PKHeX/PKHeX.Core/Saves/Substructures/Gen5/CGearBackground.cs
2020-12-07 20:14:12 -08:00

531 lines
18 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
namespace PKHeX.Core
{
/// <summary>
/// Generation 5 C-Gear Background Image
/// </summary>
public sealed class CGearBackground
{
public const string Extension = "cgb";
public const string Filter = "C-Gear Background|*.cgb";
public const int Width = 256; // px
public const int Height = 192; // px
public const int SIZE_CGB = 0x2600;
private const int ColorCount = 0x10;
private const int TileSize = 8;
private const int TileCount = (Width / TileSize) * (Height / TileSize); // 0x300
/* CGearBackground Documentation
* CGearBackgrounds (.cgb) are tiled images.
* Tiles are 8x8, and serve as a tileset for building the image.
* The first 0x2000 bytes are the tile building region.
* A tile to have two pixels defined in one byte of space.
* A tile takes up 64 pixels, 32 bytes, 0x20 chunks.
* The last tile is actually the colors used in the image (16bit).
* Only 16 colors can be used for the entire image.
* 255 tiles may be chosen from, as (0x2000-(0x20))/0x20 = 0xFF
* The last 0x600 bytes are the tiles used.
* 256/8 = 32, 192/8 = 24
* 32 * 24 = 0x300
* The tiles are chosen based on the 16bit index of the tile.
* 0x300 * 2 = 0x600!
*
* CGearBackgrounds tilemap (when stored on BW) employs some obfuscation.
* BW obfuscates by adding 0xA0A0.
* The obfuscated number is then tweaked by adding 15*(i/17)
* To reverse, use a similar reverse calculation
* PSK files are basically raw game rips (obfuscated)
* CGB files are un-obfuscated / B2W2.
* Due to BW and B2W2 using different obfuscation adds, PSK files are incompatible between the versions.
*/
public CGearBackground(byte[] data)
{
if (data.Length != SIZE_CGB)
throw new ArgumentException(nameof(data));
// decode for easy handling
if (!IsCGB(data))
{
_psk = data;
data = PSKtoCGB(data);
}
else
{
_cgb = data;
}
byte[] Region1 = data.Slice(0, 0x1FE0);
byte[] ColorData = data.Slice(0x1FE0, 0x20);
byte[] Region2 = data.Slice(0x2000, 0x600);
ColorPalette = new int[ColorCount];
for (int i = 0; i < ColorPalette.Length; i++)
ColorPalette[i] = GetRGB555_16(BitConverter.ToUInt16(ColorData, i * 2));
Tiles = new Tile[0xFF];
for (int i = 0; i < 0xFF; i++)
{
byte[] tiledata = new byte[Tile.SIZE_TILE];
Array.Copy(Region1, i * Tile.SIZE_TILE, tiledata, 0, Tile.SIZE_TILE);
Tiles[i] = new Tile(tiledata);
Tiles[i].SetTile(ColorPalette);
}
Map = new TileMap(Region2);
}
public readonly int[] ColorPalette;
public readonly Tile[] Tiles;
public readonly TileMap Map;
// Track the original data
private readonly byte[]? _cgb;
private readonly byte[]? _psk;
/// <summary>
/// Writes the <see cref="CGearBackground"/> data to a binary form.
/// </summary>
/// <param name="B2W2">True if the destination game is <see cref="GameVersion.B2W2"/>, otherwise false for <see cref="GameVersion.BW"/>.</param>
/// <returns>Serialized skin data for writing to the save file</returns>
public byte[] GetSkin(bool B2W2) => B2W2 ? GetCGB() : GetPSK();
private byte[] GetCGB() => _cgb ?? Write();
private byte[] GetPSK() => _psk ?? CGBtoPSK(Write());
private byte[] Write()
{
byte[] data = new byte[SIZE_CGB];
for (int i = 0; i < Tiles.Length; i++)
Array.Copy(Tiles[i].Write(), 0, data, i*Tile.SIZE_TILE, Tile.SIZE_TILE);
for (int i = 0; i < ColorPalette.Length; i++)
BitConverter.GetBytes(GetRGB555(ColorPalette[i])).CopyTo(data, 0x1FE0 + (i * 2));
Array.Copy(Map.Write(), 0, data, 0x2000, 0x600);
return data;
}
private static bool IsCGB(IReadOnlyList<byte> data)
{
if (data.Count != SIZE_CGB)
return false;
// check odd bytes for anything not rotation flag
for (int i = 0x2000; i < 0x2600; i += 2)
{
if ((data[i + 1] & ~0b1100) != 0)
return false;
}
return true;
}
private static byte[] CGBtoPSK(byte[] cgb)
{
byte[] psk = (byte[])cgb.Clone();
for (int i = 0x2000; i < 0x2600; i += 2)
{
var tileVal = BitConverter.ToUInt16(cgb, i);
int val = GetPSKValue(tileVal);
psk[i] = (byte)val;
psk[i + 1] = (byte)(val >> 8);
}
return psk;
}
private static int GetPSKValue(ushort val)
{
int rot = val & 0xFF00;
int tile = val & 0x00FF;
if (tile == 0xFF) // invalid tile?
tile = 0;
return tile + (15 * (tile / 17)) + 0xA0A0 + rot;
}
private static byte[] PSKtoCGB(byte[] psk)
{
byte[] cgb = (byte[])psk.Clone();
for (int i = 0x2000; i < 0x2600; i += 2)
{
int val = BitConverter.ToUInt16(psk, i);
int index = ValToIndex(val);
byte tile = (byte)index;
byte rot = (byte)(index >> 8);
if (tile == 0xFF)
tile = 0;
cgb[i] = tile;
cgb[i + 1] = rot;
}
return cgb;
}
private static int ValToIndex(int val)
{
if ((val & 0x3FF) < 0xA0 || (val & 0x3FF) > 0x280)
return (val & 0x5C00) | 0xFF;
return ((val % 0x20) + (17 * (((val & 0x3FF) - 0xA0) / 0x20))) | (val & 0x5C00);
}
private static byte Convert8to5(int colorval)
{
byte i = 0;
while (colorval > Convert5To8[i]) i++;
return i;
}
private static int GetRGB555_32(int val)
{
var R = (val >> 0 >> 3) & 0x1F;
var G = (val >> 8 >> 3) & 0x1F;
var B = (val >> 16 >> 3) & 0x1F;
return 0xFF << 24 | R << 16 | G << 8 | B;
}
private static int GetRGB555_16(ushort val)
{
int R = (val >> 0) & 0x1F;
int G = (val >> 5) & 0x1F;
int B = (val >> 10) & 0x1F;
R = Convert5To8[R];
G = Convert5To8[G];
B = Convert5To8[B];
return 0xFF << 24 | R << 16 | G << 8 | B;
}
private static ushort GetRGB555(int v)
{
var R = (byte)(v >> 16);
var G = (byte)(v >> 8);
var B = (byte)(v >> 0);
int val = 0;
val |= Convert8to5(R) << 0;
val |= Convert8to5(G) << 5;
val |= Convert8to5(B) << 10;
return (ushort)val;
}
private static readonly int[] Convert5To8 = { 0x00,0x08,0x10,0x18,0x20,0x29,0x31,0x39,
0x41,0x4A,0x52,0x5A,0x62,0x6A,0x73,0x7B,
0x83,0x8B,0x94,0x9C,0xA4,0xAC,0xB4,0xBD,
0xC5,0xCD,0xD5,0xDE,0xE6,0xEE,0xF6,0xFF };
/// <summary>
/// Creates a new C-Gear Background object from an input image data byte array
/// </summary>
/// <param name="data">Image data</param>
/// <param name="bpp">Bytes per pixel</param>
/// <returns>new C-Gear Background object</returns>
public static CGearBackground GetBackground(byte[] data, int bpp = 4)
{
int[] pixels = new int[data.Length / bpp];
Buffer.BlockCopy(data, 0, pixels, 0, data.Length);
var colors = GetColorData(pixels);
var Palette = colors.Distinct().ToArray();
if (Palette.Length > ColorCount)
throw new ArgumentException($"Too many unique colors. Expected <= 16, got {Palette.Length}");
var tiles = GetTiles(colors, Palette);
GetTileList(tiles, out List<Tile> tilelist, out TileMap tm);
if (tilelist.Count >= 0xFF)
throw new ArgumentException($"Too many unique tiles. Expected < 256, received {tilelist.Count}.");
// Finished!
return new CGearBackground(Palette, tilelist.ToArray(), tm);
}
private static int[] GetColorData(IReadOnlyList<int> pixels)
{
int[] colors = new int[pixels.Count];
for (int i = 0; i < pixels.Count; i++)
colors[i] = GetRGB555_32(pixels[i]);
return colors;
}
private static Tile[] GetTiles(IReadOnlyList<int> colors, int[] palette)
{
var tiles = new Tile[TileCount];
for (int i = 0; i < tiles.Length; i++)
tiles[i] = GetTile(colors, palette, i);
return tiles;
}
private static Tile GetTile(IReadOnlyList<int> colors, int[] palette, int tileIndex)
{
int x = (tileIndex * 8) % Width;
int y = 8 * ((tileIndex * 8) / Width);
var t = new Tile();
for (uint ix = 0; ix < 8; ix++)
{
for (uint iy = 0; iy < 8; iy++)
{
int index = ((int) (y + iy) * Width) + (int) (x + ix);
int c = colors[index];
t.ColorChoices[(ix % 8) + (iy * 8)] = Array.IndexOf(palette, c);
}
}
t.SetTile(palette);
return t;
}
private static void GetTileList(IReadOnlyList<Tile> tiles, out List<Tile> tilelist, out TileMap tm)
{
tilelist = new List<Tile> { tiles[0] };
tm = new TileMap(new byte[2 * Width * Height / 64]);
// start at 1 as the 0th tile is always non-duplicate
for (int i = 1; i < tm.TileChoices.Length; i++)
FindPossibleRotatedTile(tiles[i], tilelist, tm, i);
}
private static void FindPossibleRotatedTile(Tile t, IList<Tile> tilelist, TileMap tm, int tileIndex)
{
// Test all tiles currently in the list
for (int j = 0; j < tilelist.Count; j++)
{
int rotVal = t.GetRotationValue(tilelist[j].ColorChoices);
if (rotVal <= -1)
continue;
tm.TileChoices[tileIndex] = j;
tm.Rotations[tileIndex] = rotVal;
return;
}
// No tile found, add to list
tm.TileChoices[tileIndex] = tilelist.Count - 1;
tm.Rotations[tileIndex] = 0;
tilelist.Add(t);
}
private CGearBackground(int[] Palette, Tile[] tilelist, TileMap tm)
{
Map = tm;
ColorPalette = Palette;
Tiles = tilelist;
}
public byte[] GetImageData()
{
byte[] data = new byte[4 * Width * Height];
for (int i = 0; i < Map.TileChoices.Length; i++)
{
int x = (i * 8) % Width;
int y = 8 * ((i * 8) / Width);
var choice = Map.TileChoices[i] % (Tiles.Length + 1);
var tile = Tiles[choice];
var tileData = tile.Rotate(Map.Rotations[i]);
for (int iy = 0; iy < 8; iy++)
{
int src = iy * (4 * 8);
int dest = (((y+iy) * Width) + x) * 4;
Array.Copy(tileData, src, data, dest, 4*8);
}
}
return data;
}
}
public sealed class Tile
{
internal const int SIZE_TILE = 0x20;
private const int TileWidth = 8;
private const int TileHeight = 8;
internal readonly int[] ColorChoices;
private byte[] PixelData;
private byte[]? PixelDataX;
private byte[]? PixelDataY;
internal Tile() : this(new byte[SIZE_TILE]) { }
internal Tile(byte[] data)
{
if (data.Length != SIZE_TILE)
throw new ArgumentException(nameof(data));
ColorChoices = new int[TileWidth * TileHeight];
for (int i = 0; i < data.Length; i++)
{
var ofs = i * 2;
ColorChoices[ofs + 0] = data[i] & 0xF;
ColorChoices[ofs + 1] = data[i] >> 4;
}
PixelData = Array.Empty<byte>();
}
internal void SetTile(int[] Palette) => PixelData = GetTileData(Palette);
private byte[] GetTileData(IReadOnlyList<int> Palette)
{
const int pixels = TileWidth * TileHeight;
byte[] data = new byte[pixels * 4];
for (int i = 0; i < pixels; i++)
{
var choice = ColorChoices[i];
var val = Palette[choice];
var o = 4 * i;
data[o + 0] = (byte)(val & 0xFF);
data[o + 1] = (byte)(val >> 8 & 0xFF);
data[o + 2] = (byte)(val >> 16 & 0xFF);
data[o + 3] = (byte)(val >> 24 & 0xFF);
}
return data;
}
internal byte[] Write()
{
byte[] data = new byte[SIZE_TILE];
for (int i = 0; i < data.Length; i++)
{
var ofs = i * 2;
data[i] |= (byte)(ColorChoices[ofs + 0] & 0xF);
data[i] |= (byte)((ColorChoices[ofs + 1] & 0xF) << 4);
}
return data;
}
public byte[] Rotate(int rotFlip)
{
if (rotFlip == 0)
return PixelData;
if ((rotFlip & 4) > 0)
return PixelDataX ??= FlipX(PixelData, TileWidth);
if ((rotFlip & 8) > 0)
return PixelDataY ??= FlipY(PixelData, TileHeight);
return PixelData;
}
private static byte[] FlipX(IReadOnlyList<byte> data, int width, int bpp = 4)
{
byte[] result = new byte[data.Count];
int pixels = data.Count / bpp;
for (int i = 0; i < pixels; i++)
{
int x = i % width;
int y = i / width;
x = width - x - 1; // flip x
int dest = ((y * width) + x) * bpp;
var o = 4 * i;
result[dest + 0] = data[o + 0];
result[dest + 1] = data[o + 1];
result[dest + 2] = data[o + 2];
result[dest + 3] = data[o + 3];
}
return result;
}
private static byte[] FlipY(IReadOnlyList<byte> data, int height, int bpp = 4)
{
byte[] result = new byte[data.Count];
int pixels = data.Count / bpp;
int width = pixels / height;
for (int i = 0; i < pixels; i++)
{
int x = i % width;
int y = i / width;
y = height - y - 1; // flip x
int dest = ((y * width) + x) * bpp;
var o = 4 * i;
result[dest + 0] = data[o + 0];
result[dest + 1] = data[o + 1];
result[dest + 2] = data[o + 2];
result[dest + 3] = data[o + 3];
}
return result;
}
internal int GetRotationValue(int[] tileColors)
{
// Check all rotation types
if (ColorChoices.SequenceEqual(tileColors))
return 0;
if (IsMirrorX(tileColors))
return 4;
if (IsMirrorY(tileColors))
return 8;
if (IsMirrorXY(tileColors))
return 12;
return -1;
}
private bool IsMirrorX(int[] tileColors)
{
for (int i = 0; i < 64; i++)
{
if (ColorChoices[(7 - (i & 7)) + (8 * (i / 8))] != tileColors[i])
return false;
}
return true;
}
private bool IsMirrorY(int[] tileColors)
{
for (int i = 0; i < 64; i++)
{
if (ColorChoices[64 - (8 * (1 + (i / 8))) + (i & 7)] != tileColors[i])
return false;
}
return true;
}
private bool IsMirrorXY(int[] tileColors)
{
for (int i = 0; i < 64; i++)
{
if (ColorChoices[63 - i] != tileColors[i])
return false;
}
return true;
}
}
public sealed class TileMap
{
public readonly int[] TileChoices;
public readonly int[] Rotations;
internal TileMap(byte[] data)
{
TileChoices = new int[data.Length / 2];
Rotations = new int[data.Length / 2];
for (int i = 0; i < data.Length; i += 2)
{
TileChoices[i / 2] = data[i];
Rotations[i / 2] = data[i + 1];
}
}
internal byte[] Write()
{
byte[] data = new byte[TileChoices.Length * 2];
for (int i = 0; i < data.Length; i += 2)
{
data[i] = (byte)TileChoices[i / 2];
data[i + 1] = (byte)Rotations[i / 2];
}
return data;
}
}
}