PKHeX/PKHeX.Core/Util/ArrayUtil.cs
Kurt 9166d0eb64
Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves

In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.

The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.

The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.

* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 16:15:27 -07:00

183 lines
5.4 KiB
C#

using System;
using System.Collections.Generic;
namespace PKHeX.Core;
/// <summary>
/// Array reusable logic
/// </summary>
public static class ArrayUtil
{
public static bool IsRangeEmpty(this ReadOnlySpan<byte> data, byte value = 0)
{
for (int i = data.Length - 1; i >= 0; i--)
{
if (data[i] != value)
return false;
}
return true;
}
public static int Count<T>(this Span<T> data, T value) where T : IEquatable<T>
{
return ((ReadOnlySpan<T>)data).Count(value);
}
public static T Find<T>(this Span<T> data, Func<T, bool> value) where T : unmanaged
{
foreach (var x in data)
{
if (value(x))
return x;
}
return default;
}
public static int Count<T>(this ReadOnlySpan<T> data, T value) where T : IEquatable<T>
{
int count = 0;
for (int i = data.Length - 1; i >= 0; i--)
{
if (data[i].Equals(value))
count++;
}
return count;
}
public static byte[] Slice(this byte[] src, int offset, int length) => src.AsSpan(offset, length).ToArray();
public static T[] Slice<T>(this T[] src, int offset, int length) => src.AsSpan(offset, length).ToArray();
public static bool WithinRange(int value, int min, int max) => min <= value && value < max;
public static IEnumerable<T[]> EnumerateSplit<T>(T[] bin, int size, int start = 0)
{
for (int i = start; i < bin.Length; i += size)
yield return bin.Slice(i, size);
}
public static bool[] GitBitFlagArray(ReadOnlySpan<byte> data, int count)
{
bool[] result = new bool[count];
for (int i = 0; i < result.Length; i++)
result[i] = ((data[i >> 3] >> (i & 7)) & 0x1) == 1;
return result;
}
public static void SetBitFlagArray(Span<byte> data, ReadOnlySpan<bool> value)
{
for (int i = 0; i < value.Length; i++)
{
var ofs = i >> 3;
var mask = (1 << (i & 7));
if (value[i])
data[ofs] |= (byte)mask;
else
data[ofs] &= (byte)~mask;
}
}
/// <summary>
/// Copies a <see cref="T"/> list to the destination list, with an option to copy to a starting point.
/// </summary>
/// <param name="list">Source list to copy from</param>
/// <param name="dest">Destination list/array</param>
/// <param name="skip">Criteria for skipping a slot</param>
/// <param name="start">Starting point to copy to</param>
/// <returns>Count of <see cref="T"/> copied.</returns>
public static int CopyTo<T>(this IEnumerable<T> list, IList<T> dest, Func<int, bool> skip, int start = 0)
{
int ctr = start;
int skipped = 0;
foreach (var z in list)
{
// seek forward to next open slot
int next = FindNextValidIndex(dest, skip, ctr);
if (next == -1)
break;
skipped += next - ctr;
ctr = next;
dest[ctr++] = z;
}
return ctr - start - skipped;
}
public static int FindNextValidIndex<T>(IList<T> dest, Func<int, bool> skip, int ctr)
{
while (true)
{
if ((uint)ctr >= dest.Count)
return -1;
var exist = dest[ctr];
if (exist == null || !skip(ctr))
return ctr;
ctr++;
}
}
/// <summary>
/// Copies an <see cref="IEnumerable{T}"/> list to the destination list, with an option to copy to a starting point.
/// </summary>
/// <typeparam name="T">Typed object to copy</typeparam>
/// <param name="list">Source list to copy from</param>
/// <param name="dest">Destination list/array</param>
/// <param name="start">Starting point to copy to</param>
/// <returns>Count of <see cref="T"/> copied.</returns>
public static int CopyTo<T>(this IEnumerable<T> list, IList<T> dest, int start = 0)
{
int ctr = start;
foreach (var z in list)
{
if ((uint)ctr >= dest.Count)
break;
dest[ctr++] = z;
}
return ctr - start;
}
internal static T[] ConcatAll<T>(params T[][] arr)
{
int len = 0;
foreach (var a in arr)
len += a.Length;
var result = new T[len];
int ctr = 0;
foreach (var a in arr)
{
a.CopyTo(result, ctr);
ctr += a.Length;
}
return result;
}
internal static T[] ConcatAll<T>(T[] arr1, T[] arr2)
{
int len = arr1.Length + arr2.Length;
var result = new T[len];
arr1.CopyTo(result, 0);
arr2.CopyTo(result, arr1.Length);
return result;
}
internal static T[] ConcatAll<T>(T[] arr1, T[] arr2, T[] arr3)
{
int len = arr1.Length + arr2.Length + arr3.Length;
var result = new T[len];
arr1.CopyTo(result, 0);
arr2.CopyTo(result, arr1.Length);
arr3.CopyTo(result, arr1.Length + arr2.Length);
return result;
}
internal static T[] ConcatAll<T>(T[] arr1, T[] arr2, ReadOnlySpan<T> arr3)
{
int len = arr1.Length + arr2.Length + arr3.Length;
var result = new T[len];
arr1.CopyTo(result, 0);
arr2.CopyTo(result, arr1.Length);
arr3.CopyTo(result.AsSpan(arr1.Length + arr2.Length));
return result;
}
}