import { ToneAudioBuffer } from "../core/context/ToneAudioBuffer"; import { Positive, Time } from "../core/type/Units"; import { optionsFromArguments } from "../core/util/Defaults"; import { Source, SourceOptions } from "../source/Source"; import { ToneBufferSource } from "./buffer/BufferSource"; type NoiseType = "white" | "brown" | "pink"; interface NoiseOptions extends SourceOptions { type: NoiseType; playbackRate: Positive; fadeIn: Time; fadeOut: Time; } /** * Noise is a noise generator. It uses looped noise buffers to save on performance. * Noise supports the noise types: "pink", "white", and "brown". Read more about * colors of noise on [Wikipedia](https://en.wikipedia.org/wiki/Colors_of_noise). * * @example * //initialize the noise and start * var noise = new Noise("pink").start(); * * //make an autofilter to shape the noise * var autoFilter = new Tone.AutoFilter({ * "frequency" : "8m", * "min" : 800, * "max" : 15000 * }).connect(Tone.Master); * * //connect the noise * noise.connect(autoFilter); * //start the autofilter LFO * autoFilter.start() */ export class Noise extends Source { readonly name = "Noise"; /** * Private reference to the source */ private _source: ToneBufferSource | null = null; /** * private reference to the type */ private _type!: NoiseType; /** * The playback rate of the noise. Affects * the "frequency" of the noise. */ private _playbackRate: Positive; /** * The fadeIn time of the amplitude envelope. */ protected _fadeIn: Time; /** * The fadeOut time of the amplitude envelope. */ protected _fadeOut: Time; /** * @param type the noise type (white|pink|brown) */ constructor(type?: NoiseType); // tslint:disable-next-line: unified-signatures constructor(options?: Partial); constructor() { super(optionsFromArguments(Noise.getDefaults(), arguments, ["type"])); const options = optionsFromArguments(Noise.getDefaults(), arguments, ["type"]); this._playbackRate = options.playbackRate; this.type = options.type; this._fadeIn = options.fadeIn; this._fadeOut = options.fadeOut; } static getDefaults(): NoiseOptions { return Object.assign(Source.getDefaults(), { fadeIn: 0, fadeOut: 0, playbackRate: 1, type: "white" as NoiseType, }); } /** * The type of the noise. Can be "white", "brown", or "pink". * @example * noise.type = "white"; */ get type(): NoiseType { return this._type; } set type(type: NoiseType) { this.assert(type in _noiseBuffers, "Noise: invalid type: " + type); if (this._type !== type) { this._type = type; // if it's playing, stop and restart it if (this.state === "started") { const now = this.now(); this._stop(now); this._start(now); } } } /** * The playback rate of the noise. Affects * the "frequency" of the noise. */ get playbackRate(): Positive { return this._playbackRate; } set playbackRate(rate: Positive) { this._playbackRate = rate; if (this._source) { this._source.playbackRate.value = rate; } } /** * internal start method */ protected _start(time?: Time): void { const buffer = _noiseBuffers[this._type]; this._source = new ToneBufferSource({ buffer, context: this.context, fadeIn: this._fadeIn, fadeOut: this._fadeOut, loop: true, onended: () => this.onstop(this), playbackRate: this._playbackRate, }).connect(this.output); this._source.start(this.toSeconds(time), Math.random() * (buffer.duration - 0.001)); } /** * internal stop method * * @param {Time} time * @private */ protected _stop(time?: Time): void { if (this._source) { this._source.stop(this.toSeconds(time)); this._source = null; } } /** * The fadeIn time of the amplitude envelope. */ get fadeIn(): Time { return this._fadeIn; } set fadeIn(time) { this._fadeIn = time; if (this._source) { this._source.fadeIn = this._fadeIn; } } /** * The fadeOut time of the amplitude envelope. */ get fadeOut(): Time { return this._fadeOut; } set fadeOut(time) { this._fadeOut = time; if (this._source) { this._source.fadeOut = this._fadeOut; } } /** * Restarts the noise. * @param time When to restart the noise. */ restart(time?: Time): this { // TODO could be optimized by cancelling the buffer source 'stop' // stop and restart this._stop(time); this._start(time); return this; } /** * Clean up. */ dispose(): this { super.dispose(); if (this._source) { this._source.disconnect(); } return this; } } /////////////////////////////////////////////////////////////////////////// // THE NOISE BUFFERS /////////////////////////////////////////////////////////////////////////// // Noise buffer stats const BUFFER_LENGTH = 44100 * 5; const NUM_CHANNELS = 2; /** * The cached noise buffers */ interface NoiseCache { [key: string]: ToneAudioBuffer | null; } /** * Cache the noise buffers */ const _noiseCache: NoiseCache = { brown: null, pink: null, white: null, }; /** * The noise arrays. Generated on initialization. * borrowed heavily from https://github.com/zacharydenton/noise.js * (c) 2013 Zach Denton (MIT) */ const _noiseBuffers = { get brown(): ToneAudioBuffer { if (!_noiseCache.brown) { const buffer: Float32Array[] = []; for (let channelNum = 0; channelNum < NUM_CHANNELS; channelNum++) { const channel = new Float32Array(BUFFER_LENGTH); buffer[channelNum] = channel; let lastOut = 0.0; for (let i = 0; i < BUFFER_LENGTH; i++) { const white = Math.random() * 2 - 1; channel[i] = (lastOut + (0.02 * white)) / 1.02; lastOut = channel[i]; channel[i] *= 3.5; // (roughly) compensate for gain } } _noiseCache.brown = new ToneAudioBuffer().fromArray(buffer); } return _noiseCache.brown; }, get pink(): ToneAudioBuffer { if (!_noiseCache.pink) { const buffer: Float32Array[] = []; for (let channelNum = 0; channelNum < NUM_CHANNELS; channelNum++) { const channel = new Float32Array(BUFFER_LENGTH); buffer[channelNum] = channel; // tslint:disable-next-line: one-variable-per-declaration let b0, b1, b2, b3, b4, b5, b6; b0 = b1 = b2 = b3 = b4 = b5 = b6 = 0.0; for (let i = 0; i < BUFFER_LENGTH; i++) { const white = Math.random() * 2 - 1; b0 = 0.99886 * b0 + white * 0.0555179; b1 = 0.99332 * b1 + white * 0.0750759; b2 = 0.96900 * b2 + white * 0.1538520; b3 = 0.86650 * b3 + white * 0.3104856; b4 = 0.55000 * b4 + white * 0.5329522; b5 = -0.7616 * b5 - white * 0.0168980; channel[i] = b0 + b1 + b2 + b3 + b4 + b5 + b6 + white * 0.5362; channel[i] *= 0.11; // (roughly) compensate for gain b6 = white * 0.115926; } } _noiseCache.pink = new ToneAudioBuffer().fromArray(buffer); } return _noiseCache.pink; }, get white(): ToneAudioBuffer { if (!_noiseCache.white) { const buffer: Float32Array[] = []; for (let channelNum = 0; channelNum < NUM_CHANNELS; channelNum++) { const channel = new Float32Array(BUFFER_LENGTH); buffer[channelNum] = channel; for (let i = 0; i < BUFFER_LENGTH; i++) { channel[i] = Math.random() * 2 - 1; } } _noiseCache.white = new ToneAudioBuffer().fromArray(buffer); } return _noiseCache.white; }, };