @returns {Tone.NoiseSynth} this */ Tone.NoiseSynth.prototype.triggerAttackRelease = function (duration, time, velocity) { time = this.toSeconds(time); duration = this.toSeconds(duration); this.triggerAttack(time, velocity); this.triggerRelease(time + duration); return this; }; /** * Clean up. * @returns {Tone.NoiseSynth} this */ Tone.NoiseSynth.prototype.dispose = function () { Tone.Instrument.prototype.dispose.call(this); this._writable([ 'noise', 'filter', 'filterEnvelope', 'envelope' ]); this.noise.dispose(); this.noise = null; this.envelope.dispose(); this.envelope = null; this.filterEnvelope.dispose(); this.filterEnvelope = null; this.filter.dispose(); this.filter = null; return this; }; return Tone.NoiseSynth; }); Module(function (Tone) { /** * @class Karplus-String string synthesis. Often out of tune. * Will change when the AudioWorkerNode is available across * browsers. * * @constructor * @extends {Tone.Instrument} * @param {Object} [options] see the defaults * @example * var plucky = new Tone.PluckSynth().toMaster(); * plucky.triggerAttack("C4"); */ Tone.PluckSynth = function (options) { options = this.defaultArg(options, Tone.PluckSynth.defaults); Tone.Instrument.call(this, options); /** * @type {Tone.Noise} * @private */ this._noise = new Tone.Noise('pink'); /** * The amount of noise at the attack. * Nominal range of [0.1, 20] * @type {number} */ this.attackNoise = 1; /** * the LFCF * @type {Tone.LowpassCombFilter} * @private */ this._lfcf = new Tone.LowpassCombFilter({ 'resonance': options.resonance, 'dampening': options.dampening }); /** * The resonance control. * @type {NormalRange} * @signal */ this.resonance = this._lfcf.resonance; /** * The dampening control. i.e. the lowpass filter frequency of the comb filter * @type {Frequency} * @signal */ this.dampening = this._lfcf.dampening; //connections this._noise.connect(this._lfcf); this._lfcf.connect(this.output); this._readOnly([ 'resonance', 'dampening' ]); }; Tone.extend(Tone.PluckSynth, Tone.Instrument); /** * @static * @const * @type {Object} */ Tone.PluckSynth.defaults = { 'attackNoise': 1, 'dampening': 4000, 'resonance': 0.9 }; /** * Trigger the note. * @param {Frequency} note The note to trigger. * @param {Time} [time=now] When the note should be triggered. * @returns {Tone.PluckSynth} this */ Tone.PluckSynth.prototype.triggerAttack = function (note, time) { note = this.toFrequency(note); time = this.toSeconds(time); var delayAmount = 1 / note; this._lfcf.delayTime.setValueAtTime(delayAmount, time); this._noise.start(time); this._noise.stop(time + delayAmount * this.attackNoise); return this; }; /** * Clean up. * @returns {Tone.PluckSynth} this */ Tone.PluckSynth.prototype.dispose = function () { Tone.Instrument.prototype.dispose.call(this); this._noise.dispose(); this._lfcf.dispose(); this._noise = null; this._lfcf = null; this._writable([ 'resonance', 'dampening' ]); this.dampening = null; this.resonance = null; return this; }; return Tone.PluckSynth; }); Module(function (Tone) { /** * @class Tone.PolySynth handles voice creation and allocation for any * instruments passed in as the second paramter. PolySynth is * not a synthesizer by itself, it merely manages voices of * one of the other types of synths, allowing any of the * monophonic synthesizers to be polyphonic. * * @constructor * @extends {Tone.Instrument} * @param {number|Object} [polyphony=4] The number of voices to create * @param {function} [voice=Tone.MonoSynth] The constructor of the voices * uses Tone.MonoSynth by default. * @example * //a polysynth composed of 6 Voices of MonoSynth * var synth = new Tone.PolySynth(6, Tone.MonoSynth).toMaster(); * //set the attributes using the set interface * synth.set("detune", -1200); * //play a chord * synth.triggerAttackRelease(["C4", "E4", "A4"], "4n"); */ Tone.PolySynth = function () { Tone.Instrument.call(this); var options = this.optionsObject(arguments, [ 'polyphony', 'voice' ], Tone.PolySynth.defaults); /** * the array of voices * @type {Array} */ this.voices = new Array(options.polyphony); /** * If there are no more voices available, * should an active voice be stolen to play the new note? * @type {Boolean} */ this.stealVoices = true; /** * the queue of free voices * @private * @type {Array} */ this._freeVoices = []; /** * keeps track of which notes are down * @private * @type {Object} */ this._activeVoices = {}; //create the voices for (var i = 0; i < options.polyphony; i++) { var v = new options.voice(arguments[2], arguments[3]); this.voices[i] = v; v.connect(this.output); } //make a copy of the voices this._freeVoices = this.voices.slice(0); //get the prototypes and properties }; Tone.extend(Tone.PolySynth, Tone.Instrument); /** * the defaults * @const * @static * @type {Object} */ Tone.PolySynth.defaults = { 'polyphony': 4, 'voice': Tone.MonoSynth }; /** * Trigger the attack portion of the note * @param {Frequency|Array} notes The notes to play. Accepts a single * Frequency or an array of frequencies. * @param {Time} [time=now] The start time of the note. * @param {number} [velocity=1] The velocity of the note. * @returns {Tone.PolySynth} this * @example * //trigger a chord immediately with a velocity of 0.2 * poly.triggerAttack(["Ab3", "C4", "F5"], undefined, 0.2); */ Tone.PolySynth.prototype.triggerAttack = function (notes, time, velocity) { if (!Array.isArray(notes)) { notes = [notes]; } for (var i = 0; i < notes.length; i++) { var val = notes[i]; var stringified = JSON.stringify(val); //retrigger the same note if possible if (this._activeVoices.hasOwnProperty(stringified)) { this._activeVoices[stringified].triggerAttack(val, time, velocity); } else if (this._freeVoices.length > 0) { var voice = this._freeVoices.shift(); voice.triggerAttack(val, time, velocity); this._activeVoices[stringified] = voice; } else if (this.stealVoices) { //steal a voice //take the first voice for (var voiceName in this._activeVoices) { this._activeVoices[voiceName].triggerAttack(val, time, velocity); break; } } } return this; }; /** * Trigger the attack and release after the specified duration * * @param {Frequency|Array} notes The notes to play. Accepts a single * Frequency or an array of frequencies. * @param {Time} duration the duration of the note * @param {Time} [time=now] if no time is given, defaults to now * @param {number} [velocity=1] the velocity of the attack (0-1) * @returns {Tone.PolySynth} this * @example * //trigger a chord for a duration of a half note * poly.triggerAttackRelease(["Eb3", "G4", "C5"], "2n"); */ Tone.PolySynth.prototype.triggerAttackRelease = function (notes, duration, time, velocity) { time = this.toSeconds(time); this.triggerAttack(notes, time, velocity); this.triggerRelease(notes, time + this.toSeconds(duration)); return this; }; /** * Trigger the release of the note. Unlike monophonic instruments, * a note (or array of notes) needs to be passed in as the first argument. * @param {Frequency|Array} notes The notes to play. Accepts a single * Frequency or an array of frequencies. * @param {Time} [time=now] When the release will be triggered. * @returns {Tone.PolySynth} this * @example * poly.triggerRelease(["Ab3", "C4", "F5"], "+2n"); */ Tone.PolySynth.prototype.triggerRelease = function (notes, time) { if (!Array.isArray(notes)) { notes = [notes]; } for (var i = 0; i < notes.length; i++) { //get the voice var stringified = JSON.stringify(notes[i]); var voice = this._activeVoices[stringified]; if (voice) { voice.triggerRelease(time); this._freeVoices.push(voice); delete this._activeVoices[stringified]; voice = null; } } return this; }; /** * Set a member/attribute of the voices. * @param {Object|string} params * @param {number=} value * @param {Time=} rampTime * @returns {Tone.PolySynth} this * @example * poly.set({ * "filter" : { * "type" : "highpass" * }, * "envelope" : { * "attack" : 0.25 * } * }); */ Tone.PolySynth.prototype.set = function (params, value, rampTime) { for (var i = 0; i < this.voices.length; i++) { this.voices[i].set(params, value, rampTime); } return this; }; /** * Get the synth's attributes. Given no arguments get * will return all available object properties and their corresponding * values. Pass in a single attribute to retrieve or an array * of attributes. The attribute strings can also include a "." * to access deeper properties. * @param {Array=} params the parameters to get, otherwise will return * all available. */ Tone.PolySynth.prototype.get = function (params) { return this.voices[0].get(params); }; /** * @param {string} presetName the preset name * @returns {Tone.PolySynth} this * @private */ Tone.PolySynth.prototype.setPreset = function (presetName) { for (var i = 0; i < this.voices.length; i++) { this.voices[i].setPreset(presetName); } return this; }; /** * Trigger the release portion of all the currently active voices. * @param {Time} [time=now] When the notes should be released. * @return {Tone.PolySynth} this */ Tone.PolySynth.prototype.releaseAll = function (time) { for (var i = 0; i < this.voices.length; i++) { this.voices[i].triggerRelease(time); } return this; }; /** * Clean up. * @returns {Tone.PolySynth} this */ Tone.PolySynth.prototype.dispose = function () { Tone.Instrument.prototype.dispose.call(this); for (var i = 0; i < this.voices.length; i++) { this.voices[i].dispose(); this.voices[i] = null; } this.voices = null; this._activeVoices = null; this._freeVoices = null; return this; }; return Tone.PolySynth; }); Module(function (Tone) { /** * @class Buffer loading and storage. Tone.Buffer is used internally by all * classes that make requests for audio files such as Tone.Player, * Tone.Sampler and Tone.Convolver. *

* Aside from load callbacks from individual buffers, Tone.Buffer * provides static methods which keep track of the loading progress * of all of the buffers. These methods are Tone.Buffer.onload, Tone.Buffer.onprogress, * and Tone.Buffer.onerror. * * @constructor * @extends {Tone} * @param {AudioBuffer|string} url The url to load, or the audio buffer to set. * @param {function=} onload A callback which is invoked after the buffer is loaded. * It's recommended to use Tone.Buffer.onload instead * since it will give you a callback when ALL buffers are loaded. * @example * var buffer = new Tone.Buffer("path/to/sound.mp3", function(){ * //the buffer is now available. * var buff = buffer.get(); * }); */ Tone.Buffer = function (url) { var options = this.optionsObject(arguments, [ 'url', 'onload' ], Tone.Buffer.defaults); /** * stores the loaded AudioBuffer * @type {AudioBuffer} * @private */ this._buffer = null; /** * indicates if the buffer should be reversed or not * @type {boolean} * @private */ this._reversed = options.reverse; /** * The url of the buffer. undefined if it was * constructed with a buffer * @type {string} * @readOnly */ this.url = undefined; /** * Indicates if the buffer is loaded or not. * @type {boolean} * @readOnly */ this.loaded = false; /** * The callback to invoke when everything is loaded. * @type {function} */ this.onload = options.onload.bind(this, this); if (url instanceof AudioBuffer || url instanceof Tone.Buffer) { this.set(url); this.onload(this); } else if (typeof options.url === 'string') { this.url = options.url; Tone.Buffer._addToQueue(options.url, this); } }; Tone.extend(Tone.Buffer); /** * the default parameters * @type {Object} */ Tone.Buffer.defaults = { 'url': undefined, 'onload': Tone.noOp, 'reverse': false }; /** * Pass in an AudioBuffer or Tone.Buffer to set the value * of this buffer. * @param {AudioBuffer|Tone.Buffer} buffer the buffer * @returns {Tone.Buffer} this */ Tone.Buffer.prototype.set = function (buffer) { if (buffer instanceof Tone.Buffer) { this._buffer = buffer.get(); } else { this._buffer = buffer; } this.loaded = true; return this; }; /** * @return {AudioBuffer} The audio buffer stored in the object. */ Tone.Buffer.prototype.get = function () { return this._buffer; }; /** * Load url into the buffer. * @param {String} url The url to load * @param {Function=} callback The callback to invoke on load. * don't need to set if `onload` is * already set. * @returns {Tone.Buffer} this */ Tone.Buffer.prototype.load = function (url, callback) { this.url = url; this.onload = this.defaultArg(callback, this.onload); Tone.Buffer._addToQueue(url, this); return this; }; /** * dispose and disconnect * @returns {Tone.Buffer} this */ Tone.Buffer.prototype.dispose = function () { Tone.prototype.dispose.call(this); Tone.Buffer._removeFromQueue(this); this._buffer = null; this.onload = Tone.Buffer.defaults.onload; return this; }; /** * The duration of the buffer. * @memberOf Tone.Buffer# * @type {number} * @name duration * @readOnly */ Object.defineProperty(Tone.Buffer.prototype, 'duration', { get: function () { if (this._buffer) { return this._buffer.duration; } else { return 0; } } }); /** * Reverse the buffer. * @private * @return {Tone.Buffer} this */ Tone.Buffer.prototype._reverse = function () { if (this.loaded) { for (var i = 0; i < this._buffer.numberOfChannels; i++) { Array.prototype.reverse.call(this._buffer.getChannelData(i)); } } return this; }; /** * Reverse the buffer. * @memberOf Tone.Buffer# * @type {boolean} * @name reverse */ Object.defineProperty(Tone.Buffer.prototype, 'reverse', { get: function () { return this._reversed; }, set: function (rev) { if (this._reversed !== rev) { this._reversed = rev; this._reverse(); } } }); /////////////////////////////////////////////////////////////////////////// // STATIC METHODS /////////////////////////////////////////////////////////////////////////// /** * the static queue for all of the xhr requests * @type {Array} * @private */ Tone.Buffer._queue = []; /** * the array of current downloads * @type {Array} * @private */ Tone.Buffer._currentDownloads = []; /** * the total number of downloads * @type {number} * @private */ Tone.Buffer._totalDownloads = 0; /** * the maximum number of simultaneous downloads * @static * @type {number} */ Tone.Buffer.MAX_SIMULTANEOUS_DOWNLOADS = 6; /** * Adds a file to be loaded to the loading queue * @param {string} url the url to load * @param {function} callback the callback to invoke once it's loaded * @private */ Tone.Buffer._addToQueue = function (url, buffer) { Tone.Buffer._queue.push({ url: url, Buffer: buffer, progress: 0, xhr: null }); this._totalDownloads++; Tone.Buffer._next(); }; /** * Remove an object from the queue's (if it's still there) * Abort the XHR if it's in progress * @param {Tone.Buffer} buffer the buffer to remove * @private */ Tone.Buffer._removeFromQueue = function (buffer) { var i; for (i = 0; i < Tone.Buffer._queue.length; i++) { var q = Tone.Buffer._queue[i]; if (q.Buffer === buffer) { Tone.Buffer._queue.splice(i, 1); } } for (i = 0; i < Tone.Buffer._currentDownloads.length; i++) { var dl = Tone.Buffer._currentDownloads[i]; if (dl.Buffer === buffer) { Tone.Buffer._currentDownloads.splice(i, 1); dl.xhr.abort(); dl.xhr.onprogress = null; dl.xhr.onload = null; dl.xhr.onerror = null; } } }; /** * load the next buffer in the queue * @private */ Tone.Buffer._next = function () { if (Tone.Buffer._queue.length > 0) { if (Tone.Buffer._currentDownloads.length < Tone.Buffer.MAX_SIMULTANEOUS_DOWNLOADS) { var next = Tone.Buffer._queue.shift(); Tone.Buffer._currentDownloads.push(next); next.xhr = Tone.Buffer.load(next.url, function (buffer) { //remove this one from the queue var index = Tone.Buffer._currentDownloads.indexOf(next); Tone.Buffer._currentDownloads.splice(index, 1); next.Buffer.set(buffer); if (next.Buffer._reversed) { next.Buffer._reverse(); } next.Buffer.onload(next.Buffer); Tone.Buffer._onprogress(); Tone.Buffer._next(); }); next.xhr.onprogress = function (event) { next.progress = event.loaded / event.total; Tone.Buffer._onprogress(); }; next.xhr.onerror = Tone.Buffer.onerror; } } else if (Tone.Buffer._currentDownloads.length === 0) { Tone.Buffer.onload(); //reset the downloads Tone.Buffer._totalDownloads = 0; } }; /** * internal progress event handler * @private */ Tone.Buffer._onprogress = function () { var curretDownloadsProgress = 0; var currentDLLen = Tone.Buffer._currentDownloads.length; var inprogress = 0; if (currentDLLen > 0) { for (var i = 0; i < currentDLLen; i++) { var dl = Tone.Buffer._currentDownloads[i]; curretDownloadsProgress += dl.progress; } inprogress = curretDownloadsProgress; } var currentDownloadProgress = currentDLLen - inprogress; var completed = Tone.Buffer._totalDownloads - Tone.Buffer._queue.length - currentDownloadProgress; Tone.Buffer.onprogress(completed / Tone.Buffer._totalDownloads); }; /** * Makes an xhr reqest for the selected url then decodes * the file as an audio buffer. Invokes * the callback once the audio buffer loads. * @param {string} url The url of the buffer to load. * filetype support depends on the * browser. * @param {function} callback The function to invoke when the url is loaded. * @returns {XMLHttpRequest} returns the XHR */ Tone.Buffer.load = function (url, callback) { var request = new XMLHttpRequest(); request.open('GET', url, true); request.responseType = 'arraybuffer'; // decode asynchronously request.onload = function () { Tone.context.decodeAudioData(request.response, function (buff) { if (!buff) { throw new Error('could not decode audio data:' + url); } callback(buff); }); }; //send the request request.send(); return request; }; /** * Callback when all of the buffers in the queue have loaded * @static * @function * @example * //invoked when all of the queued samples are done loading * Tone.Buffer.onload = function(){ * console.log("everything is loaded"); * }; */ Tone.Buffer.onload = Tone.noOp; /** * Callback function is invoked with the progress of all of the loads in the queue. * The value passed to the callback is between 0-1. * @static * @param {Number} percent The progress between 0 and 1. * @function * @example * Tone.Buffer.onprogress = function(percent){ * console.log("progress:" + (percent * 100).toFixed(1) + "%"); * }; */ Tone.Buffer.onprogress = Tone.noOp; /** * Callback if one of the buffers in the queue encounters an error. The error * is passed in as the argument. * @static * @param {Error} err * @function * @example * Tone.Buffer.onerror = function(e){ * console.log("there was an error while loading the buffers: "+e); * } */ Tone.Buffer.onerror = Tone.noOp; return Tone.Buffer; }); Module(function (Tone) { /** * @class Tone.Player is an audio file player with start, loop, and stop functions. * * @constructor * @extends {Tone.Source} * @param {string|AudioBuffer} url Either the AudioBuffer or the url from * which to load the AudioBuffer * @param {function=} onload The function to invoke when the buffer is loaded. * Recommended to use Tone.Buffer.onload instead. * @example * var player = new Tone.Player("./path/to/sample.mp3").toMaster(); * Tone.Buffer.onload = function(){ * player.start(); * } */ Tone.Player = function (url) { var options; if (url instanceof Tone.Buffer) { url = url.get(); options = Tone.Player.defaults; } else { options = this.optionsObject(arguments, [ 'url', 'onload' ], Tone.Player.defaults); } Tone.Source.call(this, options); /** * @private * @type {AudioBufferSourceNode} */ this._source = null; /** * If the file should play as soon * as the buffer is loaded. * @type {boolean} * @example * //will play as soon as it's loaded * var player = new Tone.Player({ * "url" : "./path/to/sample.mp3", * "autostart" : true, * }).toMaster(); */ this.autostart = options.autostart; /** * the buffer * @private * @type {Tone.Buffer} */ this._buffer = new Tone.Buffer({ 'url': options.url, 'onload': this._onload.bind(this, options.onload), 'reverse': options.reverse }); if (url instanceof AudioBuffer) { this._buffer.set(url); } /** * if the buffer should loop once it's over * @type {boolean} * @private */ this._loop = options.loop; /** * if 'loop' is true, the loop will start at this position * @type {Time} * @private */ this._loopStart = options.loopStart; /** * if 'loop' is true, the loop will end at this position * @type {Time} * @private */ this._loopEnd = options.loopEnd; /** * the playback rate * @private * @type {number} */ this._playbackRate = options.playbackRate; /** * Enabling retrigger will allow a player to be restarted * before the the previous 'start' is done playing. Otherwise, * successive calls to Tone.Player.start will only start * the sample if it had played all the way through. * @type {boolean} */ this.retrigger = options.retrigger; }; Tone.extend(Tone.Player, Tone.Source); /** * the default parameters * @static * @const * @type {Object} */ Tone.Player.defaults = { 'onload': Tone.noOp, 'playbackRate': 1, 'loop': false, 'autostart': false, 'loopStart': 0, 'loopEnd': 0, 'retrigger': false, 'reverse': false }; /** * Load the audio file as an audio buffer. * Decodes the audio asynchronously and invokes * the callback once the audio buffer loads. * Note: this does not need to be called if a url * was passed in to the constructor. Only use this * if you want to manually load a new url. * @param {string} url The url of the buffer to load. * Filetype support depends on the * browser. * @param {function=} callback The function to invoke once * the sample is loaded. * @returns {Tone.Player} this */ Tone.Player.prototype.load = function (url, callback) { this._buffer.load(url, this._onload.bind(this, callback)); return this; }; /** * Internal callback when the buffer is loaded. * @private */ Tone.Player.prototype._onload = function (callback) { callback(this); if (this.autostart) { this.start(); } }; /** * play the buffer between the desired positions * * @private * @param {Time} [startTime=now] when the player should start. * @param {Time} [offset=0] the offset from the beginning of the sample * to start at. * @param {Time=} duration how long the sample should play. If no duration * is given, it will default to the full length * of the sample (minus any offset) * @returns {Tone.Player} this */ Tone.Player.prototype._start = function (startTime, offset, duration) { if (this._buffer.loaded) { //if it's a loop the default offset is the loopstart point if (this._loop) { offset = this.defaultArg(offset, this._loopStart); } else { //otherwise the default offset is 0 offset = this.defaultArg(offset, 0); } offset = this.toSeconds(offset); duration = this.defaultArg(duration, this._buffer.duration - offset); //the values in seconds startTime = this.toSeconds(startTime); duration = this.toSeconds(duration); //make the source this._source = this.context.createBufferSource(); this._source.buffer = this._buffer.get(); //set the looping properties if (this._loop) { this._source.loop = this._loop; this._source.loopStart = this.toSeconds(this._loopStart); this._source.loopEnd = this.toSeconds(this._loopEnd); } else { //if it's not looping, set the state change at the end of the sample this._state.setStateAtTime(Tone.State.Stopped, startTime + duration); } //and other properties this._source.playbackRate.value = this._playbackRate; this._source.connect(this.output); //start it if (this._loop) { this._source.start(startTime, offset); } else { this._source.start(startTime, offset, duration); } } else { throw Error('tried to start Player before the buffer was loaded'); } return this; }; /** * Stop playback. * @private * @param {Time} [time=now] * @returns {Tone.Player} this */ Tone.Player.prototype._stop = function (time) { if (this._source) { this._source.stop(this.toSeconds(time)); this._source = null; } return this; }; /** * Set the loop start and end. Will only loop if loop is * set to true. * @param {Time} loopStart The loop end time * @param {Time} loopEnd The loop end time * @returns {Tone.Player} this * @example * //loop 0.1 seconds of the file. * player.setLoopPoints(0.2, 0.3); * player.loop = true; */ Tone.Player.prototype.setLoopPoints = function (loopStart, loopEnd) { this.loopStart = loopStart; this.loopEnd = loopEnd; return this; }; /** * If loop is true, the loop will start at this position. * @memberOf Tone.Player# * @type {Time} * @name loopStart */ Object.defineProperty(Tone.Player.prototype, 'loopStart', { get: function () { return this._loopStart; }, set: function (loopStart) { this._loopStart = loopStart; if (this._source) { this._source.loopStart = this.toSeconds(loopStart); } } }); /** * If loop is true, the loop will end at this position. * @memberOf Tone.Player# * @type {Time} * @name loopEnd */ Object.defineProperty(Tone.Player.prototype, 'loopEnd', { get: function () { return this._loopEnd; }, set: function (loopEnd) { this._loopEnd = loopEnd; if (this._source) { this._source.loopEnd = this.toSeconds(loopEnd); } } }); /** * The audio buffer belonging to the player. * @memberOf Tone.Player# * @type {Tone.Buffer} * @name buffer */ Object.defineProperty(Tone.Player.prototype, 'buffer', { get: function () { return this._buffer; }, set: function (buffer) { this._buffer.set(buffer); } }); /** * If the buffer should loop once it's over. * @memberOf Tone.Player# * @type {boolean} * @name loop */ Object.defineProperty(Tone.Player.prototype, 'loop', { get: function () { return this._loop; }, set: function (loop) { this._loop = loop; if (this._source) { this._source.loop = loop; } } }); /** * The playback speed. 1 is normal speed. * Note that this is not a Tone.Signal because of a bug in Blink. * Please star [this issue](https://code.google.com/p/chromium/issues/detail?id=311284) * if this an important thing to you. * @memberOf Tone.Player# * @type {number} * @name playbackRate */ Object.defineProperty(Tone.Player.prototype, 'playbackRate', { get: function () { return this._playbackRate; }, set: function (rate) { this._playbackRate = rate; if (this._source) { this._source.playbackRate.value = rate; } } }); /** * The direction the buffer should play in * @memberOf Tone.Player# * @type {boolean} * @name reverse */ Object.defineProperty(Tone.Player.prototype, 'reverse', { get: function () { return this._buffer.reverse; }, set: function (rev) { this._buffer.reverse = rev; } }); /** * Dispose and disconnect. * @return {Tone.Player} this */ Tone.Player.prototype.dispose = function () { Tone.Source.prototype.dispose.call(this); if (this._source !== null) { this._source.disconnect(); this._source = null; } this._buffer.dispose(); this._buffer = null; return this; }; return Tone.Player; }); Module(function (Tone) { /** * @class A sampler instrument which plays an audio buffer * through an amplitude envelope and a filter envelope. The sampler takes * an Object in the constructor which maps a sample name to the URL * of the sample. Nested Objects will be flattened and can be accessed using * a dot notation (see the example). * * * @constructor * @extends {Tone.Instrument} * @param {Object|string} urls the urls of the audio file * @param {Object} [options] the options object for the synth * @example * var sampler = new Sampler({ * A : { * 1 : "./audio/casio/A1.mp3", * 2 : "./audio/casio/A2.mp3", * }, * "B.1" : "./audio/casio/B1.mp3", * }).toMaster(); * * //listen for when all the samples have loaded * Tone.Buffer.onload = function(){ * sampler.triggerAttack("A.1", time, velocity); * }; */ Tone.Sampler = function (urls, options) { options = this.defaultArg(options, Tone.Sampler.defaults); Tone.Instrument.call(this, options); /** * The sample player. * @type {Tone.Player} */ this.player = new Tone.Player(options.player); this.player.retrigger = true; /** * the buffers * @type {Object} * @private */ this._buffers = {}; /** * The amplitude envelope. * @type {Tone.AmplitudeEnvelope} */ this.envelope = new Tone.AmplitudeEnvelope(options.envelope); /** * The filter envelope. * @type {Tone.ScaledEnvelope} */ this.filterEnvelope = new Tone.ScaledEnvelope(options.filterEnvelope); /** * The name of the current sample. * @type {string} * @private */ this._sample = options.sample; /** * the private reference to the pitch * @type {number} * @private */ this._pitch = options.pitch; /** * The filter. * @type {Tone.Filter} */ this.filter = new Tone.Filter(options.filter); //connections / setup this._loadBuffers(urls); this.pitch = options.pitch; this.player.chain(this.filter, this.envelope, this.output); this.filterEnvelope.connect(this.filter.frequency); this._readOnly([ 'player', 'filterEnvelope', 'envelope', 'filter' ]); }; Tone.extend(Tone.Sampler, Tone.Instrument); /** * the default parameters * @static */ Tone.Sampler.defaults = { 'sample': 0, 'pitch': 0, 'player': { 'loop': false }, 'envelope': { 'attack': 0.001, 'decay': 0, 'sustain': 1, 'release': 0.1 }, 'filterEnvelope': { 'attack': 0.001, 'decay': 0.001, 'sustain': 1, 'release': 0.5, 'min': 20, 'max': 20000, 'exponent': 2 }, 'filter': { 'type': 'lowpass' } }; /** * load the buffers * @param {Object} urls the urls * @private */ Tone.Sampler.prototype._loadBuffers = function (urls) { if (typeof urls === 'string') { this._buffers['0'] = new Tone.Buffer(urls, function () { this.sample = '0'; }.bind(this)); } else { urls = this._flattenUrls(urls); for (var buffName in urls) { this._sample = buffName; var urlString = urls[buffName]; this._buffers[buffName] = new Tone.Buffer(urlString); } } }; /** * Flatten an object into a single depth object. * thanks to https://gist.github.com/penguinboy/762197 * @param {Object} ob * @return {Object} * @private */ Tone.Sampler.prototype._flattenUrls = function (ob) { var toReturn = {}; for (var i in ob) { if (!ob.hasOwnProperty(i)) continue; if (typeof ob[i] == 'object') { var flatObject = this._flattenUrls(ob[i]); for (var x in flatObject) { if (!flatObject.hasOwnProperty(x)) continue; toReturn[i + '.' + x] = flatObject[x]; } } else { toReturn[i] = ob[i]; } } return toReturn; }; /** * Start the sample and simultaneously trigger the envelopes. * @param {string=} sample The name of the sample to trigger, defaults to * the last sample used. * @param {Time} [time=now] The time when the sample should start * @param {number} [velocity=1] The velocity of the note * @returns {Tone.Sampler} this * @example * sampler.triggerAttack("B.1"); */ Tone.Sampler.prototype.triggerAttack = function (name, time, velocity) { time = this.toSeconds(time); if (name) { this.sample = name; } this.player.start(time); this.envelope.triggerAttack(time, velocity); this.filterEnvelope.triggerAttack(time); return this; }; /** * Start the release portion of the sample. Will stop the sample once the * envelope has fully released. * * @param {Time} [time=now] The time when the note should release * @returns {Tone.Sampler} this * @example * sampler.triggerRelease(); */ Tone.Sampler.prototype.triggerRelease = function (time) { time = this.toSeconds(time); this.filterEnvelope.triggerRelease(time); this.envelope.triggerRelease(time); this.player.stop(this.toSeconds(this.envelope.release) + time); return this; }; /** * The name of the sample to trigger. * @memberOf Tone.Sampler# * @type {number|string} * @name sample * @example * //set the sample to "A.2" for next time the sample is triggered * sampler.sample = "A.2"; */ Object.defineProperty(Tone.Sampler.prototype, 'sample', { get: function () { return this._sample; }, set: function (name) { if (this._buffers.hasOwnProperty(name)) { this._sample = name; this.player.buffer = this._buffers[name]; } else { throw new Error('Sampler does not have a sample named ' + name); } } }); /** * The direction the buffer should play in * @memberOf Tone.Sampler# * @type {boolean} * @name reverse */ Object.defineProperty(Tone.Sampler.prototype, 'reverse', { get: function () { for (var i in this._buffers) { return this._buffers[i].reverse; } }, set: function (rev) { for (var i in this._buffers) { this._buffers[i].reverse = rev; } } }); /** * Repitch the sampled note by some interval (measured * in semi-tones). * @memberOf Tone.Sampler# * @type {Interval} * @name pitch * @example * sampler.pitch = -12; //down one octave * sampler.pitch = 7; //up a fifth */ Object.defineProperty(Tone.Sampler.prototype, 'pitch', { get: function () { return this._pitch; }, set: function (interval) { this._pitch = interval; this.player.playbackRate = this.intervalToFrequencyRatio(interval); } }); /** * Clean up. * @returns {Tone.Sampler} this */ Tone.Sampler.prototype.dispose = function () { Tone.Instrument.prototype.dispose.call(this); this._writable([ 'player', 'filterEnvelope', 'envelope', 'filter' ]); this.player.dispose(); this.filterEnvelope.dispose(); this.envelope.dispose(); this.filter.dispose(); this.player = null; this.filterEnvelope = null; this.envelope = null; this.filter = null; for (var sample in this._buffers) { this._buffers[sample].dispose(); this._buffers[sample] = null; } this._buffers = null; return this; }; return Tone.Sampler; }); Module(function (Tone) { /** * @class Tone.SimpleSynth is composed simply of a Tone.OmniOscillator * routed through a Tone.AmplitudeEnvelope. * * * @constructor * @extends {Tone.Monophonic} * @param {Object} [options] the options available for the synth * see defaults below * @example * var synth = new Tone.SimpleSynth().toMaster(); * synth.triggerAttackRelease("C4", "8n"); */ Tone.SimpleSynth = function (options) { //get the defaults options = this.defaultArg(options, Tone.SimpleSynth.defaults); Tone.Monophonic.call(this, options); /** * The oscillator. * @type {Tone.OmniOscillator} */ this.oscillator = new Tone.OmniOscillator(options.oscillator); /** * The frequency control. * @type {Frequency} * @signal */ this.frequency = this.oscillator.frequency; /** * The detune control. * @type {Cents} * @signal */ this.detune = this.oscillator.detune; /** * The amplitude envelope. * @type {Tone.AmplitudeEnvelope} */ this.envelope = new Tone.AmplitudeEnvelope(options.envelope); //connect the oscillators to the output this.oscillator.chain(this.envelope, this.output); //start the oscillators this.oscillator.start(); this._readOnly([ 'oscillator', 'frequency', 'detune', 'envelope' ]); }; Tone.extend(Tone.SimpleSynth, Tone.Monophonic); /** * @const * @static * @type {Object} */ Tone.SimpleSynth.defaults = { 'oscillator': { 'type': 'triangle' }, 'envelope': { 'attack': 0.005, 'decay': 0.1, 'sustain': 0.3, 'release': 1 } }; /** * start the attack portion of the envelope * @param {Time} [time=now] the time the attack should start * @param {number} [velocity=1] the velocity of the note (0-1) * @returns {Tone.SimpleSynth} this * @private */ Tone.SimpleSynth.prototype._triggerEnvelopeAttack = function (time, velocity) { //the envelopes this.envelope.triggerAttack(time, velocity); return this; }; /** * start the release portion of the envelope * @param {Time} [time=now] the time the release should start * @returns {Tone.SimpleSynth} this * @private */ Tone.SimpleSynth.prototype._triggerEnvelopeRelease = function (time) { this.envelope.triggerRelease(time); return this; }; /** * clean up * @returns {Tone.SimpleSynth} this */ Tone.SimpleSynth.prototype.dispose = function () { Tone.Monophonic.prototype.dispose.call(this); this._writable([ 'oscillator', 'frequency', 'detune', 'envelope' ]); this.oscillator.dispose(); this.oscillator = null; this.envelope.dispose(); this.envelope = null; this.frequency = null; this.detune = null; return this; }; return Tone.SimpleSynth; }); Module(function (Tone) { /** * @class AMSynth uses the output of one Tone.SimpleSynth to modulate the * amplitude of another Tone.SimpleSynth. The harmonicity (the ratio between * the two signals) affects the timbre of the output signal the most. * Read more about Amplitude Modulation Synthesis on [SoundOnSound](http://www.soundonsound.com/sos/mar00/articles/synthsecrets.htm). * * * @constructor * @extends {Tone.Monophonic} * @param {Object} [options] the options available for the synth * see defaults below * @example * var synth = new Tone.SimpleAM().toMaster(); * synth.triggerAttackRelease("C4", "8n"); */ Tone.SimpleAM = function (options) { options = this.defaultArg(options, Tone.SimpleAM.defaults); Tone.Monophonic.call(this, options); /** * The carrier voice. * @type {Tone.SimpleSynth} */ this.carrier = new Tone.SimpleSynth(options.carrier); /** * The modulator voice. * @type {Tone.SimpleSynth} */ this.modulator = new Tone.SimpleSynth(options.modulator); /** * the frequency control * @type {Frequency} * @signal */ this.frequency = new Tone.Signal(440, Tone.Type.Frequency); /** * The ratio between the carrier and the modulator frequencies. A value of 1 * makes both voices in unison, a value of 0.5 puts the modulator an octave below * the carrier. * @type {Positive} * @signal * @example * //set the modulator an octave above the carrier frequency * simpleAM.harmonicity.value = 2; */ this.harmonicity = new Tone.Multiply(options.harmonicity); this.harmonicity.units = Tone.Type.Positive; /** * convert the -1,1 output to 0,1 * @type {Tone.AudioToGain} * @private */ this._modulationScale = new Tone.AudioToGain(); /** * the node where the modulation happens * @type {GainNode} * @private */ this._modulationNode = this.context.createGain(); //control the two voices frequency this.frequency.connect(this.carrier.frequency); this.frequency.chain(this.harmonicity, this.modulator.frequency); this.modulator.chain(this._modulationScale, this._modulationNode.gain); this.carrier.chain(this._modulationNode, this.output); this._readOnly([ 'carrier', 'modulator', 'frequency', 'harmonicity' ]); }; Tone.extend(Tone.SimpleAM, Tone.Monophonic); /** * @static * @type {Object} */ Tone.SimpleAM.defaults = { 'harmonicity': 3, 'carrier': { 'volume': -10, 'portamento': 0, 'oscillator': { 'type': 'sine' }, 'envelope': { 'attack': 0.01, 'decay': 0.01, 'sustain': 1, 'release': 0.5 } }, 'modulator': { 'volume': -10, 'portamento': 0, 'oscillator': { 'type': 'sine' }, 'envelope': { 'attack': 0.5, 'decay': 0.1, 'sustain': 1, 'release': 0.5 } } }; /** * trigger the attack portion of the note * * @param {Time} [time=now] the time the note will occur * @param {number} [velocity=1] the velocity of the note * @returns {Tone.SimpleAM} this * @private */ Tone.SimpleAM.prototype._triggerEnvelopeAttack = function (time, velocity) { //the port glide time = this.toSeconds(time); //the envelopes this.carrier.envelope.triggerAttack(time, velocity); this.modulator.envelope.triggerAttack(time); return this; }; /** * trigger the release portion of the note * * @param {Time} [time=now] the time the note will release * @returns {Tone.SimpleAM} this * @private */ Tone.SimpleAM.prototype._triggerEnvelopeRelease = function (time) { this.carrier.triggerRelease(time); this.modulator.triggerRelease(time); return this; }; /** * clean up * @returns {Tone.SimpleAM} this */ Tone.SimpleAM.prototype.dispose = function () { Tone.Monophonic.prototype.dispose.call(this); this._writable([ 'carrier', 'modulator', 'frequency', 'harmonicity' ]); this.carrier.dispose(); this.carrier = null; this.modulator.dispose(); this.modulator = null; this.frequency.dispose(); this.frequency = null; this.harmonicity.dispose(); this.harmonicity = null; this._modulationScale.dispose(); this._modulationScale = null; this._modulationNode.disconnect(); this._modulationNode = null; return this; }; return Tone.SimpleAM; }); Module(function (Tone) { /** * @class SimpleFM is composed of two Tone.SimpleSynths where one Tone.SimpleSynth modulates * the frequency of a second Tone.SimpleSynth. A lot of spectral content * can be explored using the Tone.FMSynth.modulationIndex parameter. Read more about * frequency modulation synthesis on [SoundOnSound](http://www.soundonsound.com/sos/apr00/articles/synthsecrets.htm). * * * @constructor * @extends {Tone.Monophonic} * @param {Object} [options] the options available for the synth * see defaults below * @example * var fmSynth = new Tone.SimpleFM().toMaster(); * fmSynth.triggerAttackRelease("C4", "8n"); */ Tone.SimpleFM = function (options) { options = this.defaultArg(options, Tone.SimpleFM.defaults); Tone.Monophonic.call(this, options); /** * The carrier voice. * @type {Tone.SimpleSynth} */ this.carrier = new Tone.SimpleSynth(options.carrier); this.carrier.volume.value = -10; /** * The modulator voice. * @type {Tone.SimpleSynth} */ this.modulator = new Tone.SimpleSynth(options.modulator); this.modulator.volume.value = -10; /** * the frequency control * @type {Frequency} * @signal */ this.frequency = new Tone.Signal(440, Tone.Type.Frequency); /** * Harmonicity is the ratio between the two voices. A harmonicity of * 1 is no change. Harmonicity = 2 means a change of an octave. * @type {Positive} * @signal * @example * //pitch voice1 an octave below voice0 * synth.harmonicity.value = 0.5; */ this.harmonicity = new Tone.Multiply(options.harmonicity); this.harmonicity.units = Tone.Type.Positive; /** * The modulation index which is in essence the depth or amount of the modulation. In other terms it is the * ratio of the frequency of the modulating signal (mf) to the amplitude of the * modulating signal (ma) -- as in ma/mf. * @type {Positive} * @signal */ this.modulationIndex = new Tone.Multiply(options.modulationIndex); this.modulationIndex.units = Tone.Type.Positive; /** * the node where the modulation happens * @type {GainNode} * @private */ this._modulationNode = this.context.createGain(); //control the two voices frequency this.frequency.connect(this.carrier.frequency); this.frequency.chain(this.harmonicity, this.modulator.frequency); this.frequency.chain(this.modulationIndex, this._modulationNode); this.modulator.connect(this._modulationNode.gain); this._modulationNode.gain.value = 0; this._modulationNode.connect(this.carrier.frequency); this.carrier.connect(this.output); this._readOnly([ 'carrier', 'modulator', 'frequency', 'harmonicity', 'modulationIndex' ]); ; }; Tone.extend(Tone.SimpleFM, Tone.Monophonic); /** * @static * @type {Object} */ Tone.SimpleFM.defaults = { 'harmonicity': 3, 'modulationIndex': 10, 'carrier': { 'volume': -10, 'portamento': 0, 'oscillator': { 'type': 'sine' }, 'envelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5 } }, 'modulator': { 'volume': -10, 'portamento': 0, 'oscillator': { 'type': 'triangle' }, 'envelope': { 'attack': 0.01, 'decay': 0, 'sustain': 1, 'release': 0.5 } } }; /** * trigger the attack portion of the note * * @param {Time} [time=now] the time the note will occur * @param {number} [velocity=1] the velocity of the note * @returns {Tone.SimpleFM} this * @private */ Tone.SimpleFM.prototype._triggerEnvelopeAttack = function (time, velocity) { //the port glide time = this.toSeconds(time); //the envelopes this.carrier.envelope.triggerAttack(time, velocity); this.modulator.envelope.triggerAttack(time); return this; }; /** * trigger the release portion of the note * * @param {Time} [time=now] the time the note will release * @returns {Tone.SimpleFM} this * @private */ Tone.SimpleFM.prototype._triggerEnvelopeRelease = function (time) { this.carrier.triggerRelease(time); this.modulator.triggerRelease(time); return this; }; /** * clean up * @returns {Tone.SimpleFM} this */ Tone.SimpleFM.prototype.dispose = function () { Tone.Monophonic.prototype.dispose.call(this); this._writable([ 'carrier', 'modulator', 'frequency', 'harmonicity', 'modulationIndex' ]); this.carrier.dispose(); this.carrier = null; this.modulator.dispose(); this.modulator = null; this.frequency.dispose(); this.frequency = null; this.modulationIndex.dispose(); this.modulationIndex = null; this.harmonicity.dispose(); this.harmonicity = null; this._modulationNode.disconnect(); this._modulationNode = null; return this; }; return Tone.SimpleFM; }); Module(function (Tone) { /** * buses are another way of routing audio * * augments Tone.prototype to include send and recieve */ /** * All of the routes * * @type {Object} * @static * @private */ var Buses = {}; /** * Send this signal to the channel name. * @param {string} channelName A named channel to send the signal to. * @param {Decibels} amount The amount of the source to send to the bus. * @return {GainNode} The gain node which connects this node to the desired channel. * Can be used to adjust the levels of the send. * @example * source.send("reverb", -12); */ Tone.prototype.send = function (channelName, amount) { if (!Buses.hasOwnProperty(channelName)) { Buses[channelName] = this.context.createGain(); } var sendKnob = this.context.createGain(); sendKnob.gain.value = this.dbToGain(this.defaultArg(amount, 1)); this.output.chain(sendKnob, Buses[channelName]); return sendKnob; }; /** * Recieve the input from the desired channelName to the input * * @param {string} channelName A named channel to send the signal to. * @param {AudioNode} [input] If no input is selected, the * input of the current node is * chosen. * @returns {Tone} this * @example * reverbEffect.receive("reverb"); */ Tone.prototype.receive = function (channelName, input) { if (!Buses.hasOwnProperty(channelName)) { Buses[channelName] = this.context.createGain(); } if (this.isUndef(input)) { input = this.input; } Buses[channelName].connect(input); return this; }; return Tone; }); Module(function (Tone) { /** * @class Wrapper around Web Audio's native [DelayNode](http://webaudio.github.io/web-audio-api/#the-delaynode-interface). * @extends {Tone} * @param {Time=} value The delay applied to the incoming signal. * @param {Time=} maxDelay The maximum delay time. */ Tone.Delay = function () { var options = this.optionsObject(arguments, [ 'value', 'maxDelay' ], Tone.Delay.defaults); /** * The native delay node * @type {DelayNode} * @private */ this._delayNode = this.context.createDelay(this.toSeconds(options.maxDelay)); Tone.Param.call(this, { 'param': this._delayNode.delayTime, 'units': Tone.Type.Time, 'value': options.value }); //set the input and output this.input = this.output = this._delayNode; /** * The amount of time the incoming signal is * delayed. * @type {AudioParam} * @signal */ this.delayTime = this._param; this._readOnly('delayTime'); }; Tone.extend(Tone.Delay, Tone.Param); /** * The defaults * @const * @type {Object} */ Tone.Delay.defaults = { 'maxDelay': 1, 'value': 0 }; /** * Clean up. * @return {Tone.Delay} this */ Tone.Delay.prototype.dispose = function () { Tone.Param.prototype.dispose.call(this); this._delayNode.disconnect(); this._delayNode = null; this._writable('delayTime'); this.delayTime = null; return this; }; return Tone.Delay; }); Module(function (Tone) { /** * @class A timed note. Creating a note will register a callback * which will be invoked on the channel at the time with * whatever value was specified. * * @constructor * @param {number|string} channel the channel name of the note * @param {Time} time the time when the note will occur * @param {string|number|Object|Array} value the value of the note */ Tone.Note = function (channel, time, value) { /** * the value of the note. This value is returned * when the channel callback is invoked. * * @type {string|number|Object} */ this.value = value; /** * the channel name or number * * @type {string|number} * @private */ this._channel = channel; /** * an internal reference to the id of the timeline * callback which is set. * * @type {number} * @private */ this._timelineID = Tone.Transport.setTimeline(this._trigger.bind(this), time); }; /** * invoked by the timeline * @private * @param {number} time the time at which the note should play */ Tone.Note.prototype._trigger = function (time) { //invoke the callback channelCallbacks(this._channel, time, this.value); }; /** * clean up * @returns {Tone.Note} this */ Tone.Note.prototype.dispose = function () { Tone.Transport.clearTimeline(this._timelineID); this.value = null; return this; }; /** * @private * @static * @type {Object} */ var NoteChannels = {}; /** * invoke all of the callbacks on a specific channel * @private */ function channelCallbacks(channel, time, value) { if (NoteChannels.hasOwnProperty(channel)) { var callbacks = NoteChannels[channel]; for (var i = 0, len = callbacks.length; i < len; i++) { var callback = callbacks[i]; if (Array.isArray(value)) { callback.apply(window, [time].concat(value)); } else { callback(time, value); } } } } /** * listen to a specific channel, get all of the note callbacks * @static * @param {string|number} channel the channel to route note events from * @param {function(*)} callback callback to be invoked when a note will occur * on the specified channel */ Tone.Note.route = function (channel, callback) { if (NoteChannels.hasOwnProperty(channel)) { NoteChannels[channel].push(callback); } else { NoteChannels[channel] = [callback]; } }; /** * Remove a previously routed callback from a channel. * @static * @param {string|number} channel The channel to unroute note events from * @param {function(*)} callback Callback which was registered to the channel. */ Tone.Note.unroute = function (channel, callback) { if (NoteChannels.hasOwnProperty(channel)) { var channelCallback = NoteChannels[channel]; var index = channelCallback.indexOf(callback); if (index !== -1) { NoteChannels[channel].splice(index, 1); } } }; /** * Parses a score and registers all of the notes along the timeline. *

* Scores are a JSON object with instruments at the top level * and an array of time and values. The value of a note can be 0 or more * parameters. *

* The only requirement for the score format is that the time is the first (or only) * value in the array. All other values are optional and will be passed into the callback * function registered using `Note.route(channelName, callback)`. *

* To convert MIDI files to score notation, take a look at utils/MidiToScore.js * * @example * //an example JSON score which sets up events on channels * var score = { * "synth" : [["0", "C3"], ["0:1", "D3"], ["0:2", "E3"], ... ], * "bass" : [["0", "C2"], ["1:0", "A2"], ["2:0", "C2"], ["3:0", "A2"], ... ], * "kick" : ["0", "0:2", "1:0", "1:2", "2:0", ... ], * //... * }; * //parse the score into Notes * Tone.Note.parseScore(score); * //route all notes on the "synth" channel * Tone.Note.route("synth", function(time, note){ * //trigger synth * }); * @static * @param {Object} score * @return {Array} an array of all of the notes that were created */ Tone.Note.parseScore = function (score) { var notes = []; for (var inst in score) { var part = score[inst]; if (inst === 'tempo') { Tone.Transport.bpm.value = part; } else if (inst === 'timeSignature') { Tone.Transport.timeSignature = part[0] / (part[1] / 4); } else if (Array.isArray(part)) { for (var i = 0; i < part.length; i++) { var noteDescription = part[i]; var note; if (Array.isArray(noteDescription)) { var time = noteDescription[0]; var value = noteDescription.slice(1); note = new Tone.Note(inst, time, value); } else if (typeof noteDescription === 'object') { note = new Tone.Note(inst, noteDescription.time, noteDescription); } else { note = new Tone.Note(inst, noteDescription); } notes.push(note); } } else { throw new TypeError('score parts must be Arrays'); } } return notes; }; return Tone.Note; }); Module(function (Tone) { /** * @class Tone.Effect is the base class for effects. Connect the effect between * the effectSend and effectReturn GainNodes, then control the amount of * effect which goes to the output using the wet control. * * @constructor * @extends {Tone} * @param {NormalRange|Object} [wet] The starting wet value. */ Tone.Effect = function () { Tone.call(this); //get all of the defaults var options = this.optionsObject(arguments, ['wet'], Tone.Effect.defaults); /** * the drywet knob to control the amount of effect * @type {Tone.CrossFade} * @private */ this._dryWet = new Tone.CrossFade(options.wet); /** * The wet control is how much of the effected * will pass through to the output. 1 = 100% effected * signal, 0 = 100% dry signal. * @type {NormalRange} * @signal */ this.wet = this._dryWet.fade; /** * connect the effectSend to the input of hte effect * @type {GainNode} * @private */ this.effectSend = this.context.createGain(); /** * connect the output of the effect to the effectReturn * @type {GainNode} * @private */ this.effectReturn = this.context.createGain(); //connections this.input.connect(this._dryWet.a); this.input.connect(this.effectSend); this.effectReturn.connect(this._dryWet.b); this._dryWet.connect(this.output); this._readOnly(['wet']); }; Tone.extend(Tone.Effect); /** * @static * @type {Object} */ Tone.Effect.defaults = { 'wet': 1 }; /** * chains the effect in between the effectSend and effectReturn * @param {Tone} effect * @private * @returns {Tone.Effect} this */ Tone.Effect.prototype.connectEffect = function (effect) { this.effectSend.chain(effect, this.effectReturn); return this; }; /** * Clean up. * @returns {Tone.Effect} this */ Tone.Effect.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._dryWet.dispose(); this._dryWet = null; this.effectSend.disconnect(); this.effectSend = null; this.effectReturn.disconnect(); this.effectReturn = null; this._writable(['wet']); this.wet = null; return this; }; return Tone.Effect; }); Module(function (Tone) { /** * @class Tone.AutoFilter is a Tone.Filter with a Tone.LFO connected to the filter cutoff frequency. * Setting the LFO rate and depth allows for control over the filter modulation rate * and depth. * * @constructor * @extends {Tone.Effect} * @param {Time|Object} [frequency] The rate of the LFO. * @param {Frequency} [min] The lower value of the LFOs oscillation * @param {Frequency} [max] The upper value of the LFOs oscillation. * @example * //create an autofilter and start it's LFO * var autoFilter = new Tone.AutoFilter("4n").toMaster().start(); * //route an oscillator through the filter and start it * var oscillator = new Tone.Oscillator().connect(autoFilter).start(); */ Tone.AutoFilter = function () { var options = this.optionsObject(arguments, [ 'frequency', 'min', 'max' ], Tone.AutoFilter.defaults); Tone.Effect.call(this, options); /** * the lfo which drives the filter cutoff * @type {Tone.LFO} * @private */ this._lfo = new Tone.LFO({ 'frequency': options.frequency, 'amplitude': options.depth, 'min': this.toFrequency(options.min), 'max': this.toFrequency(options.max) }); /** * The range of the filter modulating between the min and max frequency. * 0 = no modulation. 1 = full modulation. * @type {NormalRange} * @signal */ this.depth = this._lfo.amplitude; /** * How fast the filter modulates between min and max. * @type {Frequency} * @signal */ this.frequency = this._lfo.frequency; /** * The filter node * @type {Tone.Filter} */ this.filter = new Tone.Filter(options.filter); //connections this.connectEffect(this.filter); this._lfo.connect(this.filter.frequency); this.type = options.type; this._readOnly([ 'frequency', 'depth' ]); }; //extend Effect Tone.extend(Tone.AutoFilter, Tone.Effect); /** * defaults * @static * @type {Object} */ Tone.AutoFilter.defaults = { 'frequency': 1, 'type': 'sine', 'depth': 1, 'min': 200, 'max': 1200, 'filter': { 'type': 'lowpass', 'rolloff': -12, 'Q': 1 } }; /** * Start the effect. * @param {Time} [time=now] When the LFO will start. * @returns {Tone.AutoFilter} this */ Tone.AutoFilter.prototype.start = function (time) { this._lfo.start(time); return this; }; /** * Stop the effect. * @param {Time} [time=now] When the LFO will stop. * @returns {Tone.AutoFilter} this */ Tone.AutoFilter.prototype.stop = function (time) { this._lfo.stop(time); return this; }; /** * Sync the filter to the transport. * @param {Time} [delay=0] Delay time before starting the effect after the * Transport has started. * @returns {Tone.AutoFilter} this */ Tone.AutoFilter.prototype.sync = function (delay) { this._lfo.sync(delay); return this; }; /** * Unsync the filter from the transport. * @returns {Tone.AutoFilter} this */ Tone.AutoFilter.prototype.unsync = function () { this._lfo.unsync(); return this; }; /** * Type of oscillator attached to the AutoFilter. * Possible values: "sine", "square", "triangle", "sawtooth". * @memberOf Tone.AutoFilter# * @type {string} * @name type */ Object.defineProperty(Tone.AutoFilter.prototype, 'type', { get: function () { return this._lfo.type; }, set: function (type) { this._lfo.type = type; } }); /** * The minimum value of the LFO attached to the cutoff frequency of the filter. * @memberOf Tone.AutoFilter# * @type {Frequency} * @name min */ Object.defineProperty(Tone.AutoFilter.prototype, 'min', { get: function () { return this._lfo.min; }, set: function (min) { this._lfo.min = this.toFrequency(min); } }); /** * The minimum value of the LFO attached to the cutoff frequency of the filter. * @memberOf Tone.AutoFilter# * @type {Frequency} * @name max */ Object.defineProperty(Tone.AutoFilter.prototype, 'max', { get: function () { return this._lfo.max; }, set: function (max) { this._lfo.max = this.toFrequency(max); } }); /** * Clean up. * @returns {Tone.AutoFilter} this */ Tone.AutoFilter.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._lfo.dispose(); this._lfo = null; this.filter.dispose(); this.filter = null; this._writable([ 'frequency', 'depth' ]); this.frequency = null; this.depth = null; return this; }; return Tone.AutoFilter; }); Module(function (Tone) { /** * @class Tone.AutoPanner is a Tone.Panner with an LFO connected to the pan amount. * More on using autopanners [here](https://www.ableton.com/en/blog/autopan-chopper-effect-and-more-liveschool/). * * @constructor * @extends {Tone.Effect} * @param {Frequency|Object} [frequency] Rate of left-right oscillation. * @example * //create an autopanner and start it's LFO * var autoPanner = new Tone.AutoPanner("4n").toMaster().start(); * //route an oscillator through the panner and start it * var oscillator = new Tone.Oscillator().connect(autoPanner).start(); */ Tone.AutoPanner = function () { var options = this.optionsObject(arguments, ['frequency'], Tone.AutoPanner.defaults); Tone.Effect.call(this, options); /** * the lfo which drives the panning * @type {Tone.LFO} * @private */ this._lfo = new Tone.LFO({ 'frequency': options.frequency, 'amplitude': options.depth, 'min': 0, 'max': 1 }); /** * The amount of panning between left and right. * 0 = always center. 1 = full range between left and right. * @type {NormalRange} * @signal */ this.depth = this._lfo.amplitude; /** * the panner node which does the panning * @type {Tone.Panner} * @private */ this._panner = new Tone.Panner(); /** * How fast the panner modulates between left and right. * @type {Frequency} * @signal */ this.frequency = this._lfo.frequency; //connections this.connectEffect(this._panner); this._lfo.connect(this._panner.pan); this.type = options.type; this._readOnly([ 'depth', 'frequency' ]); }; //extend Effect Tone.extend(Tone.AutoPanner, Tone.Effect); /** * defaults * @static * @type {Object} */ Tone.AutoPanner.defaults = { 'frequency': 1, 'type': 'sine', 'depth': 1 }; /** * Start the effect. * @param {Time} [time=now] When the LFO will start. * @returns {Tone.AutoPanner} this */ Tone.AutoPanner.prototype.start = function (time) { this._lfo.start(time); return this; }; /** * Stop the effect. * @param {Time} [time=now] When the LFO will stop. * @returns {Tone.AutoPanner} this */ Tone.AutoPanner.prototype.stop = function (time) { this._lfo.stop(time); return this; }; /** * Sync the panner to the transport. * @param {Time} [delay=0] Delay time before starting the effect after the * Transport has started. * @returns {Tone.AutoPanner} this */ Tone.AutoPanner.prototype.sync = function (delay) { this._lfo.sync(delay); return this; }; /** * Unsync the panner from the transport * @returns {Tone.AutoPanner} this */ Tone.AutoPanner.prototype.unsync = function () { this._lfo.unsync(); return this; }; /** * Type of oscillator attached to the AutoFilter. * Possible values: "sine", "square", "triangle", "sawtooth". * @memberOf Tone.AutoFilter# * @type {string} * @name type */ Object.defineProperty(Tone.AutoPanner.prototype, 'type', { get: function () { return this._lfo.type; }, set: function (type) { this._lfo.type = type; } }); /** * clean up * @returns {Tone.AutoPanner} this */ Tone.AutoPanner.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._lfo.dispose(); this._lfo = null; this._panner.dispose(); this._panner = null; this._writable([ 'depth', 'frequency' ]); this.frequency = null; this.depth = null; return this; }; return Tone.AutoPanner; }); Module(function (Tone) { /** * @class Tone.AutoWah connects a Tone.Follower to a bandpass filter (Tone.Filter). * The frequency of the filter is adjusted proportionally to the * incoming signal's amplitude. Inspiration from [Tuna.js](https://github.com/Dinahmoe/tuna). * * @constructor * @extends {Tone.Effect} * @param {Frequency|Object} [baseFrequency] The frequency the filter is set * to at the low point of the wah * @param {Positive} [octaves] The number of octaves above the baseFrequency * the filter will sweep to when fully open * @param {Decibels} [sensitivity] The decibel threshold sensitivity for * the incoming signal. Normal range of -40 to 0. * @example * var autoWah = new Tone.AutoWah(50, 6, -30).toMaster(); * //initialize the synth and connect to autowah * var synth = new SimpleSynth.connect(autoWah); * //Q value influences the effect of the wah - default is 2 * autoWah.Q.value = 6; * //more audible on higher notes * synth.triggerAttackRelease("C4", "8n") */ Tone.AutoWah = function () { var options = this.optionsObject(arguments, [ 'baseFrequency', 'octaves', 'sensitivity' ], Tone.AutoWah.defaults); Tone.Effect.call(this, options); /** * The envelope follower. Set the attack/release * timing to adjust how the envelope is followed. * @type {Tone.Follower} * @private */ this.follower = new Tone.Follower(options.follower); /** * scales the follower value to the frequency domain * @type {Tone} * @private */ this._sweepRange = new Tone.ScaleExp(0, 1, 0.5); /** * @type {number} * @private */ this._baseFrequency = options.baseFrequency; /** * @type {number} * @private */ this._octaves = options.octaves; /** * the input gain to adjust the sensitivity * @type {GainNode} * @private */ this._inputBoost = this.context.createGain(); /** * @type {BiquadFilterNode} * @private */ this._bandpass = new Tone.Filter({ 'rolloff': -48, 'frequency': 0, 'Q': options.Q }); /** * @type {Tone.Filter} * @private */ this._peaking = new Tone.Filter(0, 'peaking'); this._peaking.gain.value = options.gain; /** * The gain of the filter. * @type {Gain} * @signal */ this.gain = this._peaking.gain; /** * The quality of the filter. * @type {Positive} * @signal */ this.Q = this._bandpass.Q; //the control signal path this.effectSend.chain(this._inputBoost, this.follower, this._sweepRange); this._sweepRange.connect(this._bandpass.frequency); this._sweepRange.connect(this._peaking.frequency); //the filtered path this.effectSend.chain(this._bandpass, this._peaking, this.effectReturn); //set the initial value this._setSweepRange(); this.sensitivity = options.sensitivity; this._readOnly([ 'gain', 'Q' ]); }; Tone.extend(Tone.AutoWah, Tone.Effect); /** * @static * @type {Object} */ Tone.AutoWah.defaults = { 'baseFrequency': 100, 'octaves': 6, 'sensitivity': 0, 'Q': 2, 'gain': 2, 'follower': { 'attack': 0.3, 'release': 0.5 } }; /** * The number of octaves that the filter will sweep above the * baseFrequency. * @memberOf Tone.AutoWah# * @type {Number} * @name octaves */ Object.defineProperty(Tone.AutoWah.prototype, 'octaves', { get: function () { return this._octaves; }, set: function (octaves) { this._octaves = octaves; this._setSweepRange(); } }); /** * The base frequency from which the sweep will start from. * @memberOf Tone.AutoWah# * @type {Frequency} * @name baseFrequency */ Object.defineProperty(Tone.AutoWah.prototype, 'baseFrequency', { get: function () { return this._baseFrequency; }, set: function (baseFreq) { this._baseFrequency = baseFreq; this._setSweepRange(); } }); /** * The sensitivity to control how responsive to the input signal the filter is. * @memberOf Tone.AutoWah# * @type {Decibels} * @name sensitivity */ Object.defineProperty(Tone.AutoWah.prototype, 'sensitivity', { get: function () { return this.gainToDb(1 / this._inputBoost.gain.value); }, set: function (sensitivy) { this._inputBoost.gain.value = 1 / this.dbToGain(sensitivy); } }); /** * sets the sweep range of the scaler * @private */ Tone.AutoWah.prototype._setSweepRange = function () { this._sweepRange.min = this._baseFrequency; this._sweepRange.max = Math.min(this._baseFrequency * Math.pow(2, this._octaves), this.context.sampleRate / 2); }; /** * Clean up. * @returns {Tone.AutoWah} this */ Tone.AutoWah.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this.follower.dispose(); this.follower = null; this._sweepRange.dispose(); this._sweepRange = null; this._bandpass.dispose(); this._bandpass = null; this._peaking.dispose(); this._peaking = null; this._inputBoost.disconnect(); this._inputBoost = null; this._writable([ 'gain', 'Q' ]); this.gain = null; this.Q = null; return this; }; return Tone.AutoWah; }); Module(function (Tone) { /** * @class Tone.Bitcrusher downsamples the incoming signal to a different bitdepth. * Lowering the bitdepth of the signal creates distortion. Read more about Bitcrushing * on [Wikipedia](https://en.wikipedia.org/wiki/Bitcrusher). * * @constructor * @extends {Tone.Effect} * @param {Number} bits The number of bits to downsample the signal. Nominal range * of 1 to 8. * @example * //initialize crusher and route a synth through it * var crusher = new Tone.BitCrusher(4).toMaster(); * var synth = new Tone.MonoSynth().connect(crusher); */ Tone.BitCrusher = function () { var options = this.optionsObject(arguments, ['bits'], Tone.BitCrusher.defaults); Tone.Effect.call(this, options); var invStepSize = 1 / Math.pow(2, options.bits - 1); /** * Subtract the input signal and the modulus of the input signal * @type {Tone.Subtract} * @private */ this._subtract = new Tone.Subtract(); /** * The mod function * @type {Tone.Modulo} * @private */ this._modulo = new Tone.Modulo(invStepSize); /** * keeps track of the bits * @type {number} * @private */ this._bits = options.bits; //connect it up this.effectSend.fan(this._subtract, this._modulo); this._modulo.connect(this._subtract, 0, 1); this._subtract.connect(this.effectReturn); }; Tone.extend(Tone.BitCrusher, Tone.Effect); /** * the default values * @static * @type {Object} */ Tone.BitCrusher.defaults = { 'bits': 4 }; /** * The bit depth of the effect. Nominal range of 1-8. * @memberOf Tone.BitCrusher# * @type {number} * @name bits */ Object.defineProperty(Tone.BitCrusher.prototype, 'bits', { get: function () { return this._bits; }, set: function (bits) { this._bits = bits; var invStepSize = 1 / Math.pow(2, bits - 1); this._modulo.value = invStepSize; } }); /** * Clean up. * @returns {Tone.BitCrusher} this */ Tone.BitCrusher.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._subtract.dispose(); this._subtract = null; this._modulo.dispose(); this._modulo = null; return this; }; return Tone.BitCrusher; }); Module(function (Tone) { /** * @class Tone.ChebyShev is a Chebyshev waveshaper, an effect which is good * for making different types of distortion sounds. * Note that odd orders sound very different from even ones, * and order = 1 is no change. * Read more at [music.columbia.edu](http://music.columbia.edu/cmc/musicandcomputers/chapter4/04_06.php). * * @extends {Tone.Effect} * @constructor * @param {Positive|Object} [order] The order of the chebyshev polynomial. Normal range between 1-100. * @example * //create a new cheby * var cheby = new Tone.Chebyshev(50); * //create a monosynth connected to our cheby * synth = new Tone.MonoSynth().connect(cheby); */ Tone.Chebyshev = function () { var options = this.optionsObject(arguments, ['order'], Tone.Chebyshev.defaults); Tone.Effect.call(this, options); /** * @type {WaveShaperNode} * @private */ this._shaper = new Tone.WaveShaper(4096); /** * holds onto the order of the filter * @type {number} * @private */ this._order = options.order; this.connectEffect(this._shaper); this.order = options.order; this.oversample = options.oversample; }; Tone.extend(Tone.Chebyshev, Tone.Effect); /** * @static * @const * @type {Object} */ Tone.Chebyshev.defaults = { 'order': 1, 'oversample': 'none' }; /** * get the coefficient for that degree * @param {number} x the x value * @param {number} degree * @param {Object} memo memoize the computed value. * this speeds up computation greatly. * @return {number} the coefficient * @private */ Tone.Chebyshev.prototype._getCoefficient = function (x, degree, memo) { if (memo.hasOwnProperty(degree)) { return memo[degree]; } else if (degree === 0) { memo[degree] = 0; } else if (degree === 1) { memo[degree] = x; } else { memo[degree] = 2 * x * this._getCoefficient(x, degree - 1, memo) - this._getCoefficient(x, degree - 2, memo); } return memo[degree]; }; /** * The order of the Chebyshev polynomial which creates * the equation which is applied to the incoming * signal through a Tone.WaveShaper. The equations * are in the form:
* order 2: 2x^2 + 1
* order 3: 4x^3 + 3x
* @memberOf Tone.Chebyshev# * @type {Positive} * @name order */ Object.defineProperty(Tone.Chebyshev.prototype, 'order', { get: function () { return this._order; }, set: function (order) { this._order = order; var curve = new Array(4096); var len = curve.length; for (var i = 0; i < len; ++i) { var x = i * 2 / len - 1; if (x === 0) { //should output 0 when input is 0 curve[i] = 0; } else { curve[i] = this._getCoefficient(x, order, {}); } } this._shaper.curve = curve; } }); /** * The oversampling of the effect. Can either be "none", "2x" or "4x". * @memberOf Tone.Chebyshev# * @type {string} * @name oversample */ Object.defineProperty(Tone.Chebyshev.prototype, 'oversample', { get: function () { return this._shaper.oversample; }, set: function (oversampling) { this._shaper.oversample = oversampling; } }); /** * Clean up. * @returns {Tone.Chebyshev} this */ Tone.Chebyshev.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._shaper.dispose(); this._shaper = null; return this; }; return Tone.Chebyshev; }); Module(function (Tone) { /** * @class Base class for Stereo effects. Provides effectSendL/R and effectReturnL/R. * * @constructor * @extends {Tone.Effect} */ Tone.StereoEffect = function () { Tone.call(this); //get the defaults var options = this.optionsObject(arguments, ['wet'], Tone.Effect.defaults); /** * the drywet knob to control the amount of effect * @type {Tone.CrossFade} * @private */ this._dryWet = new Tone.CrossFade(options.wet); /** * The wet control, i.e. how much of the effected * will pass through to the output. * @type {NormalRange} * @signal */ this.wet = this._dryWet.fade; /** * then split it * @type {Tone.Split} * @private */ this._split = new Tone.Split(); /** * the effects send LEFT * @type {GainNode} * @private */ this.effectSendL = this._split.left; /** * the effects send RIGHT * @type {GainNode} * @private */ this.effectSendR = this._split.right; /** * the stereo effect merger * @type {Tone.Merge} * @private */ this._merge = new Tone.Merge(); /** * the effect return LEFT * @type {GainNode} * @private */ this.effectReturnL = this._merge.left; /** * the effect return RIGHT * @type {GainNode} * @private */ this.effectReturnR = this._merge.right; //connections this.input.connect(this._split); //dry wet connections this.input.connect(this._dryWet, 0, 0); this._merge.connect(this._dryWet, 0, 1); this._dryWet.connect(this.output); this._readOnly(['wet']); }; Tone.extend(Tone.StereoEffect, Tone.Effect); /** * Clean up. * @returns {Tone.StereoEffect} this */ Tone.StereoEffect.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._dryWet.dispose(); this._dryWet = null; this._split.dispose(); this._split = null; this._merge.dispose(); this._merge = null; this.effectSendL = null; this.effectSendR = null; this.effectReturnL = null; this.effectReturnR = null; this._writable(['wet']); this.wet = null; return this; }; return Tone.StereoEffect; }); Module(function (Tone) { /** * @class Tone.FeedbackEffect provides a loop between an * audio source and its own output. This is a base-class * for feedback effects. * * @constructor * @extends {Tone.Effect} * @param {NormalRange|Object} [feedback] The initial feedback value. */ Tone.FeedbackEffect = function () { var options = this.optionsObject(arguments, ['feedback']); options = this.defaultArg(options, Tone.FeedbackEffect.defaults); Tone.Effect.call(this, options); /** * The amount of signal which is fed back into the effect input. * @type {NormalRange} * @signal */ this.feedback = new Tone.Signal(options.feedback, Tone.Type.NormalRange); /** * the gain which controls the feedback * @type {GainNode} * @private */ this._feedbackGain = this.context.createGain(); //the feedback loop this.effectReturn.chain(this._feedbackGain, this.effectSend); this.feedback.connect(this._feedbackGain.gain); this._readOnly(['feedback']); }; Tone.extend(Tone.FeedbackEffect, Tone.Effect); /** * @static * @type {Object} */ Tone.FeedbackEffect.defaults = { 'feedback': 0.125 }; /** * Clean up. * @returns {Tone.FeedbackEffect} this */ Tone.FeedbackEffect.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._writable(['feedback']); this.feedback.dispose(); this.feedback = null; this._feedbackGain.disconnect(); this._feedbackGain = null; return this; }; return Tone.FeedbackEffect; }); Module(function (Tone) { /** * @class Just like a stereo feedback effect, but the feedback is routed from left to right * and right to left instead of on the same channel. * * @constructor * @extends {Tone.FeedbackEffect} */ Tone.StereoXFeedbackEffect = function () { var options = this.optionsObject(arguments, ['feedback'], Tone.FeedbackEffect.defaults); Tone.StereoEffect.call(this, options); /** * The amount of feedback from the output * back into the input of the effect (routed * across left and right channels). * @type {NormalRange} * @signal */ this.feedback = new Tone.Signal(options.feedback, Tone.Type.NormalRange); /** * the left side feeback * @type {GainNode} * @private */ this._feedbackLR = this.context.createGain(); /** * the right side feeback * @type {GainNode} * @private */ this._feedbackRL = this.context.createGain(); //connect it up this.effectReturnL.chain(this._feedbackLR, this.effectSendR); this.effectReturnR.chain(this._feedbackRL, this.effectSendL); this.feedback.fan(this._feedbackLR.gain, this._feedbackRL.gain); this._readOnly(['feedback']); }; Tone.extend(Tone.StereoXFeedbackEffect, Tone.FeedbackEffect); /** * clean up * @returns {Tone.StereoXFeedbackEffect} this */ Tone.StereoXFeedbackEffect.prototype.dispose = function () { Tone.StereoEffect.prototype.dispose.call(this); this._writable(['feedback']); this.feedback.dispose(); this.feedback = null; this._feedbackLR.disconnect(); this._feedbackLR = null; this._feedbackRL.disconnect(); this._feedbackRL = null; return this; }; return Tone.StereoXFeedbackEffect; }); Module(function (Tone) { /** * @class Tone.Chorus is a stereo chorus effect with feedback composed of * a left and right delay with a Tone.LFO applied to the delayTime of each channel. * Inspiration from [Tuna.js](https://github.com/Dinahmoe/tuna/blob/master/tuna.js). * Read more on the chorus effect on [SoundOnSound](http://www.soundonsound.com/sos/jun04/articles/synthsecrets.htm). * * @constructor * @extends {Tone.StereoXFeedbackEffect} * @param {Frequency|Object} [frequency] The frequency of the LFO. * @param {Milliseconds} [delayTime] The delay of the chorus effect in ms. * @param {NormalRange} [depth] The depth of the chorus. * @example * var chorus = new Tone.Chorus(4, 2.5, 0.5); * var synth = new Tone.PolySynth(4, Tone.MonoSynth).connect(chorus); * synth.triggerAttackRelease(["C3","E3","G3"], "8n"); */ Tone.Chorus = function () { var options = this.optionsObject(arguments, [ 'frequency', 'delayTime', 'depth' ], Tone.Chorus.defaults); Tone.StereoXFeedbackEffect.call(this, options); /** * the depth of the chorus * @type {number} * @private */ this._depth = options.depth; /** * the delayTime * @type {number} * @private */ this._delayTime = options.delayTime / 1000; /** * the lfo which controls the delayTime * @type {Tone.LFO} * @private */ this._lfoL = new Tone.LFO({ 'frequency': options.frequency, 'min': 0, 'max': 1 }); /** * another LFO for the right side with a 180 degree phase diff * @type {Tone.LFO} * @private */ this._lfoR = new Tone.LFO({ 'frequency': options.frequency, 'min': 0, 'max': 1, 'phase': 180 }); /** * delay for left * @type {DelayNode} * @private */ this._delayNodeL = this.context.createDelay(); /** * delay for right * @type {DelayNode} * @private */ this._delayNodeR = this.context.createDelay(); /** * The frequency of the LFO which modulates the delayTime. * @type {Frequency} * @signal */ this.frequency = this._lfoL.frequency; //connections this.effectSendL.chain(this._delayNodeL, this.effectReturnL); this.effectSendR.chain(this._delayNodeR, this.effectReturnR); //and pass through to make the detune apparent this.effectSendL.connect(this.effectReturnL); this.effectSendR.connect(this.effectReturnR); //lfo setup this._lfoL.connect(this._delayNodeL.delayTime); this._lfoR.connect(this._delayNodeR.delayTime); //start the lfo this._lfoL.start(); this._lfoR.start(); //have one LFO frequency control the other this._lfoL.frequency.connect(this._lfoR.frequency); //set the initial values this.depth = this._depth; this.frequency.value = options.frequency; this.type = options.type; this._readOnly(['frequency']); }; Tone.extend(Tone.Chorus, Tone.StereoXFeedbackEffect); /** * @static * @type {Object} */ Tone.Chorus.defaults = { 'frequency': 1.5, 'delayTime': 3.5, 'depth': 0.7, 'feedback': 0.1, 'type': 'sine' }; /** * The depth of the effect. A depth of 1 makes the delayTime * modulate between 0 and 2*delayTime (centered around the delayTime). * @memberOf Tone.Chorus# * @type {NormalRange} * @name depth */ Object.defineProperty(Tone.Chorus.prototype, 'depth', { get: function () { return this._depth; }, set: function (depth) { this._depth = depth; var deviation = this._delayTime * depth; this._lfoL.min = Math.max(this._delayTime - deviation, 0); this._lfoL.max = this._delayTime + deviation; this._lfoR.min = Math.max(this._delayTime - deviation, 0); this._lfoR.max = this._delayTime + deviation; } }); /** * The delayTime in milliseconds of the chorus. A larger delayTime * will give a more pronounced effect. Nominal range a delayTime * is between 2 and 20ms. * @memberOf Tone.Chorus# * @type {Milliseconds} * @name delayTime */ Object.defineProperty(Tone.Chorus.prototype, 'delayTime', { get: function () { return this._delayTime * 1000; }, set: function (delayTime) { this._delayTime = delayTime / 1000; this.depth = this._depth; } }); /** * The oscillator type of the LFO. * @memberOf Tone.Chorus# * @type {string} * @name type */ Object.defineProperty(Tone.Chorus.prototype, 'type', { get: function () { return this._lfoL.type; }, set: function (type) { this._lfoL.type = type; this._lfoR.type = type; } }); /** * Clean up. * @returns {Tone.Chorus} this */ Tone.Chorus.prototype.dispose = function () { Tone.StereoXFeedbackEffect.prototype.dispose.call(this); this._lfoL.dispose(); this._lfoL = null; this._lfoR.dispose(); this._lfoR = null; this._delayNodeL.disconnect(); this._delayNodeL = null; this._delayNodeR.disconnect(); this._delayNodeR = null; this._writable('frequency'); this.frequency = null; return this; }; return Tone.Chorus; }); Module(function (Tone) { /** * @class Tone.Convolver is a wrapper around the Native Web Audio * [ConvolverNode](http://webaudio.github.io/web-audio-api/#the-convolvernode-interface). * Convolution is useful for reverb and filter emulation. Read more about convolution reverb on * [Wikipedia](https://en.wikipedia.org/wiki/Convolution_reverb). * * @constructor * @extends {Tone.Effect} * @param {string|Tone.Buffer|Object} [url] The URL of the impulse response or the Tone.Buffer * contianing the impulse response. * @example * //initializing the convolver with an impulse response * var convolver = new Tone.Convolver("./path/to/ir.wav"); * convolver.toMaster(); * //after the buffer has loaded * Tone.Buffer.onload = function(){ * //testing out convolution with a noise burst * var burst = new Tone.NoiseSynth().connect(convolver); * burst.triggerAttackRelease("16n"); * }; */ Tone.Convolver = function () { var options = this.optionsObject(arguments, ['url'], Tone.Convolver.defaults); Tone.Effect.call(this, options); /** * convolver node * @type {ConvolverNode} * @private */ this._convolver = this.context.createConvolver(); /** * the convolution buffer * @type {Tone.Buffer} * @private */ this._buffer = new Tone.Buffer(options.url, function (buffer) { this.buffer = buffer; options.onload(); }.bind(this)); this.connectEffect(this._convolver); }; Tone.extend(Tone.Convolver, Tone.Effect); /** * @static * @const * @type {Object} */ Tone.Convolver.defaults = { 'url': '', 'onload': Tone.noOp }; /** * The convolver's buffer * @memberOf Tone.Convolver# * @type {AudioBuffer} * @name buffer */ Object.defineProperty(Tone.Convolver.prototype, 'buffer', { get: function () { return this._buffer.get(); }, set: function (buffer) { this._buffer.set(buffer); this._convolver.buffer = this._buffer.get(); } }); /** * Load an impulse response url as an audio buffer. * Decodes the audio asynchronously and invokes * the callback once the audio buffer loads. * @param {string} url The url of the buffer to load. * filetype support depends on the * browser. * @param {function=} callback * @returns {Tone.Convolver} this */ Tone.Convolver.prototype.load = function (url, callback) { this._buffer.load(url, function (buff) { this.buffer = buff; if (callback) { callback(); } }.bind(this)); return this; }; /** * Clean up. * @returns {Tone.Convolver} this */ Tone.Convolver.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._convolver.disconnect(); this._convolver = null; this._buffer.dispose(); this._buffer = null; return this; }; return Tone.Convolver; }); Module(function (Tone) { /** * @class Tone.Distortion is a simple distortion effect using Tone.WaveShaper. * Algorithm from [a stackoverflow answer](http://stackoverflow.com/a/22313408). * * @extends {Tone.Effect} * @constructor * @param {Number|Object} [distortion] The amount of distortion (nominal range of 0-1) * @example * var dist = new Tone.Distortion(0.8).toMaster(); * var fm = new Tone.SimpleFM().connect(dist); * //this sounds good on bass notes * fm.triggerAttackRelease("A1", "8n"); */ Tone.Distortion = function () { var options = this.optionsObject(arguments, ['distortion'], Tone.Distortion.defaults); Tone.Effect.call(this, options); /** * @type {Tone.WaveShaper} * @private */ this._shaper = new Tone.WaveShaper(4096); /** * holds the distortion amount * @type {number} * @private */ this._distortion = options.distortion; this.connectEffect(this._shaper); this.distortion = options.distortion; this.oversample = options.oversample; }; Tone.extend(Tone.Distortion, Tone.Effect); /** * @static * @const * @type {Object} */ Tone.Distortion.defaults = { 'distortion': 0.4, 'oversample': 'none' }; /** * The amount of distortion. * @memberOf Tone.Distortion# * @type {NormalRange} * @name distortion */ Object.defineProperty(Tone.Distortion.prototype, 'distortion', { get: function () { return this._distortion; }, set: function (amount) { this._distortion = amount; var k = amount * 100; var deg = Math.PI / 180; this._shaper.setMap(function (x) { if (Math.abs(x) < 0.001) { //should output 0 when input is 0 return 0; } else { return (3 + k) * x * 20 * deg / (Math.PI + k * Math.abs(x)); } }); } }); /** * The oversampling of the effect. Can either be "none", "2x" or "4x". * @memberOf Tone.Distortion# * @type {string} * @name oversample */ Object.defineProperty(Tone.Distortion.prototype, 'oversample', { get: function () { return this._shaper.oversample; }, set: function (oversampling) { this._shaper.oversample = oversampling; } }); /** * Clean up. * @returns {Tone.Distortion} this */ Tone.Distortion.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._shaper.dispose(); this._shaper = null; return this; }; return Tone.Distortion; }); Module(function (Tone) { /** * @class Tone.FeedbackDelay is a DelayNode in which part of output * signal is fed back into the delay. * * @constructor * @extends {Tone.FeedbackEffect} * @param {Time|Object} [delayTime] The delay applied to the incoming signal. * @param {NormalRange=} feedback The amount of the effected signal which * is fed back through the delay. * @example * var feedbackDelay = new Tone.FeedbackDelay("8n", 0.5).toMaster(); * var tom = new Tone.DrumSynth({ * "octaves" : 4, * "pitchDecay" : 0.1 * }).connect(feedbackDelay); * tom.triggerAttackRelease("A2","32n"); */ Tone.FeedbackDelay = function () { var options = this.optionsObject(arguments, [ 'delayTime', 'feedback' ], Tone.FeedbackDelay.defaults); Tone.FeedbackEffect.call(this, options); /** * The delayTime of the DelayNode. * @type {Time} * @signal */ this.delayTime = new Tone.Signal(options.delayTime, Tone.Type.Time); /** * the delay node * @type {DelayNode} * @private */ this._delayNode = this.context.createDelay(4); // connect it up this.connectEffect(this._delayNode); this.delayTime.connect(this._delayNode.delayTime); this._readOnly(['delayTime']); }; Tone.extend(Tone.FeedbackDelay, Tone.FeedbackEffect); /** * The default values. * @const * @static * @type {Object} */ Tone.FeedbackDelay.defaults = { 'delayTime': 0.25 }; /** * clean up * @returns {Tone.FeedbackDelay} this */ Tone.FeedbackDelay.prototype.dispose = function () { Tone.FeedbackEffect.prototype.dispose.call(this); this.delayTime.dispose(); this._delayNode.disconnect(); this._delayNode = null; this._writable(['delayTime']); this.delayTime = null; return this; }; return Tone.FeedbackDelay; }); Module(function (Tone) { /** * an array of comb filter delay values from Freeverb implementation * @static * @private * @type {Array} */ var combFilterTunings = [ 1557 / 44100, 1617 / 44100, 1491 / 44100, 1422 / 44100, 1277 / 44100, 1356 / 44100, 1188 / 44100, 1116 / 44100 ]; /** * an array of allpass filter frequency values from Freeverb implementation * @private * @static * @type {Array} */ var allpassFilterFrequencies = [ 225, 556, 441, 341 ]; /** * @class Tone.Freeverb is a reverb based on [Freeverb](https://ccrma.stanford.edu/~jos/pasp/Freeverb.html). * Read more on reverb on [SoundOnSound](http://www.soundonsound.com/sos/may00/articles/reverb.htm). * * @extends {Tone.Effect} * @constructor * @param {NormalRange|Object} [roomSize] Correlated to the decay time. * @param {Frequency} [dampening] The cutoff frequency of a lowpass filter as part * of the reverb. * @example * var freeverb = new Tone.Freeverb().toMaster(); * freeverb.dampening.value = 1000; * //routing synth through the reverb * var synth = new Tone.AMSynth().connect(freeverb); */ Tone.Freeverb = function () { var options = this.optionsObject(arguments, [ 'roomSize', 'dampening' ], Tone.Freeverb.defaults); Tone.StereoEffect.call(this, options); /** * The roomSize value between. A larger roomSize * will result in a longer decay. * @type {NormalRange} * @signal */ this.roomSize = new Tone.Signal(options.roomSize, Tone.Type.NormalRange); /** * The amount of dampening of the reverberant signal. * @type {Frequency} * @signal */ this.dampening = new Tone.Signal(options.dampening, Tone.Type.Frequency); /** * the comb filters * @type {Array} * @private */ this._combFilters = []; /** * the allpass filters on the left * @type {Array} * @private */ this._allpassFiltersL = []; /** * the allpass filters on the right * @type {Array} * @private */ this._allpassFiltersR = []; //make the allpass filters on teh right for (var l = 0; l < allpassFilterFrequencies.length; l++) { var allpassL = this.context.createBiquadFilter(); allpassL.type = 'allpass'; allpassL.frequency.value = allpassFilterFrequencies[l]; this._allpassFiltersL.push(allpassL); } //make the allpass filters on the left for (var r = 0; r < allpassFilterFrequencies.length; r++) { var allpassR = this.context.createBiquadFilter(); allpassR.type = 'allpass'; allpassR.frequency.value = allpassFilterFrequencies[r]; this._allpassFiltersR.push(allpassR); } //make the comb filters for (var c = 0; c < combFilterTunings.length; c++) { var lfpf = new Tone.LowpassCombFilter(combFilterTunings[c]); if (c < combFilterTunings.length / 2) { this.effectSendL.chain(lfpf, this._allpassFiltersL[0]); } else { this.effectSendR.chain(lfpf, this._allpassFiltersR[0]); } this.roomSize.connect(lfpf.resonance); this.dampening.connect(lfpf.dampening); this._combFilters.push(lfpf); } //chain the allpass filters togetehr this.connectSeries.apply(this, this._allpassFiltersL); this.connectSeries.apply(this, this._allpassFiltersR); this._allpassFiltersL[this._allpassFiltersL.length - 1].connect(this.effectReturnL); this._allpassFiltersR[this._allpassFiltersR.length - 1].connect(this.effectReturnR); this._readOnly([ 'roomSize', 'dampening' ]); }; Tone.extend(Tone.Freeverb, Tone.StereoEffect); /** * @static * @type {Object} */ Tone.Freeverb.defaults = { 'roomSize': 0.7, 'dampening': 3000 }; /** * Clean up. * @returns {Tone.Freeverb} this */ Tone.Freeverb.prototype.dispose = function () { Tone.StereoEffect.prototype.dispose.call(this); for (var al = 0; al < this._allpassFiltersL.length; al++) { this._allpassFiltersL[al].disconnect(); this._allpassFiltersL[al] = null; } this._allpassFiltersL = null; for (var ar = 0; ar < this._allpassFiltersR.length; ar++) { this._allpassFiltersR[ar].disconnect(); this._allpassFiltersR[ar] = null; } this._allpassFiltersR = null; for (var cf = 0; cf < this._combFilters.length; cf++) { this._combFilters[cf].dispose(); this._combFilters[cf] = null; } this._combFilters = null; this._writable([ 'roomSize', 'dampening' ]); this.roomSize.dispose(); this.roomSize = null; this.dampening.dispose(); this.dampening = null; return this; }; return Tone.Freeverb; }); Module(function (Tone) { /** * an array of the comb filter delay time values * @private * @static * @type {Array} */ var combFilterDelayTimes = [ 1687 / 25000, 1601 / 25000, 2053 / 25000, 2251 / 25000 ]; /** * the resonances of each of the comb filters * @private * @static * @type {Array} */ var combFilterResonances = [ 0.773, 0.802, 0.753, 0.733 ]; /** * the allpass filter frequencies * @private * @static * @type {Array} */ var allpassFilterFreqs = [ 347, 113, 37 ]; /** * @class Tone.JCReverb is a simple [Schroeder Reverberator](https://ccrma.stanford.edu/~jos/pasp/Schroeder_Reverberators.html) * tuned by John Chowning in 1970. * It is made up of three allpass filters and four Tone.FeedbackCombFilter. * * * @extends {Tone.Effect} * @constructor * @param {NormalRange|Object} [roomSize] Coorelates to the decay time. * @example * var reverb = new Tone.JCReverb(0.4).connect(Tone.Master); * var delay = new Tone.FeedbackDelay(0.5); * //connecting the synth to reverb through delay * var synth = new Tone.DuoSynth().chain(delay, reverb); * synth.triggerAttackRelease("A4","8n"); */ Tone.JCReverb = function () { var options = this.optionsObject(arguments, ['roomSize'], Tone.JCReverb.defaults); Tone.StereoEffect.call(this, options); /** * room size control values between [0,1] * @type {NormalRange} * @signal */ this.roomSize = new Tone.Signal(options.roomSize, Tone.Type.NormalRange); /** * scale the room size * @type {Tone.Scale} * @private */ this._scaleRoomSize = new Tone.Scale(-0.733, 0.197); /** * a series of allpass filters * @type {Array} * @private */ this._allpassFilters = []; /** * parallel feedback comb filters * @type {Array} * @private */ this._feedbackCombFilters = []; //make the allpass filters for (var af = 0; af < allpassFilterFreqs.length; af++) { var allpass = this.context.createBiquadFilter(); allpass.type = 'allpass'; allpass.frequency.value = allpassFilterFreqs[af]; this._allpassFilters.push(allpass); } //and the comb filters for (var cf = 0; cf < combFilterDelayTimes.length; cf++) { var fbcf = new Tone.FeedbackCombFilter(combFilterDelayTimes[cf], 0.1); this._scaleRoomSize.connect(fbcf.resonance); fbcf.resonance.value = combFilterResonances[cf]; this._allpassFilters[this._allpassFilters.length - 1].connect(fbcf); if (cf < combFilterDelayTimes.length / 2) { fbcf.connect(this.effectReturnL); } else { fbcf.connect(this.effectReturnR); } this._feedbackCombFilters.push(fbcf); } //chain the allpass filters together this.roomSize.connect(this._scaleRoomSize); this.connectSeries.apply(this, this._allpassFilters); this.effectSendL.connect(this._allpassFilters[0]); this.effectSendR.connect(this._allpassFilters[0]); this._readOnly(['roomSize']); }; Tone.extend(Tone.JCReverb, Tone.StereoEffect); /** * the default values * @static * @const * @type {Object} */ Tone.JCReverb.defaults = { 'roomSize': 0.5 }; /** * Clean up. * @returns {Tone.JCReverb} this */ Tone.JCReverb.prototype.dispose = function () { Tone.StereoEffect.prototype.dispose.call(this); for (var apf = 0; apf < this._allpassFilters.length; apf++) { this._allpassFilters[apf].disconnect(); this._allpassFilters[apf] = null; } this._allpassFilters = null; for (var fbcf = 0; fbcf < this._feedbackCombFilters.length; fbcf++) { this._feedbackCombFilters[fbcf].dispose(); this._feedbackCombFilters[fbcf] = null; } this._feedbackCombFilters = null; this._writable(['roomSize']); this.roomSize.dispose(); this.roomSize = null; this._scaleRoomSize.dispose(); this._scaleRoomSize = null; return this; }; return Tone.JCReverb; }); Module(function (Tone) { /** * @class Mid/Side processing separates the the 'mid' signal * (which comes out of both the left and the right channel) * and the 'side' (which only comes out of the the side channels) * and effects them separately before being recombined. * Applies a Mid/Side seperation and recombination. * Algorithm found in [kvraudio forums](http://www.kvraudio.com/forum/viewtopic.php?t=212587). *

* This is a base-class for Mid/Side Effects. * * @extends {Tone.Effect} * @constructor */ Tone.MidSideEffect = function () { Tone.Effect.apply(this, arguments); /** * The mid/side split * @type {Tone.MidSideSplit} * @private */ this._midSideSplit = new Tone.MidSideSplit(); /** * The mid/side merge * @type {Tone.MidSideMerge} * @private */ this._midSideMerge = new Tone.MidSideMerge(); /** * The mid send. Connect to mid processing * @type {Tone.Expr} * @private */ this.midSend = this._midSideSplit.mid; /** * The side send. Connect to side processing * @type {Tone.Expr} * @private */ this.sideSend = this._midSideSplit.side; /** * The mid return connection * @type {GainNode} * @private */ this.midReturn = this._midSideMerge.mid; /** * The side return connection * @type {GainNode} * @private */ this.sideReturn = this._midSideMerge.side; //the connections this.effectSend.connect(this._midSideSplit); this._midSideMerge.connect(this.effectReturn); }; Tone.extend(Tone.MidSideEffect, Tone.Effect); /** * Clean up. * @returns {Tone.MidSideEffect} this */ Tone.MidSideEffect.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._midSideSplit.dispose(); this._midSideSplit = null; this._midSideMerge.dispose(); this._midSideMerge = null; this.midSend = null; this.sideSend = null; this.midReturn = null; this.sideReturn = null; return this; }; return Tone.MidSideEffect; }); Module(function (Tone) { /** * @class Tone.Phaser is a phaser effect. Phasers work by changing the phase * of different frequency components of an incoming signal. Read more on * [Wikipedia](https://en.wikipedia.org/wiki/Phaser_(effect)). * Inspiration for this phaser comes from [Tuna.js](https://github.com/Dinahmoe/tuna/). * * @extends {Tone.StereoEffect} * @constructor * @param {Frequency|Object} [frequency] The speed of the phasing. * @param {number} [depth] The depth of the effect. * @param {Frequency} [baseFrequency] The base frequency of the filters. * @example * var phaser = new Tone.Phaser({ * "frequency" : 15, * "depth" : 5, * "baseFrequency" : 1000 * }).toMaster(); * var synth = new Tone.FMSynth().connect(phaser); * synth.triggerAttackRelease("E3", "2n"); */ Tone.Phaser = function () { //set the defaults var options = this.optionsObject(arguments, [ 'frequency', 'depth', 'baseFrequency' ], Tone.Phaser.defaults); Tone.StereoEffect.call(this, options); /** * the lfo which controls the frequency on the left side * @type {Tone.LFO} * @private */ this._lfoL = new Tone.LFO(options.frequency, 0, 1); /** * the lfo which controls the frequency on the right side * @type {Tone.LFO} * @private */ this._lfoR = new Tone.LFO(options.frequency, 0, 1); this._lfoR.phase = 180; /** * the base modulation frequency * @type {number} * @private */ this._baseFrequency = options.baseFrequency; /** * the depth of the phasing * @type {number} * @private */ this._depth = options.depth; /** * The quality factor of the filters * @type {Positive} * @signal */ this.Q = new Tone.Signal(options.Q, Tone.Type.Positive); /** * the array of filters for the left side * @type {Array} * @private */ this._filtersL = this._makeFilters(options.stages, this._lfoL, this.Q); /** * the array of filters for the left side * @type {Array} * @private */ this._filtersR = this._makeFilters(options.stages, this._lfoR, this.Q); /** * the frequency of the effect * @type {Tone.Signal} */ this.frequency = this._lfoL.frequency; this.frequency.value = options.frequency; //connect them up this.effectSendL.connect(this._filtersL[0]); this.effectSendR.connect(this._filtersR[0]); this._filtersL[options.stages - 1].connect(this.effectReturnL); this._filtersR[options.stages - 1].connect(this.effectReturnR); //control the frequency with one LFO this._lfoL.frequency.connect(this._lfoR.frequency); //set the options this.baseFrequency = options.baseFrequency; this.depth = options.depth; //start the lfo this._lfoL.start(); this._lfoR.start(); this._readOnly([ 'frequency', 'Q' ]); }; Tone.extend(Tone.Phaser, Tone.StereoEffect); /** * defaults * @static * @type {object} */ Tone.Phaser.defaults = { 'frequency': 0.5, 'depth': 10, 'stages': 10, 'Q': 10, 'baseFrequency': 350 }; /** * @param {number} stages * @returns {Array} the number of filters all connected together * @private */ Tone.Phaser.prototype._makeFilters = function (stages, connectToFreq, Q) { var filters = new Array(stages); //make all the filters for (var i = 0; i < stages; i++) { var filter = this.context.createBiquadFilter(); filter.type = 'allpass'; Q.connect(filter.Q); connectToFreq.connect(filter.frequency); filters[i] = filter; } this.connectSeries.apply(this, filters); return filters; }; /** * The depth of the effect. * @memberOf Tone.Phaser# * @type {number} * @name depth */ Object.defineProperty(Tone.Phaser.prototype, 'depth', { get: function () { return this._depth; }, set: function (depth) { this._depth = depth; var max = this._baseFrequency + this._baseFrequency * depth; this._lfoL.max = max; this._lfoR.max = max; } }); /** * The the base frequency of the filters. * @memberOf Tone.Phaser# * @type {number} * @name baseFrequency */ Object.defineProperty(Tone.Phaser.prototype, 'baseFrequency', { get: function () { return this._baseFrequency; }, set: function (freq) { this._baseFrequency = freq; this._lfoL.min = freq; this._lfoR.min = freq; this.depth = this._depth; } }); /** * clean up * @returns {Tone.Phaser} this */ Tone.Phaser.prototype.dispose = function () { Tone.StereoEffect.prototype.dispose.call(this); this._writable([ 'frequency', 'Q' ]); this.Q.dispose(); this.Q = null; this._lfoL.dispose(); this._lfoL = null; this._lfoR.dispose(); this._lfoR = null; for (var i = 0; i < this._filtersL.length; i++) { this._filtersL[i].disconnect(); this._filtersL[i] = null; } this._filtersL = null; for (var j = 0; j < this._filtersR.length; j++) { this._filtersR[j].disconnect(); this._filtersR[j] = null; } this._filtersR = null; this.frequency = null; return this; }; return Tone.Phaser; }); Module(function (Tone) { /** * @class Tone.PingPongDelay is a feedback delay effect where the echo is heard * first in one channel and next in the opposite channel. In a stereo * system these are the right and left channels. * PingPongDelay in more simplified terms is two Tone.FeedbackDelays * with independent delay values. Each delay is routed to one channel * (left or right), and the channel triggered second will always * trigger at the same interval after the first. * * @constructor * @extends {Tone.StereoXFeedbackEffect} * @param {Time|Object} [delayTime] The delayTime between consecutive echos. * @param {NormalRange=} feedback The amount of the effected signal which * is fed back through the delay. * @example * var pingPong = new Tone.PingPongDelay("4n", 0.2).toMaster(); * var drum = new Tone.DrumSynth().connect(pingPong); * drum.triggerAttackRelease("C4", "32n"); */ Tone.PingPongDelay = function () { var options = this.optionsObject(arguments, [ 'delayTime', 'feedback' ], Tone.PingPongDelay.defaults); Tone.StereoXFeedbackEffect.call(this, options); /** * the delay node on the left side * @type {DelayNode} * @private */ this._leftDelay = this.context.createDelay(options.maxDelayTime); /** * the delay node on the right side * @type {DelayNode} * @private */ this._rightDelay = this.context.createDelay(options.maxDelayTime); /** * the predelay on the right side * @type {DelayNode} * @private */ this._rightPreDelay = this.context.createDelay(options.maxDelayTime); /** * the delay time signal * @type {Time} * @signal */ this.delayTime = new Tone.Signal(options.delayTime, Tone.Type.Time); //connect it up this.effectSendL.chain(this._leftDelay, this.effectReturnL); this.effectSendR.chain(this._rightPreDelay, this._rightDelay, this.effectReturnR); this.delayTime.fan(this._leftDelay.delayTime, this._rightDelay.delayTime, this._rightPreDelay.delayTime); //rearranged the feedback to be after the rightPreDelay this._feedbackLR.disconnect(); this._feedbackLR.connect(this._rightDelay); this._readOnly(['delayTime']); }; Tone.extend(Tone.PingPongDelay, Tone.StereoXFeedbackEffect); /** * @static * @type {Object} */ Tone.PingPongDelay.defaults = { 'delayTime': 0.25, 'maxDelayTime': 1 }; /** * Clean up. * @returns {Tone.PingPongDelay} this */ Tone.PingPongDelay.prototype.dispose = function () { Tone.StereoXFeedbackEffect.prototype.dispose.call(this); this._leftDelay.disconnect(); this._leftDelay = null; this._rightDelay.disconnect(); this._rightDelay = null; this._rightPreDelay.disconnect(); this._rightPreDelay = null; this._writable(['delayTime']); this.delayTime.dispose(); this.delayTime = null; return this; }; return Tone.PingPongDelay; }); Module(function (Tone) { /** * @class Tone.PitchShift does near-realtime pitch shifting to the incoming signal. * The effect is achieved by speeding up or slowing down the delayTime * of a DelayNode using a sawtooth wave. * Algorithm found in [this pdf](http://dsp-book.narod.ru/soundproc.pdf). * Additional reference by [Miller Pucket](http://msp.ucsd.edu/techniques/v0.11/book-html/node115.html). * * @extends {Tone.FeedbackEffect} * @param {Interval=} pitch The interval to transpose the incoming signal by. */ Tone.PitchShift = function () { var options = this.optionsObject(arguments, ['pitch'], Tone.PitchShift.defaults); Tone.FeedbackEffect.call(this, options); /** * The pitch signal * @type {Tone.Signal} * @private */ this._frequency = new Tone.Signal(0); /** * Uses two DelayNodes to cover up the jump in * the sawtooth wave. * @type {DelayNode} * @private */ this._delayA = new Tone.Delay(0, 1); /** * The first LFO. * @type {Tone.LFO} * @private */ this._lfoA = new Tone.LFO({ 'min': 0, 'max': 0.1, 'type': 'sawtooth' }).connect(this._delayA.delayTime); /** * The second DelayNode * @type {DelayNode} * @private */ this._delayB = new Tone.Delay(0, 1); /** * The first LFO. * @type {Tone.LFO} * @private */ this._lfoB = new Tone.LFO({ 'min': 0, 'max': 0.1, 'type': 'sawtooth', 'phase': 180 }).connect(this._delayB.delayTime); /** * Crossfade quickly between the two delay lines * to cover up the jump in the sawtooth wave * @type {Tone.CrossFade} * @private */ this._crossFade = new Tone.CrossFade(); /** * LFO which alternates between the two * delay lines to cover up the disparity in the * sawtooth wave. * @type {Tone.LFO} */ this._crossFadeLFO = new Tone.LFO({ 'min': 0, 'max': 1, 'type': 'triangle', 'phase': 90 }).connect(this._crossFade.fade); /** * The amount of delay on the input signal * @type {Time} * @signal */ this.delayTime = new Tone.Delay(options.delayTime); this._readOnly('delayTime'); /** * Hold the current pitch * @type {Number} * @private */ this._pitch = options.pitch; /** * Hold the current windowSize * @type {Number} * @private */ this._windowSize = options.windowSize; //connect the two delay lines up this._delayA.connect(this._crossFade.a); this._delayB.connect(this._crossFade.b); //connect the frequency this._frequency.fan(this._lfoA.frequency, this._lfoB.frequency, this._crossFadeLFO.frequency); //route the input this.effectSend.fan(this._delayA, this._delayB); this._crossFade.chain(this.delayTime, this.effectReturn); //start the LFOs at the same time var now = this.now(); this._lfoA.start(now); this._lfoB.start(now); this._crossFadeLFO.start(now); //set the initial value this.windowSize = this._windowSize; }; Tone.extend(Tone.PitchShift, Tone.FeedbackEffect); /** * default values * @static * @type {Object} * @const */ Tone.PitchShift.defaults = { 'pitch': 0, 'windowSize': 0.1, 'delayTime': 0, 'feedback': 0 }; /** * Repitch the incoming signal by some interval (measured * in semi-tones). * @memberOf Tone.PitchShift# * @type {Interval} * @name pitch * @example * pitchShift.pitch = -12; //down one octave * pitchShift.pitch = 7; //up a fifth */ Object.defineProperty(Tone.PitchShift.prototype, 'pitch', { get: function () { return this._pitch; }, set: function (interval) { this._pitch = interval; var factor = 0; if (interval < 0) { this._lfoA.min = 0; this._lfoA.max = this._windowSize; this._lfoB.min = 0; this._lfoB.max = this._windowSize; factor = this.intervalToFrequencyRatio(interval - 1) + 1; } else { this._lfoA.min = this._windowSize; this._lfoA.max = 0; this._lfoB.min = this._windowSize; this._lfoB.max = 0; factor = this.intervalToFrequencyRatio(interval) - 1; } this._frequency.value = factor * (1.2 / this._windowSize); } }); /** * The window size corresponds roughly to the sample length in a looping sampler. * Smaller values are desirable for a less noticeable delay time of the pitch shifted * signal, but larger values will result in smoother pitch shifting for larger intervals. * A nominal range of 0.03 to 0.1 is recommended. * @memberOf Tone.PitchShift# * @type {Time} * @name windowSize * @example * pitchShift.windowSize = 0.1; */ Object.defineProperty(Tone.PitchShift.prototype, 'windowSize', { get: function () { return this._windowSize; }, set: function (size) { this._windowSize = this.toSeconds(size); this.pitch = this._pitch; } }); /** * Clean up. * @return {Tone.PitchShift} this */ Tone.PitchShift.prototype.dispose = function () { Tone.FeedbackEffect.prototype.dispose.call(this); this._frequency.dispose(); this._frequency = null; this._delayA.disconnect(); this._delayA = null; this._delayB.disconnect(); this._delayB = null; this._lfoA.dispose(); this._lfoA = null; this._lfoB.dispose(); this._lfoB = null; this._crossFade.dispose(); this._crossFade = null; this._crossFadeLFO.dispose(); this._crossFadeLFO = null; this._writable('delayTime'); this.delayTime.dispose(); this.delayTime = null; return this; }; return Tone.PitchShift; }); Module(function (Tone) { /** * @class Base class for stereo feedback effects where the effectReturn * is fed back into the same channel. * * @constructor * @extends {Tone.FeedbackEffect} */ Tone.StereoFeedbackEffect = function () { var options = this.optionsObject(arguments, ['feedback'], Tone.FeedbackEffect.defaults); Tone.StereoEffect.call(this, options); /** * controls the amount of feedback * @type {NormalRange} * @signal */ this.feedback = new Tone.Signal(options.feedback, Tone.Type.NormalRange); /** * the left side feeback * @type {GainNode} * @private */ this._feedbackL = this.context.createGain(); /** * the right side feeback * @type {GainNode} * @private */ this._feedbackR = this.context.createGain(); //connect it up this.effectReturnL.chain(this._feedbackL, this.effectSendL); this.effectReturnR.chain(this._feedbackR, this.effectSendR); this.feedback.fan(this._feedbackL.gain, this._feedbackR.gain); this._readOnly(['feedback']); }; Tone.extend(Tone.StereoFeedbackEffect, Tone.FeedbackEffect); /** * clean up * @returns {Tone.StereoFeedbackEffect} this */ Tone.StereoFeedbackEffect.prototype.dispose = function () { Tone.StereoEffect.prototype.dispose.call(this); this._writable(['feedback']); this.feedback.dispose(); this.feedback = null; this._feedbackL.disconnect(); this._feedbackL = null; this._feedbackR.disconnect(); this._feedbackR = null; return this; }; return Tone.StereoFeedbackEffect; }); Module(function (Tone) { /** * @class Applies a width factor to the mid/side seperation. * 0 is all mid and 1 is all side. * Algorithm found in [kvraudio forums](http://www.kvraudio.com/forum/viewtopic.php?t=212587). *

* * Mid *= 2*(1-width)
* Side *= 2*width *
* * @extends {Tone.MidSideEffect} * @constructor * @param {NormalRange|Object} [width] The stereo width. A width of 0 is mono and 1 is stereo. 0.5 is no change. */ Tone.StereoWidener = function () { var options = this.optionsObject(arguments, ['width'], Tone.StereoWidener.defaults); Tone.MidSideEffect.call(this, options); /** * The width control. 0 = 100% mid. 1 = 100% side. 0.5 = no change. * @type {NormalRange} * @signal */ this.width = new Tone.Signal(options.width, Tone.Type.NormalRange); /** * Mid multiplier * @type {Tone.Expr} * @private */ this._midMult = new Tone.Expr('$0 * ($1 * (1 - $2))'); /** * Side multiplier * @type {Tone.Expr} * @private */ this._sideMult = new Tone.Expr('$0 * ($1 * $2)'); /** * constant output of 2 * @type {Tone} * @private */ this._two = new Tone.Signal(2); //the mid chain this._two.connect(this._midMult, 0, 1); this.width.connect(this._midMult, 0, 2); //the side chain this._two.connect(this._sideMult, 0, 1); this.width.connect(this._sideMult, 0, 2); //connect it to the effect send/return this.midSend.chain(this._midMult, this.midReturn); this.sideSend.chain(this._sideMult, this.sideReturn); this._readOnly(['width']); }; Tone.extend(Tone.StereoWidener, Tone.MidSideEffect); /** * the default values * @static * @type {Object} */ Tone.StereoWidener.defaults = { 'width': 0.5 }; /** * Clean up. * @returns {Tone.StereoWidener} this */ Tone.StereoWidener.prototype.dispose = function () { Tone.MidSideEffect.prototype.dispose.call(this); this._writable(['width']); this.width.dispose(); this.width = null; this._midMult.dispose(); this._midMult = null; this._sideMult.dispose(); this._sideMult = null; this._two.dispose(); this._two = null; return this; }; return Tone.StereoWidener; }); Module(function (Tone) { /** * @class Tone.Tremelo modulates the amplitude of an incoming signal using a Tone.LFO. * The type, frequency, and depth of the LFO is controllable. * * @extends {Tone.Effect} * @constructor * @param {Frequency|Object} [frequency] The rate of the effect. * @param {NormalRange} [depth] The depth of the wavering. * @example * //create an tremolo and start it's LFO * var tremolo = new Tone.Tremolo(9, 0.75).toMaster().start(); * //route an oscillator through the tremolo and start it * var oscillator = new Tone.Oscillator().connect(tremolo).start(); */ Tone.Tremolo = function () { var options = this.optionsObject(arguments, [ 'frequency', 'depth' ], Tone.Tremolo.defaults); Tone.Effect.call(this, options); /** * The tremelo LFO * @type {Tone.LFO} * @private */ this._lfo = new Tone.LFO({ 'frequency': options.frequency, 'amplitude': options.depth, 'min': 1, 'max': 0 }); /** * Where the gain is multiplied * @type {GainNode} * @private */ this._amplitude = this.context.createGain(); /** * The frequency of the tremolo. * @type {Frequency} * @signal */ this.frequency = this._lfo.frequency; /** * The depth of the effect. A depth of 0, has no effect * on the amplitude, and a depth of 1 makes the amplitude * modulate fully between 0 and 1. * @type {NormalRange} * @signal */ this.depth = this._lfo.amplitude; this._readOnly([ 'frequency', 'depth' ]); this.connectEffect(this._amplitude); this._lfo.connect(this._amplitude.gain); this.type = options.type; }; Tone.extend(Tone.Tremolo, Tone.Effect); /** * @static * @const * @type {Object} */ Tone.Tremolo.defaults = { 'frequency': 10, 'type': 'sine', 'depth': 0.5 }; /** * Start the tremolo. * @param {Time} [time=now] When the tremolo begins. * @returns {Tone.Tremolo} this */ Tone.Tremolo.prototype.start = function (time) { this._lfo.start(time); return this; }; /** * Stop the tremolo. * @param {Time} [time=now] When the tremolo stops. * @returns {Tone.Tremolo} this */ Tone.Tremolo.prototype.stop = function (time) { this._lfo.stop(time); return this; }; /** * Sync the effect to the transport. * @param {Time} [delay=0] Delay time before starting the effect after the * Transport has started. * @returns {Tone.AutoFilter} this */ Tone.Tremolo.prototype.sync = function (delay) { this._lfo.sync(delay); return this; }; /** * Unsync the filter from the transport * @returns {Tone.Tremolo} this */ Tone.Tremolo.prototype.unsync = function () { this._lfo.unsync(); return this; }; /** * Type of oscillator attached to the Tremolo. * @memberOf Tone.Tremolo# * @type {string} * @name type */ Object.defineProperty(Tone.Tremolo.prototype, 'type', { get: function () { return this._lfo.type; }, set: function (type) { this._lfo.type = type; } }); /** * clean up * @returns {Tone.Tremolo} this */ Tone.Tremolo.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._writable([ 'frequency', 'depth' ]); this._lfo.dispose(); this._lfo = null; this._amplitude.disconnect(); this._amplitude = null; this.frequency = null; this.depth = null; return this; }; return Tone.Tremolo; }); Module(function (Tone) { /** * @class A Vibrato effect composed of a Tone.Delay and a Tone.LFO. The LFO * modulates the delayTime of the delay, causing the pitch to rise * and fall. * @extends {Tone.Effect} * @param {Frequency} frequency The frequency of the vibrato. * @param {NormalRange} depth The amount the pitch is modulated. */ Tone.Vibrato = function () { var options = this.optionsObject(arguments, [ 'frequency', 'depth' ], Tone.Vibrato.defaults); Tone.Effect.call(this, options); /** * The delay node used for the vibrato effect * @type {Tone.Delay} * @private */ this._delayNode = new Tone.Delay(options.maxDelay); /** * The LFO used to control the vibrato * @type {Tone.LFO} * @private */ this._lfo = new Tone.LFO({ 'type': options.type, 'min': 0, 'max': options.maxDelay, 'frequency': options.frequency, 'phase': -90 //offse the phase so the resting position is in the center }).start().connect(this._delayNode.delayTime); /** * The frequency of the vibrato * @type {Frequency} * @signal */ this.frequency = this._lfo.frequency; /** * The depth of the vibrato. * @type {NormalRange} * @signal */ this.depth = this._lfo.amplitude; this.depth.value = options.depth; this._readOnly([ 'frequency', 'depth' ]); this.effectSend.chain(this._delayNode, this.effectReturn); }; Tone.extend(Tone.Vibrato, Tone.Effect); /** * The defaults * @type {Object} * @const */ Tone.Vibrato.defaults = { 'maxDelay': 0.005, 'frequency': 5, 'depth': 0.1, 'type': 'sine' }; /** * Type of oscillator attached to the Vibrato. * @memberOf Tone.Vibrato# * @type {string} * @name type */ Object.defineProperty(Tone.Vibrato.prototype, 'type', { get: function () { return this._lfo.type; }, set: function (type) { this._lfo.type = type; } }); /** * Clean up. * @returns {Tone.Vibrato} this */ Tone.Vibrato.prototype.dispose = function () { Tone.Effect.prototype.dispose.call(this); this._delayNode.dispose(); this._delayNode = null; this._lfo.dispose(); this._lfo = null; this._writable([ 'frequency', 'depth' ]); this.frequency = null; this.depth = null; }; return Tone.Vibrato; }); Module(function (Tone) { /** * @class Clip the incoming signal so that the output is always between min and max. * * @constructor * @extends {Tone.SignalBase} * @param {number} min the minimum value of the outgoing signal * @param {number} max the maximum value of the outgoing signal * @example * var clip = new Tone.Clip(0.5, 1); * var osc = new Tone.Oscillator().connect(clip); * //clips the output of the oscillator to between 0.5 and 1. */ Tone.Clip = function (min, max) { //make sure the args are in the right order if (min > max) { var tmp = min; min = max; max = tmp; } /** * The min clip value * @type {Number} * @signal */ this.min = this.input = new Tone.Min(max); this._readOnly('min'); /** * The max clip value * @type {Number} * @signal */ this.max = this.output = new Tone.Max(min); this._readOnly('max'); this.min.connect(this.max); }; Tone.extend(Tone.Clip, Tone.SignalBase); /** * clean up * @returns {Tone.Clip} this */ Tone.Clip.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable('min'); this.min.dispose(); this.min = null; this._writable('max'); this.max.dispose(); this.max = null; return this; }; return Tone.Clip; }); Module(function (Tone) { /** * @class Normalize takes an input min and max and maps it linearly to NormalRange [0,1] * * @extends {Tone.SignalBase} * @constructor * @param {number} inputMin the min input value * @param {number} inputMax the max input value * @example * var norm = new Tone.Normalize(2, 4); * var sig = new Tone.Signal(3).connect(norm); * //output of norm is 0.5. */ Tone.Normalize = function (inputMin, inputMax) { /** * the min input value * @type {number} * @private */ this._inputMin = this.defaultArg(inputMin, 0); /** * the max input value * @type {number} * @private */ this._inputMax = this.defaultArg(inputMax, 1); /** * subtract the min from the input * @type {Tone.Add} * @private */ this._sub = this.input = new Tone.Add(0); /** * divide by the difference between the input and output * @type {Tone.Multiply} * @private */ this._div = this.output = new Tone.Multiply(1); this._sub.connect(this._div); this._setRange(); }; Tone.extend(Tone.Normalize, Tone.SignalBase); /** * The minimum value the input signal will reach. * @memberOf Tone.Normalize# * @type {number} * @name min */ Object.defineProperty(Tone.Normalize.prototype, 'min', { get: function () { return this._inputMin; }, set: function (min) { this._inputMin = min; this._setRange(); } }); /** * The maximum value the input signal will reach. * @memberOf Tone.Normalize# * @type {number} * @name max */ Object.defineProperty(Tone.Normalize.prototype, 'max', { get: function () { return this._inputMax; }, set: function (max) { this._inputMax = max; this._setRange(); } }); /** * set the values * @private */ Tone.Normalize.prototype._setRange = function () { this._sub.value = -this._inputMin; this._div.value = 1 / (this._inputMax - this._inputMin); }; /** * clean up * @returns {Tone.Normalize} this */ Tone.Normalize.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._sub.dispose(); this._sub = null; this._div.dispose(); this._div = null; return this; }; return Tone.Normalize; }); Module(function (Tone) { /** * @class Route a single input to the specified output. * * @constructor * @extends {Tone.SignalBase} * @param {number} [outputCount=2] the number of inputs the switch accepts * @example * var route = new Tone.Route(4); * var signal = new Tone.Signal(3).connect(route); * route.select(0); * //signal is routed through output 0 * route.select(3); * //signal is now routed through output 3 */ Tone.Route = function (outputCount) { outputCount = this.defaultArg(outputCount, 2); Tone.call(this, 1, outputCount); /** * The control signal. * @type {Number} * @signal */ this.gate = new Tone.Signal(0); this._readOnly('gate'); //make all the inputs and connect them for (var i = 0; i < outputCount; i++) { var routeGate = new RouteGate(i); this.output[i] = routeGate; this.gate.connect(routeGate.selecter); this.input.connect(routeGate); } }; Tone.extend(Tone.Route, Tone.SignalBase); /** * Routes the signal to one of the outputs and close the others. * @param {number} [which=0] Open one of the gates (closes the other). * @param {Time} [time=now] The time when the switch will open. * @returns {Tone.Route} this */ Tone.Route.prototype.select = function (which, time) { //make sure it's an integer which = Math.floor(which); this.gate.setValueAtTime(which, this.toSeconds(time)); return this; }; /** * Clean up. * @returns {Tone.Route} this */ Tone.Route.prototype.dispose = function () { this._writable('gate'); this.gate.dispose(); this.gate = null; for (var i = 0; i < this.output.length; i++) { this.output[i].dispose(); this.output[i] = null; } Tone.prototype.dispose.call(this); return this; }; ////////////START HELPER//////////// /** * helper class for Tone.Route representing a single gate * @constructor * @extends {Tone} * @private */ var RouteGate = function (num) { /** * the selector * @type {Tone.Equal} */ this.selecter = new Tone.Equal(num); /** * the gate * @type {GainNode} */ this.gate = this.input = this.output = this.context.createGain(); //connect the selecter to the gate gain this.selecter.connect(this.gate.gain); }; Tone.extend(RouteGate); /** * clean up * @private */ RouteGate.prototype.dispose = function () { Tone.prototype.dispose.call(this); this.selecter.dispose(); this.selecter = null; this.gate.disconnect(); this.gate = null; }; ////////////END HELPER//////////// //return Tone.Route return Tone.Route; }); Module(function (Tone) { /** * @class When the gate is set to 0, the input signal does not pass through to the output. * If the gate is set to 1, the input signal passes through. * the gate is initially closed. * * @constructor * @extends {Tone.SignalBase} * @param {Boolean} [open=false] If the gate is initially open or closed. * @example * var sigSwitch = new Tone.Switch(); * var signal = new Tone.Signal(2).connect(sigSwitch); * //initially no output from sigSwitch * sigSwitch.gate.value = 1; * //open the switch and allow the signal through * //the output of sigSwitch is now 2. */ Tone.Switch = function (open) { open = this.defaultArg(open, false); Tone.call(this); /** * The control signal for the switch. * When this value is 0, the input signal will NOT pass through, * when it is high (1), the input signal will pass through. * * @type {Number} * @signal */ this.gate = new Tone.Signal(0); this._readOnly('gate'); /** * thresh the control signal to either 0 or 1 * @type {Tone.GreaterThan} * @private */ this._thresh = new Tone.GreaterThan(0.5); this.input.connect(this.output); this.gate.chain(this._thresh, this.output.gain); //initially open if (open) { this.open(); } }; Tone.extend(Tone.Switch, Tone.SignalBase); /** * Open the switch at a specific time. * * @param {Time} [time=now] The time when the switch will be open. * @returns {Tone.Switch} this * @example * //open the switch to let the signal through * sigSwitch.open(); */ Tone.Switch.prototype.open = function (time) { this.gate.setValueAtTime(1, this.toSeconds(time)); return this; }; /** * Close the switch at a specific time. * * @param {Time} [time=now] The time when the switch will be closed. * @returns {Tone.Switch} this * @example * //close the switch a half second from now * sigSwitch.close("+0.5"); */ Tone.Switch.prototype.close = function (time) { this.gate.setValueAtTime(0, this.toSeconds(time)); return this; }; /** * Clean up. * @returns {Tone.Switch} this */ Tone.Switch.prototype.dispose = function () { Tone.prototype.dispose.call(this); this._writable('gate'); this.gate.dispose(); this.gate = null; this._thresh.dispose(); this._thresh = null; return this; }; return Tone.Switch; }); Module(function (Tone) { //polyfill for getUserMedia navigator.getUserMedia = navigator.getUserMedia || navigator.webkitGetUserMedia || navigator.mozGetUserMedia || navigator.msGetUserMedia; /** * @class Tone.ExternalInput is a WebRTC Audio Input. Check * [Media Stream API Support](https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_API) * to see which browsers are supported. As of * writing this, Chrome, Firefox, and Opera * support Media Stream. Chrome allows enumeration * of the sources, and access to device name over a * secure (HTTPS) connection. See [https://simpl.info](https://simpl.info/getusermedia/sources/index.html) * vs [http://simple.info](https://simpl.info/getusermedia/sources/index.html) * on a Chrome browser for the difference. * * @constructor * @extends {Tone.Source} * @param {number} [inputNum=0] If multiple inputs are present, select the input number. Chrome only. * @example * var motu = new Tone.ExternalInput(3); * * motu.open(function(){ * motu.start(10); * }); */ Tone.ExternalInput = function () { var options = this.optionsObject(arguments, ['inputNum'], Tone.ExternalInput.defaults); Tone.Source.call(this, options); /** * The MediaStreamNode * @type {MediaStreamAudioSourceNode} * @private */ this._mediaStream = null; /** * The media stream created by getUserMedia. * @type {LocalMediaStream} * @private */ this._stream = null; /** * The constraints argument for getUserMedia * @type {Object} * @private */ this._constraints = { 'audio': true }; /** * The input source position in Tone.ExternalInput.sources. * Set before ExternalInput.open(). * @type {Number} * @private */ this._inputNum = options.inputNum; /** * Gates the input signal for start/stop. * Initially closed. * @type {GainNode} * @private */ this._gate = new Tone.Gain(0).connect(this.output); }; Tone.extend(Tone.ExternalInput, Tone.Source); /** * the default parameters * @type {Object} */ Tone.ExternalInput.defaults = { 'inputNum': 0 }; /** * wrapper for getUserMedia function * @param {function} callback * @private */ Tone.ExternalInput.prototype._getUserMedia = function (callback) { if (!Tone.ExternalInput.supported) { throw new Error('browser does not support \'getUserMedia\''); } if (Tone.ExternalInput.sources[this._inputNum]) { this._constraints = { audio: { optional: [{ sourceId: Tone.ExternalInput.sources[this._inputNum].id }] } }; } navigator.getUserMedia(this._constraints, function (stream) { this._onStream(stream); callback(); }.bind(this), function (err) { callback(err); }); }; /** * called when the stream is successfully setup * @param {LocalMediaStream} stream * @private */ Tone.ExternalInput.prototype._onStream = function (stream) { if (!this.isFunction(this.context.createMediaStreamSource)) { throw new Error('browser does not support the \'MediaStreamSourceNode\''); } //can only start a new source if the previous one is closed if (!this._stream) { this._stream = stream; //Wrap a MediaStreamSourceNode around the live input stream. this._mediaStream = this.context.createMediaStreamSource(stream); //Connect the MediaStreamSourceNode to a gate gain node this._mediaStream.connect(this._gate); } }; /** * Open the media stream * @param {function=} callback The callback function to * execute when the stream is open * @return {Tone.ExternalInput} this */ Tone.ExternalInput.prototype.open = function (callback) { callback = this.defaultArg(callback, Tone.noOp); Tone.ExternalInput.getSources(function () { this._getUserMedia(callback); }.bind(this)); return this; }; /** * Close the media stream * @return {Tone.ExternalInput} this */ Tone.ExternalInput.prototype.close = function () { if (this._stream) { var track = this._stream.getTracks()[this._inputNum]; if (!this.isUndef(track)) { track.stop(); } this._stream = null; } return this; }; /** * Start the stream * @private */ Tone.ExternalInput.prototype._start = function (time) { time = this.toSeconds(time); this._gate.gain.setValueAtTime(1, time); return this; }; /** * Stops the stream. * @private */ Tone.ExternalInput.prototype._stop = function (time) { time = this.toSeconds(time); this._gate.gain.setValueAtTime(0, time); return this; }; /** * Clean up. * @return {Tone.ExternalInput} this */ Tone.ExternalInput.prototype.dispose = function () { Tone.Source.prototype.dispose.call(this); this.close(); if (this._mediaStream) { this._mediaStream.disconnect(); this._mediaStream = null; } this._constraints = null; this._gate.dispose(); this._gate = null; return this; }; /////////////////////////////////////////////////////////////////////////// // STATIC METHODS /////////////////////////////////////////////////////////////////////////// /** * The array of available sources, different depending on whether connection is secure * @type {Array} * @static */ Tone.ExternalInput.sources = []; /** * indicates whether browser supports MediaStreamTrack.getSources (i.e. Chrome vs Firefox) * @type {Boolean} * @private */ Tone.ExternalInput._canGetSources = !Tone.prototype.isUndef(window.MediaStreamTrack) && Tone.prototype.isFunction(MediaStreamTrack.getSources); /** * If getUserMedia is supported by the browser. * @type {Boolean} * @memberOf Tone.ExternalInput# * @name supported * @static * @readOnly */ Object.defineProperty(Tone.ExternalInput, 'supported', { get: function () { return Tone.prototype.isFunction(navigator.getUserMedia); } }); /** * Populates the source list. Invokes the callback with an array of * possible audio sources. * @param {function=} callback Callback to be executed after populating list * @return {Tone.ExternalInput} this * @static * @example * var soundflower = new Tone.ExternalInput(); * Tone.ExternalInput.getSources(selectSoundflower); * * function selectSoundflower(sources){ * for(var i = 0; i < sources.length; i++){ * if(sources[i].label === "soundflower"){ * soundflower.inputNum = i; * soundflower.open(function(){ * soundflower.start(); * }); * break; * } * } * }; */ Tone.ExternalInput.getSources = function (callback) { if (Tone.ExternalInput.sources.length === 0 && Tone.ExternalInput._canGetSources) { MediaStreamTrack.getSources(function (media_sources) { for (var i = 0; i < media_sources.length; i++) { if (media_sources[i].kind === 'audio') { Tone.ExternalInput.sources[i] = media_sources[i]; } } callback(Tone.ExternalInput.sources); }); } else { callback(Tone.ExternalInput.sources); } return this; }; return Tone.ExternalInput; }); Module(function (Tone) { /** * @class Opens up the default source (typically the microphone). * * @constructor * @extends {Tone.ExternalInput} * @example * //mic will feedback if played through master * var mic = new Tone.Microphone(); * mic.open(function(){ * //start the mic at ten seconds * mic.start(10); * }); * //stop the mic * mic.stop(20); */ Tone.Microphone = function () { Tone.ExternalInput.call(this, 0); }; Tone.extend(Tone.Microphone, Tone.ExternalInput); /** * If getUserMedia is supported by the browser. * @type {Boolean} * @memberOf Tone.Microphone# * @name supported * @static * @readOnly */ Object.defineProperty(Tone.Microphone, 'supported', { get: function () { return Tone.ExternalInput.supported; } }); return Tone.Microphone; }); Module(function (Tone) { /** * @class Tone.Note provides a callback for a single, repeatable * event along the timeline. * * @param {function} callback The callback to invoke at the time. * @param {*} value The value or values which should be passed to * the callback function on invocation. * @example * var chord = new Tone.Note(function(time, chord){ * //the chord as well as the exact time of the event * //are passed in as arguments to the callback function * }, "Dm"); * //start the chord at the beginning of the transport timeline * chord.start(); * //loop it every measure for 8 measures * chord.loop = 8; * chord.loopEnd = "1m"; */ Tone.Note = function () { var options = this.optionsObject(arguments, [ 'callback', 'value' ], Tone.Note.defaults, true); /** * Loop value * @type {Boolean|Positive} * @private */ this._loop = options.loop; /** * The callback to invoke. * @type {Function} */ this.callback = options.callback; /** * The value which is passed to the * callback function. * @type {*} * @private */ this.value = options.value; /** * When the note is scheduled to start. * @type {Number} * @private */ this._loopStart = 0; /** * When the note is scheduled to start. * @type {Number} * @private */ this._loopEnd = 0; /** * Tracks the scheduled events * @type {Tone.TimelineState} * @private */ this._events = new Tone.TimelineState(Tone.State.Stopped); /** * The playback speed of the note. A speed of 1 * is no change. * @private * @type {Positive} */ this._playbackRate = 1; /** * The probability that the callback will be invoked * at the scheduled time. * @type {NormalRange} */ this.probability = options.probability; /** * Random variation +/-0.01s to the scheduled time. * Or give it a time value which it will randomize by. * @type {Boolean|Time} */ this.humanize = options.humanize; /** * If the part is inactive and does * not invoke the callback function. * @type {Boolean} */ this.mute = options.mute; //set the initial values this.loopStart = options.loopStart; this.loopEnd = options.loopEnd; this.playbackRate = options.playbackRate; //if an object was used in the constructor, the value is all the extra parameters if (arguments.length === 1 && typeof arguments[0] === 'object' && this.isUndef(this.value)) { var valueObj = {}; for (var param in arguments[0]) { if (!Tone.Note.defaults.hasOwnProperty(param)) { valueObj[param] = arguments[0][param]; } } this.value = valueObj; } }; Tone.extend(Tone.Note); /** * The default values * @type {Object} * @const */ Tone.Note.defaults = { 'callback': Tone.noOp, 'loop': false, 'loopEnd': '1m', 'loopStart': 0, 'playbackRate': 1, 'probability': 1, 'mute': false, 'humanize': false }; /** * Reschedule all of the events along the timeline * with the updated values. * @param {Time} after Only reschedules events after the given time. * @return {Tone.Note} this * @private */ Tone.Note.prototype._rescheduleEvents = function (after) { //if no argument is given, schedules all of the events after = this.defaultArg(after, -1); this._events.forEachFrom(after, function (event) { var duration; if (event.state === Tone.State.Started) { if (!this.isUndef(event.id)) { Tone.Transport.clear(event.id); } if (this._loop) { duration = Infinity; if (this.isNumber(this._loop)) { duration = (this._loop - 1) * this._getLoopDuration(); } var nextEvent = this._events.getEventAfter(event.time); if (nextEvent !== null) { duration = Math.min(duration, nextEvent.time - event.time); } //make it ticks if (duration !== Infinity) { duration += 'i'; } event.id = Tone.Transport.scheduleRepeat(this._tick.bind(this), this._getLoopDuration().toString() + 'i', event.time + 'i', duration); } else { event.id = Tone.Transport.schedule(this._tick.bind(this), event.time + 'i'); } } }.bind(this)); return this; }; /** * Returns the playback state of the note, either "started" or "stopped". * @type {String} * @readOnly * @memberOf Tone.Note# * @name state */ Object.defineProperty(Tone.Note.prototype, 'state', { get: function () { return this._events.getStateAtTime(Tone.Transport.ticks); } }); /** * Start the note at the given time. * @param {Time} time When the note should start. * @return {Tone.Note} this */ Tone.Note.prototype.start = function (time) { time = this.toTicks(time); if (this._events.getStateAtTime(time) === Tone.State.Stopped) { this._events.addEvent({ 'state': Tone.State.Started, 'time': time, 'id': undefined }); this._rescheduleEvents(time); } return this; }; /** * Stop the Note at the given time. * @param {Time} time When the note should stop. * @return {Tone.Note} this */ Tone.Note.prototype.stop = function (time) { time = this.toTicks(time); if (this._events.getStateAtTime(time) === Tone.State.Started) { this._events.setStateAtTime(Tone.State.Stopped, time); var previousEvent = this._events.getEventBefore(time); var reschedulTime = time; if (previousEvent !== null) { reschedulTime = previousEvent.time; } this._rescheduleEvents(reschedulTime); } return this; }; /** * Cancel all scheduled events greater than or equal to the given time * @param {Time} [time=0] The time after which events will be cancel. * @return {Tone.Note} this */ Tone.Note.prototype.cancel = function (time) { time = this.defaultArg(time, -Infinity); time = this.toTicks(time); this._events.forEachFrom(time, function (event) { Tone.Transport.clear(event.id); }); this._events.cancel(time); return this; }; /** * The callback function invoker. Also * checks if the Note is done playing * @param {Number} time The time of the event in seconds * @private */ Tone.Note.prototype._tick = function (time) { if (!this.mute && this._events.getStateAtTime(Tone.Transport.ticks) === Tone.State.Started) { if (this.probability < 1 && Math.random() > this.probability) { return; } if (this.humanize) { var variation = 0.01; if (!this.isBoolean(this.humanize)) { variation = this.toSeconds(this.humanize); } time += (Math.random() * 2 - 1) * variation; } this.callback(time, this.value); } }; /** * Get the duration of the loop. * @return {Ticks} * @private */ Tone.Note.prototype._getLoopDuration = function () { return Math.round((this._loopEnd - this._loopStart) / this._playbackRate); }; /** * If the note should loop or not * between Tone.Note.loopStart and * Tone.Note.loopEnd. An integer * value corresponds to the number of * loops the Note does after it starts. * @memberOf Tone.Note# * @type {Boolean|Positive} * @name loop */ Object.defineProperty(Tone.Note.prototype, 'loop', { get: function () { return this._loop; }, set: function (loop) { this._loop = loop; this._rescheduleEvents(); } }); /** * The playback rate of the note. Defaults to 1. * @memberOf Tone.Note# * @type {Positive} * @name playbackRate * @example * note.loop = true; * //repeat the note twice as fast * note.playbackRate = 2; */ Object.defineProperty(Tone.Note.prototype, 'playbackRate', { get: function () { return this._playbackRate; }, set: function (rate) { this._playbackRate = rate; if (this._loop) { this._rescheduleEvents(); } } }); /** * The loopEnd point determines when it will * loop if Tone.Note.loop is true. * @memberOf Tone.Note# * @type {Boolean|Positive} * @name loopEnd */ Object.defineProperty(Tone.Note.prototype, 'loopEnd', { get: function () { return this.toNotation(this._loopEnd + 'i'); }, set: function (loopEnd) { this._loopEnd = this.toTicks(loopEnd); if (this._loop) { this._rescheduleEvents(); } } }); /** * The loopStart point determines when it will * loop if Tone.Note.loop is true. * @memberOf Tone.Note# * @type {Boolean|Positive} * @name loopStart */ Object.defineProperty(Tone.Note.prototype, 'loopStart', { get: function () { return this.toNotation(this._loopStart + 'i'); }, set: function (loopStart) { this._loopStart = this.toTicks(loopStart); if (this._loop) { this._rescheduleEvents(); } } }); /** * The current progress of the loop interval. * Returns 0 if the atom is not started yet or the * atom is not set to loop. * @memberOf Tone.Note# * @type {NormalRange} * @name progress * @readOnly */ Object.defineProperty(Tone.Note.prototype, 'progress', { get: function () { if (this._loop) { var ticks = Tone.Transport.ticks; var lastEvent = this._events.getEvent(ticks); if (lastEvent !== null && lastEvent.state === Tone.State.Started) { var loopDuration = this._getLoopDuration(); if (this.isNumber(this._loop)) { var endTime = loopDuration * this._loop + lastEvent.time; if (ticks > endTime) { return 0; } } var progress = (ticks - lastEvent.time) % loopDuration; return progress / loopDuration; } else { return 0; } } else { return 0; } } }); /** * Clean up * @return {Tone.Note} this */ Tone.Note.prototype.dispose = function () { this.cancel(); this._events.dispose(); this._events = null; this.callback = null; this.value = null; }; return Tone.Note; }); Module(function (Tone) { /** * @class Tone.Part is a collection Tone.Notes which can be * started/stoped and looped as a single unit. * * @extends {Tone.Note} * @example * var part = new Tone.Part(function(time, note){ * synth.triggerAttackRelease(note, "8n", time); * }, [[0, "C2"], ["0:2", "C3"], ["0:3:2", "G2"]]).start(); * @example * //use JSON as long as the object has a "time" attribute * var part = new Tone.Part(function(time, value){ * synth.triggerAttackRelease(value.note, "8n", time, value.velocity); * }, [{"time" : 0, "note" : "C3", "velocity": 0.9}, * {"time" : "0:2", "note" : "C4", "velocity": 0.5} * ]).start(); */ Tone.Part = function () { var options = this.optionsObject(arguments, [ 'callback', 'notes' ], Tone.Part.defaults, true); /** * If the part is looping or not * @type {Boolean|Positive} * @private */ this._loop = options.loop; /** * When the note is scheduled to start. * @type {Number} * @private */ this._loopStart = 0; /** * When the note is scheduled to start. * @type {Number} * @private */ this._loopEnd = 0; /** * The playback rate of the part * @type {Positive} * @private */ this._playbackRate = 1; /** * Keeps track of the current state * @type {Tone.TimelineState} * @private */ this._events = new Tone.TimelineState(Tone.State.Stopped); /** * An array of Objects. Each one * contains a note object and the relative * start time of the note. * @type {Array} * @private */ this._notes = []; /** * The callback to invoke on every note * @type {Function} */ this.callback = options.callback; /** * If the part invokes the callback * @type {Boolean} */ this.mute = options.mute; //setup this.loopEnd = options.loopEnd; this.loopStart = options.loopStart; this.playbackRate = options.playbackRate; this.mute = options.mute; //add the notes var notes = this.defaultArg(options.notes, []); for (var i = 0; i < notes.length; i++) { if (Array.isArray(notes[i])) { this.add(notes[i][0], notes[i][1]); } else { this.add(notes[i]); } } }; Tone.extend(Tone.Part, Tone.Note); /** * The default values * @type {Object} * @const */ Tone.Part.defaults = { 'callback': Tone.noOp, 'loop': false, 'loopEnd': '1m', 'loopStart': 0, 'playbackRate': 1, 'mute': false }; /** * Start the part at the given time. Optionally * set an offset time. * @param {Time} time When to start the part. * @param {Time=} offset The offset from the start of the part * to begin playing at. * @return {Tone.Part} this */ Tone.Part.prototype.start = function (time, offset) { var ticks = this.toTicks(time); if (this._events.getStateAtTime(ticks) !== Tone.State.Started) { this._events.setStateAtTime(Tone.State.Started, ticks); offset = this.defaultArg(offset, 0); offset = this.toTicks(offset); this._forEach(function (event) { var startTick; if (this._loop) { if (event.time >= this._loopStart && event.time < this._loopEnd) { startTick = event.time - offset - this._loopStart; event.note.start(Math.round(startTick / this.playbackRate + ticks) + 'i'); } } else { startTick = event.time - offset; event.note.start(Math.round(startTick / this.playbackRate + ticks) + 'i'); } }.bind(this)); } return this; }; /** * Stop the part at the given time. * @param {Time} time When to stop the part. * @return {Tone.Part} this */ Tone.Part.prototype.stop = function (time) { var ticks = this.toTicks(time); if (this._events.getStateAtTime(ticks) === Tone.State.Started) { this._events.setStateAtTime(Tone.State.Stopped, ticks); this._forEach(function (event) { event.note.stop(time); }); } return this; }; /** * Get/Set a note by time. If there is no item * at the given time, it will create one * @return {*} the value at the given time */ Tone.Part.prototype.at = function (time, value) { time = this.toTicks(time); for (var i = 0; i < this._notes.length; i++) { var note = this._notes[i]; if (Math.abs(time - note.time) < 0.001) { if (this.isUndef(value)) { if (this.isUndef(note.note.value)) { return note.note; } else { return note.note.value; } } else { note.note.value = value; return value; } } } if (!this.isUndef(value)) { this._notes.push({ 'time': time, 'note': new Tone.Note(this._tick.bind(this), value) }); } else { return null; } }; /** * Add a note or part to the part. * @param {Time} time The time the note should start. * If an object is passed in, it should * have a 'time' attribute and the rest * of the object will be used as the 'value'. * @param {Tone.Note|*} value * @example * part.add("1m", "C#+11"); */ Tone.Part.prototype.add = function (time, value) { //extract the parameters if (typeof time === 'object' && time.hasOwnProperty('time')) { value = time; time = value.time; } time = this.toTicks(time); var note; if (value instanceof Tone.Note || value instanceof Tone.Part) { note = value; note.callback = this._tick.bind(this); } else { note = new Tone.Note(this._tick.bind(this), value); } //initialize the stuff note.playbackRate *= this._playbackRate; note.loopStart = 0; note.loopEnd = this.loopEnd; note.loop = this.loop; //and probability and humanize //add it to the notes this._notes.push({ 'time': time, 'note': note }); return this; }; /** * Remove a note from the part. */ Tone.Part.prototype.remove = function (time, value) { //extract the parameters if (typeof time === 'object' && time.hasOwnProperty('time')) { value = time; time = value.time; } this._forEach(function (event, index) { if (event.time === time) { if (this.isUndef(value) || !this.isUndef && event.note.value === value) { this._notes.splice(index, 1); event.note.dispose(); } } }); return this; }; /** * Remove all of the notes from the group. * @return {Tone.Part} this */ Tone.Part.prototype.removeAll = function () { this._forEach(function (event) { event.note.dispose(); }); this._notes = []; return this; }; /** * Cancel scheduled state change events: i.e. "start" and "stop". * @param {Time} after The time after which to cancel the scheduled events. * @return {Tone.Part} this */ Tone.Part.prototype.cancel = function (after) { this._forEach(function (event) { event.note.cancel(after); }); this._events.cancel(after); return this; }; /** * Iterate over all of the notes * @param {Function} callback * @private */ Tone.Part.prototype._forEach = function (callback) { for (var i = this._notes.length - 1; i >= 0; i--) { callback(this._notes[i], i); } return this; }; /** * Internal tick method * @param {Number} time The time of the event in seconds * @private */ Tone.Part.prototype._tick = function (time, value) { if (!this.mute && this._events.getStateAtTime(Tone.Transport.ticks) === Tone.State.Started) { this.callback(time, value); } }; /** * The probability of the notes being triggered. * @memberOf Tone.Part# * @type {NormalRange} * @name probability */ Object.defineProperty(Tone.Part.prototype, 'probability', { get: function () { return this._probability; }, set: function (prob) { this._probability = prob; this._forEach(function (note) { note.probability = prob; }); } }); /** * If the note should loop or not * between Tone.Part.loopStart and * Tone.Part.loopEnd. An integer * value corresponds to the number of * loops the Part does after it starts. * @memberOf Tone.Part# * @type {Boolean|Positive} * @name loop */ Object.defineProperty(Tone.Part.prototype, 'loop', { get: function () { return this._loop; }, set: function (loop) { this._loop = loop; this._forEach(function (event) { event.note.loop = loop; }); this.loopEnd = this._loopEnd + 'i'; this.loopStart = this._loopStart + 'i'; } }); /** * The loopEnd point determines when it will * loop if Tone.Part.loop is true. * @memberOf Tone.Part# * @type {Boolean|Positive} * @name loopEnd */ Object.defineProperty(Tone.Part.prototype, 'loopEnd', { get: function () { return this.toNotation(this._loopEnd + 'i'); }, set: function (loopEnd) { this._loopEnd = this.toTicks(loopEnd); if (this._loop) { this._forEach(function (event) { event.note.loopEnd = this._loopEnd - this._loopStart + 'i'; if (event.note.time > this._loopEnd) { event.note.cancel(); } }.bind(this)); } } }); /** * The loopStart point determines when it will * loop if Tone.Part.loop is true. * @memberOf Tone.Part# * @type {Boolean|Positive} * @name loopStart */ Object.defineProperty(Tone.Part.prototype, 'loopStart', { get: function () { return this.toNotation(this._loopStart + 'i'); }, set: function (loopStart) { this._loopStart = this.toTicks(loopStart); if (this._loop) { this._forEach(function (event) { event.note.loopEnd = this._loopEnd - this._loopStart + 'i'; if (event.note.time <= this._loopStart) { event.note.cancel(); } }.bind(this)); } } }); /** * The playback rate of the part * @memberOf Tone.Part# * @type {Positive} * @name playbackRate */ Object.defineProperty(Tone.Part.prototype, 'playbackRate', { get: function () { return this._playbackRate; }, set: function (rate) { this._forEach(function (event) { var ratio = event.note.playbackRate / this._playbackRate; event.note.playbackRate = rate * ratio; }.bind(this)); this._playbackRate = rate; } }); /** * The number of scheduled notes in the part. * @memberOf Tone.Part# * @type {Positive} * @name length * @readOnly */ Object.defineProperty(Tone.Part.prototype, 'length', { get: function () { return this._notes.length; } }); /** * Clean up * @return {Tone.Part} this */ Tone.Part.prototype.dispose = function () { this.callback = null; this.removeAll(); this._notes = null; return this; }; return Tone.Part; }); Module(function (Tone) { /** * @class Tone.Pattern arpeggiates between the given notes * in a number of patterns. * @extends {Tone} * @param {Function} callback The callback to invoke with the * event. * @param {Array} notes The notes to arpeggiate over. */ Tone.Pattern = function (callback, notes) { /** * Called back with the current event * @private * @type {Function} */ this._callback = callback; /** * The notes to arpeggiate * @type {Array} */ this.notes = notes; /** * The event index * @type {Array} * @private */ this._eventIndex = -1; /** * The note which schedules the notes * @type {Tone.Note} * @private */ this._note = new Tone.Note(this._tick.bind(this)); this._note.loop = true; this._note.loopEnd = '4n'; /** * The stepping direction of the notes * @type {Number} * @private */ this._arpDirection = 1; }; Tone.extend(Tone.Pattern); /** * Start the arpeggio at the given time. * @param {Time=} time When to start the Arpeggio * @return {Tone.Pattern} this */ Tone.Pattern.prototype.start = function (time) { this._note.start(time); return this; }; /** * Stop the arpeggio at the given time. * @param {Time=} time When to stop the Arpeggio * @return {Tone.Pattern} this */ Tone.Pattern.prototype.stop = function (time) { this._note.stop(time); return this; }; /** * Internal function called when the notes should be called * @param {Number} time The time the event occurs * @private */ Tone.Pattern.prototype._tick = function (time) { if (this._pattern === Tone.Pattern.Type.Random) { this._eventIndex = Math.floor(Math.random() * this.notes.length); } else { this._eventIndex += this._arpDirection; if (this._pattern === Tone.Pattern.Type.Alternate) { if (this._eventIndex === 0) { this._arpDirection = 1; } else if (this._eventIndex === this.notes.length - 1) { this._arpDirection = -1; } } else if (this._eventIndex < 0) { this._eventIndex = this.notes.length - 1; } else if (this._eventIndex >= this.notes.length) { this._eventIndex = 0; } } this._callback(time, this.notes[this._eventIndex]); }; /** * The interval of the notes * @memberOf Tone.Pattern# * @type {Time} * @name interval */ Object.defineProperty(Tone.Pattern.prototype, 'interval', { get: function () { return this._note.loopEnd; }, set: function (interval) { this._note.loopEnd = interval; } }); /** * @memberOf Tone.Pattern# * @type {Time} * @name pattern */ Object.defineProperty(Tone.Pattern.prototype, 'pattern', { get: function () { return this._pattern; }, set: function (pattern) { switch (pattern) { case Tone.Pattern.Type.Forward: this._arpDirection = 1; break; case Tone.Pattern.Type.Reverse: this._arpDirection = -1; break; } var hasType = false; for (var pattr in Tone.Pattern.Type) { if (pattern === Tone.Pattern.Type[pattr]) { hasType = true; break; } } if (!hasType) { throw new Error('Invalid pattern: ' + pattern); } this._pattern = pattern; } }); /** * The arpeggiation patterns * @type {Object} * @enum {String} */ Tone.Pattern.Type = { Forward: 'forward', Reverse: 'reverse', Alternate: 'alternate', Drunk: 'drunk', Converge: 'converge', Diverge: 'diverge', RandomOnce: 'randomOnce', Random: 'random' }; return Tone.Pattern; }); Module(function (Tone) { /** * @class Tone.Score allows you to start and stop multiple sections * with precise timing and synchronization. * * @example * var score = new Tone.Score({ * "keyboard" : [0, "0:1", "0:3"] * }).on("keyboard", function(time){ * //play the keyboard note * }); * * score.solo("keyboard"); * * score.unsolo(); */ Tone.Score = function (score) { Tone.EventEmitter.call(this); /** * All of the parts by name. * @type {Object} */ this.parts = {}; this._readOnly(['parts']); }; Tone.extend(Tone.Score, Tone.EventEmitter); /** * Mute all other parts except the given * one. * @param {String|Array} section The section name * @return {Tone.Score} this */ Tone.Score.prototype.solo = function (part) { this.mute = true; if (Array.isArray(part)) { part.forEach(function (p) { if (this.parts.hasOwnProperty(p)) { this.parts[p].mute = false; } }.bind(this)); } else if (this.parts.hasOwnProperty(part)) { this.parts[part].mute = false; } }; /** * Unsolo the given part(s). If no arguments are passed * in, will unsolo everything. * @param {String|Array} section The section name * @return {Tone.Score} this */ Tone.Score.prototype.unsolo = function () { }; /** * Mute all of the parts in the score. */ Object.defineProperty(Tone.Score.prototype, 'mute', { get: function () { }, set: function (mute) { this._forEach(function (part) { part.mute = mute; }); } }); return Tone.Score; }); Module(function (Tone) { /** * @class A sequence is an alternate notation of a part. Instead * of passing in an array of [time, event] pairs, pass * in an array of events which will be parsed * as quarter note events. Subdivisions are given * as sub arrays. Sequence notation inspiration from [Tidal](http://yaxu.org/tidal/) * @param {Function} callback The callback to invoke with every note * @param {Array} sequence The sequence * @extends {Tone.Part} * @example * //straight quater notes * var seq = new Tone.Sequence(function(time, note){ * console.log(note); * }, ["C4", "E4", "G4", "A4"]); * @example * //subdivisions are given as subarrays * var seq = new Tone.Sequence(function(time, note){ * console.log(note); * }, ["C4", "E4", "G4", ["A4", "G4"]]); * @example * //A sequence with objects which are converted into Atoms * var seq = new Tone.Sequence(function(time, val){ * * }, [{"note" : "C4", "probability" : 1}, * {"note" : "E4", "probability" : 0.8}, * {"note" : "G4", "probability" : 0.6}, * [{"note" : "A4", "probability" : 0.8}, * {"note" : "G4", "probability" : 0.1} * ] * ]); */ Tone.Sequence = function (callback, sequence, subdivision) { var options = this.optionsObject(arguments, [ 'callback', 'sequence', 'subdivision' ], Tone.Sequence.defaults); Tone.Part.call(this, callback); /** * The subdivison of each note * @type {String} */ this._subdivision = this.toTicks(subdivision); if (Array.isArray(sequence)) { for (var i = 0; i < sequence.length; i++) { var subdivider = this._subdivision; if (Array.isArray(sequence[i])) { subdivider = sequence[i].length; } var subSeq = new Tone.Sequence(this._tick.bind(this), sequence[i], Math.floor(this._subdivision / subdivider) + 'i'); this.add(this._subdivision * i + 'i', subSeq); } } else if (sequence) { this.add(0, sequence); } }; Tone.extend(Tone.Sequence, Tone.Part); /** * The default values. * @type {Object} */ Tone.Sequence.defaults = { 'subdivision': '4n' }; /** * Parse an array into [time, value] pairs * @param {Array} seq The sequence to parse * @param {Ticks} subdiv The current subdivision at that tick level * @param {Ticks} offset The offset from the * @private */ Tone.Sequence.prototype._parseSequence = function (seq, subdiv, offset) { if (Array.isArray(seq)) { for (var i = 0; i < seq.length; i++) { var subSeq = new Tone.Sequence(this._tick.bind(this), seq[i], subdiv / 2 + 'i'); this.add(this._subdivision + ' * ' + i, subSeq); } } else if (seq) { this.add(subdiv * offset + 'i', seq); } }; /** * Get/Set an index of the sequence * @example * var sequence = new Tone.Sequence(playNote, ["E4", "C4", "F#4", "A4"]) * sequence.at(0)// => returns "E4" * //set a value * sequence.at(0, "G3"); */ Tone.Sequence.prototype.at = function (index, value) { //call the parent's method return Tone.Part.prototype.at.call(this, '4n * ' + index, value); }; /** * Clean up. * @return {Tone.Sequence} this */ Tone.Sequence.prototype.dispose = function () { Tone.Part.prototype.dispose.call(this); this._sequence = null; return this; }; return Tone.Sequence; }); //UMD if ( typeof define === "function" && define.amd ) { define( "Tone", [], function() { return Tone; }); } else if (typeof module === "object") { module.exports = Tone; } else { root.Tone = Tone; } /////////////////////////////////////////////////////////////////////////// // P5 SHIM /////////////////////////////////////////////////////////////////////////// Tone.registeredPreload = function(callback){ return function(){ callback(); } }; //overwrite load function Tone.Buffer.load = function (url, callback) { var handle = Tone.registeredPreload(); var request = new XMLHttpRequest(); request.open("GET", url, true); request.responseType = "arraybuffer"; // decode asynchronously request.onload = function () { Tone.context.decodeAudioData(request.response, function (buff) { if (!buff) { throw new Error("could not decode audio data:" + url); } callback(buff); handle(); }); }; //send the request request.send(); return request; }; p5.prototype.registerPreloadMethod("registeredPreload", Tone); } (this));